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Ostrowski, Griiss, Cebysev type
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AssTrACT. Ostrowski, Griiss, CebySev type inequalities involving functions
whose second derivatives belong to Ly(a, b) and whose modulus of second deriva-
tives are convex are established. The results provide better bounds than those
currently available in the literature.
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RESUMEN. Se establecen desigualdades de tipo Ostrowski, Griiss, CebySev que
comprenden funciones cuyas segundas derivadas pertenecen a Ly(a,b) y cuyos
médulos de segundas derivadas son convexos. Los resultados obtenidos propor-
cionan mejores cotas que las actualmente disponibles en la literatura.

1. Introduction

In 1938, A. M. Ostrowski [6] proved the following:

Theorem 1.1. Let f : [a,b] — R be continuous on [a,b] and differentiable on
(a,b) whose derivative f' : (a,b) — R is bounded on (a,b) i.e., |f (x)] <M <
1
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o0, then

b o ath
f(x)—bia/f(t)dts i+< b_;) (b—a)M,  (1.1)

for all x € [a,b], where M is constant.

For two absolutely continuous functions f,g : [a,b] — R, consider the func-
tional,

b b b
1 1 1
T = —
(h9) =5 [T @o@ds = 2 [ 1@ |77 [a@dr ).
(1.2)
provided, the involved integrals exist.
In 1882, P. L. Cebysev [7] proved that, if ', ¢’ € Ly [a,b], then,
1
T(,9) < 75 (0~ 0 I o 9. (13)
In 1934, G. Griiss 7] showed that
1
T(f.9) < 5 (M —m) (N —n), (1.4

provided m, M, n and N are real numbers satisfying the conditions,
—co<m< f(z) <M< o0,
—co<n<g(r) <N <o,
for all x € [a,b].
Pachpatte in [11] proved the following results.

Theorem 1.2. Let f : [a,b] — R be absolutely continuous on [a,b]. If |f"], |¢"|
are convez on [a,b] and ", ¢" € Ly[a,b], then,

1S (f,9) < [Ig(x)l (IF @I+ M) + 1 @) (' (@) + Hg’lloo)}

_atb)?]
% 1_’_(95 ) ]b4a7 (1.5)

4 (b-a)?

for all x € [a,b].

Corollary 1.1. Under the assumptions of theorem 1.2, we have the mid point

inequality,
s (ol = Sl (40)] (| (452)| + 1)
/(5w e

(=)l
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Theorem 1.3. Let f : [a,b] — R be absolutely continuous on [a,b]. If | f"],
lg”| are convex on [a,b] and ', ¢ € Lyla,b], then,

b

]‘ !/ !
T (f,9)] < w/[lg(fﬂ)l (7 @)+ 111s0)

a

+1f @) (1g'@)| + l19'l.)] E(z)dz, (1.7)
for all x € [a,b], where E(x) = w_

Corollary 1.2. Under the assumptions of theorem 1.3, we have the mid point

inequality,
b—a a+b ,{a+b ,
T ()l < U Ug< )| (|7 (55 +1e1.)

BEDNFE )] o

Theorem 1.4. Let f : [a,b] — R be absolutely continuous on [a,b]. If |f"], |¢"|
are conver on [a,b] and ", ¢" € Ly[a,b], then,

b
1 ! !
N AU

< (l9' (@) + 1lg'll o) B® (2)de, (1.9)

2

r—a 2+ b—zx
for all z € [a,b], where E(x) = %

Corollary 1.3. Under the assumptions of theorem 1.4, we have the mid point

inequality
/ a+b !/
2 [(|r (5|1

(o (554191 | (110

During the past few years, many researchers have given considerable at-
tention to the above inequalities and various generalizations, extensions and
variants of them have appeared in the literature, see [1 — 12], and the refer-
ences cited therein. Motivated by results given in [8 — 11], we establish here
some inequalities similar to those given by Ostrowski, Griiss and Cebysev in-
volving functions whose derivatives belong to L,(a, b) space and whose modulus
of second derivatives are convex. The analysis used in the proofs is elementary
and based on integral identities proved in [1 — 2].

T (f.g)] < L= (
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2. Statement of results

Let I be a suitable interval of the real line R. A function f : I — R is called
convex if

fAz+ (1= Ny) <Af(z) + (1= N)f(y),
for all z,y € I and X € [0, 1] (see [12]).
We need the following identities proved by Mir et al. in [5]:

/f yit + (o - +b)f(sc)
_bia/ (@ — 1) V )\)x+)\t)d)\] dt,

a 0

for all « € [a,b], where f: I — R is an absolutely continuous function on [a, ]
and A € [0, 1].
We use the following notation to simplify the details of presentation,

b b
5(f.0) = Fe)alo) = 57— (f(w) [otorie o) | f(t)dt)

-3 (x -4 b) (F(2)g' () + g(x) ' (2))

At the mid-point we denote this by Sys (f, g) , noting that the last term on the
b

RHS vanishes.
b
fg / [ r@gtwiz

_ M (/ f(x)dx/bg(t)dt+/bg(x)dx/bf(t)dt)

a a

>
|
S

o / (- 52 1@/ @) + gl ()

= bia/bf(x)g(x)dx— (bia/bf(x)dm) (bia/bg(x)da,)

(= / (2= 57) () @) + ala) @)

a

at the mid-point we denote this by Tas (f, g).
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5(7.9) = @ate) — (2= “52) () @) + o) ()

t (o) pge
+ <a:— a;rb> Z/Ezc)l /bg(t)dt+ glfzi/bf(t)dt)

and at the mid-point we denote this by T (f,9). We also use

1/q
| (b—x)2t 4 (x — )2t
Q) = l 2+ 1 1 '

We define |||, as the usual Lebesgue norm on Ly[a, b],; in other words, /A,

1/p
= (f; |h(t)|” dt) for h € Lpla,b] and <p7q > 1, % 4 % — 1)'
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The following theorem deals with Ostrowski type inequalities involving two
functions.

Theorem 2.1. Let f : [a,b] — R be absolutely continuous on [a,b]. If|f"], |g"|
are convez on [a,b] and f", g" € Lyla,b], then,

S (f,9)| < 12‘5}”?@) 216 = a7 (17 (@) 19" (@)] + lg(@)| 1" (@)])
+ (lg@I "1, + LF@1g"1L,)] - (2.1)

for all x € [a,b].

Proof. From the hypothesis of theorem 2.1, the following identities hold:

f) = / i+ (2= “52) £

b 1
_bla/u_t)?[/(1-A>f”<<1—x>x+At>dA]dt, (22)

O / otoyie + (o= 25 ) g0

b 1
- bia/(x—t)z [/(1—)\)9"((1—/\)564—)\75)&\] dt,  (2.3)
0

for all x € [a, b].
Multiplying both sides of (2.2) and (2.3) by g(x) and f(x) respectively,
adding the resulting identities and rewriting, we have,

b 1
S(f,9) = —ﬁ |:g($)/(a:—t)2 (/(1—)\) f”((l—)\)m+>\t)d/\) dt

a 0

b 1
+f(x)/(x _t (/(1 ~ N A)x—&-At)dA) dt] (24

a 0

Since |f”|, |¢”| are convex on [a,b] then, from (2.4), and using properties of
modulus, we have,
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1
1S(f,9)| < m

{Ig \/\w—tl {If” |/11— d)\+|f”()|/( )\)d)\]dt
+1f(z \/|:c—t| [g”az|/1— Zdh+ 19" (t |/1)\ d)\]dt}

= m [|g(x)/$t|2(2|f”x+|f” ®)]) dt

a

b
+f |/|x ?2lg"s) + 19" () ds

< % la@@)| (21" @)I1b = o' + 11511,

FIF@) (216" @) b — a7 + 9], ]
— oy [2B— a7 (@ @)+ o) 1)
Fla@ 11, + 1) 191,

We therefore have the desired inequality (2.1). o

Corollary 2.1. Under the assumptions of theorem 2.1, we have the mid point
inequality,

1Sa (f5 9)]

s | (Jo (S22t + |7 (452) 1 )

et () (P b ()
(2.5)

Remark 2.1. As we know that in the above inequality ¢ > 1 and so (2)?1(2q+
1) > 12, then clearly bounds obtained in (2.5) are at least 9 times better than
the bounds obtained in (1.6).

The Griiss type inequalities are embodied in the following theorem.
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Theorem 2.2. Let f : [a,b] — R be absolutely continuous on [a,b]. If |f"|,
lg”| are convex on [a,b] and f", ¢" € Lyla,b], then,

b

_ —a|"? (|f(2)||g" (= )| f" (x
TG0l < g [ ) @]+ ol @)

+ (lg@1 171, + 1 @)1lg"l, )| @) da, (2.6)
for all x € [a,b].

Proof. From the proof of theorem 2.1, we have,

S(f,9) =
b 1
{ / x—t) [/ )f”((l—A)er/\t)dA] dt

b
+f(z)/(:c7t) [/(1)\)9"((1)\)1:+)\t)d)\] dt}. (2.7)
a 0

Integrating (2.7) with respect to z over [a,b] and dividing by (b — a), we get,

T(f,g9) =

b b 1
2(;1(1)2/{9(%)/(:6—75)2 l/(l—A) f/’((l—)\)x+)\t)d)\] dt

a a 0

b 1
+ f(:c)/(:c—t)2 {/(1—A)g”((1—/\)x+/\t)d)\] dt}dx.

a 0

Since |f”|, |g"| are convex on [a, b] and using the properties of modulus, we
have,

T(f,9)l <

H1f ol [ra- ]

g/b{lg I/Iw—tl [f” I/l(l—
0
1
0
b 1 1
+ [f(z I/Ix—tl [g:cI/l— )2 dx+ |g" ( O/Al— )d)\]dt}dx
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b 1/q b 1/p
1
< 215( / x —t*1dt /1Pdt
< e/ o1 @i | [l
a a
b /q b 1/p
ay |x—t|2th JICIR
1/q b 1/p
+|f(@)] 219" (z /|x £ dt /1pdt
b /q b 1/p
/|x—t|2q dt /|g“ )P dt dx
b
— s [ 2= a (@11 @)] + gt | @)
12(b—a)
+ (lg@II7" 1L, + LF@1g"1l,) | Qa)da.
Hence we get desired inequality (2.6). ™

Corollary 2.2. Under the assumptions of theorem 2.2, we have the mid point
inequality,

—a)24
R R N
_|_2|b_a|1/13<‘f<a;rb)‘g//(a;rb>'+‘g<a42rb>’ // aer ]
(2.8)

Remark 2.2. As we know that in the above inequality ¢ > 1 and so (2)?(2q+
1) > 12, then clearly bounds obtained in (2.8) are at least 9 times better than
the bounds obtained in (1.8).

The next theorem contains Cebysev type inequalities.
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Theorem 2.3. Let f : [a,b] — R be absolutely continuous on [a,b]. If | f"|, |¢"|
are convez on [a,b] and f", g" € Lyla,b], then,

b

P10 < gt / {[ls@ (218" @11~ a5 1£71,)]

< [1f@)] (219" @)=l + 19”1, ) |} @2@)de (2.9)

for all x € [a,b].

Proof. From the hypothesis of theorem 2.3 the identities (2.2) and (2.3) hold.
Multiplying both sides of these by each other, we have:

[f @) - /b soyit— (o= “57) f’(af)]

1
ia/(x—tf {/(1—)\)f”((1—)\)x+>\t)d)\] dt
b ’ 1
(z —t)? :v—&—At)dA]dt
i | foone
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which gives

b 1
§(f,g)=ﬁ/(x—t)2 {/(I—A)f”((l—)\)x+/\t)d/\] dt

a 0
b

ia/(x—t)2 {/(1—/\)g”((1—)\)x+)\t)d)\] dt

’ (2.10)

and, consequently, we obtain

T(f, g)‘ <

b 1
(b1a3/{ (z—1) [/ ) 1£"( )|+A(1—A)|f”(t)|) dA] dt
a a 0
b 1
(z —1) 1— )2 19" (@) + X1 = M) |g" ()| dA| dt p dx
x/ L/ q + g } ] }

= 3G(b_a)/{[w( 21 (217w b - al + 1771,)]

a

< [1F@1 (219" @) b= al"” + 119”1, ) | } @*(2)dx

This completes the proof. o

Corollary 2.3. Under the assumptions of theorem 2.3, we have the mid-point
inequality,
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‘ < (b _ a‘)4q
= 36(2)M(2g + 1)2

o (22 5
+ (‘g <a;rb) ‘ 170, + ‘f (a;bﬂ g”||p>} : (2.11)

Remark 2.3. As we know that in the above inequality ¢ > 1 and so (2)*(2q+

1)

> 144, then clearly bounds obtained in (2.11) are at least 81 times better

than the bounds obtained in (1.10).

1]

(10]
(11]

(12]
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