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RESUMEN. En este articulo aplicamos el principio del maximo y el método de la
compactificacién compensada para obtener soluciones débiles a los problemas de
Cauchy para las leyes de conservacién hiperbdlica, no lineal, de flujo cuadratico
y el sistema LeRoux con fuentes.

1. Introduction

In this paper, we study the Cauchy problem for two nonlinear hyperbolic con-
servation laws, one is related to a system of quadratic flux

Up + %(3u2 + v2)r + g1(u,v) =0,
v + (uv) g + ga(u,v) =0,

and the other is related to the LeRoux system

w4+ (u? + U)x + f(u,v) =0,

v + (uv) + g(u,v) = 0.
By applying the compensated compactness method and the maximum princi-
ple, we get the existence of weak solutions to them.

Next, we introduce some basic lemmas which are very useful later in the
present paper.
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Lemma 1.1. Suppose that v¢(z,t) satisfies the parabolic equation
v+ (vf (u,0)) , + g(u,v) = Vg, (1.1)

and v(x,0) = vo(x) > & > 0. Where f(u,v) € C*(R?), g(u,v) is locally
Lipchitz continuous and g(u,v) = vh(u,v), h(u,v) € C(R). If |u(z,t)| <
M(,6,T), |v°(x,t)] < M(e,6,T) on R x [0,T), then the solution v¢(z,t) >
c(t,0,e) > 0 on Rx[0,T], where ¢(t,0,e) could tend to zero as 0, tend to zero
or t tends to infinity.

Proof. We rewrite equation (1.1) as follows:
wy + f(ua U)wz + f(uv v):v + h(ua U) = E(sz + wi)v (12)

where w = logv. Then

2
Wt = EWgy + € (wm — f%:))) — flu,v)y — f2(47u€’1)) — h(u,v).

The solution w of (1.2) with initial data wo(z) = log(vo(x)) can be represented

by a Green function G¢(z — y,t) = \/41777 exp {— ('TE;)Q } :

w —/ G*(z — y, wo(y)dy

/ /l (10a- “8”)>2f(u,v>xwh(u,v)]

x G*(x —y,t — s)dyds. (1.3)
Since
oo —+oo

/ G*(x — &, t)dE =1, / / |G, xfy,tfs)|dydsf21/ (t>0)

it follows from (1.3) that
2
w > logd + / / _f (4u,1)) — h(u,v))G*(x — y,t — s)dyds
€

log6+// lquax—y,t—s) (W—I—h(u?v))

x G*(x —y,t — 3)1 dyds

t
210g6—2M\/—E—M1t2 —C(t,6,e) > —
s

Thus v*(z,t) has a positive lower bound c(t, d,€). o
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Lemma 1.2. Assume that u(x,t) satisfies the parabolic equation
us + a(u, , t)u, + g(u, €, t) = gy, (1.4)

and |u(z,0)] < M, |g(u,z,t)] < Clu| + C, where C,C > 0 and a(u,x,t) is
bounded. Then for anyT > 0, there exists M (T) > 0 such that |u(z,t)| < M(T)
on R x [0,T].

Proof. Multiplying equation (1.4) by 2u, we have
(uQ)t + a(u, z,t) (u2)$ = Uy, — 2ug(u, x,t)
< (2uuy), — 2u2 + 2|ul (C’\u| + C~')
< (U)o + (2C + D)u? + C2
Let v = u?e~(23¢+1)_ Then direct calculations show that
v+ avy < Vyy + C2e=(2C+E,

Set w =uv+ QC_QH e~ ¢+t Then wy + a(u, z, t)w, < wye and

C? C?
< M? )
20+1 ~ +20+1

W= = <u|t:0)2 +

Thus we have w(z,t) < M? + 2CC:~2H by the maximum principle and hence

lu(z,t)| < KMQ + QCOi 1) e(QCH)t] 2 < M(T).
v
From the proof of Lemma 1.2, we get
Corollary 1.1. Assume that u(z,t) > (<)0 satisfies
w4+ a(u, z, t)uy + g(u, z,t) < (>)ugy, (1.5)

and |u(z,0)] < M, g(u,z,t) > (<)Cu + C, where C,C € R and a(u,z,t) is
bounded. Then for any T > 0, there exists M(T) > 0 such that u(z,t) <
M(T)(u(z,t) > —M(T)) on R x [0,T].

Lemma 1.3. (Lu [1]) Let ¢1(r), p2(r) be the solutions of the Fuchsian equation

"~ (1+5)e=0, (1.6)
where ¢ is a constant. If ¢1(r) > 0, ¢y (r) > 0 for r > 0, then
Ph(r) 1 - _ 1.
o1 () 1+O<7“2) , c101(r)e 1+O<r> ; (1.7)

as r approaches infinity;
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If ¢o(r) > 0,¢2,(r) <0 forr >0, then

50 (2) oo —t20(l). o

as r approaches infinity, where c1,co are two suitable, positive constants.

2. A system of quadratic flux with sources

Let us consider the following Cauchy problem for the nonlinear conservation
laws of quadratic flux [1,2] with sources:

et H(3u +02), 4 ga(w) =0, -
v + (uv)y + g2 (u,v) = 0, ’
with the bounded measurable initial data
u(x,0) = ug(x), v(z,0) = vo(z) > 0, (2.2)

where g (u,v) and go(u,v) are locally Lipchitz continuous functions.
By simple calculations, the two eigenvalues of system (2.1) are
)\1:2u—s%, )\2:2u+s%;
and the two Riemann invariants are
W(um):u—i—sé, Z(u,v):u—s%.

Here and below s = u? + v2.

We now study the Cauchy problem (2.1)-(2.2) by using the maximum prin-
ciple and the compensated compactness method to obtain the following main
result:

Theorem 2.1. Suppose that gi(u,v),g2(u,v) have the property: there exist
four constants Cy,Cs,C3,Cy € R such that

gGiWy + goWoy =2 C1W + Co, 1 Zy + g2Zy < C3Z + Cy, (2.3)
and also gz2(u,v) = vh(u,v), where h(u,v) is continuous. Then the Cauchy

problem (2.1)-(2.2) has a weak solution in the sense of distribution.

Proof. First consider the Cauchy problem for the related parabolic system

ut + %(3U2 + UQ)I + gl(u,v) = EUgg, (2 4)
vy + (u0)z + g2(u, V) = €Vga, ’

with initial data
(u(2,0),v°(x,0)) = (uo(z),vo(z) +€) * G°, (2.5)

where G° is a mollifier.

We assert that the viscosity solutions (uE (x,t),v¢(z, t)) of the Cauchy prob-
lem (2.4)-(2.5) exist and satisfy that for any T > 0, |u®(z,t)| < M(T), 0 <
c(e,t) < v¥(z,t) < M(T) on R x [0,T], where M(T) is a positive constant
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which independent of €, ¢(e,t) is a positive function which could tend to zero
as € tends to zero or t tends to infinity.
In fact, by simple calculations, we have

2 2
u v uv u
Wy=1+ , Wy = , Wuu:ja Wy = 3 vaii;
\/g \/g S2 S2 S2
2 2
u v v uv u
Zuzl_ 3 Zv:_ Zuu:_iga Zuvzigy Zvv:_i

\/E %7 S2 S2 S% '
Multiplying the first equation and the second in (2.1) by W,, and W, respec-
tively and adding the result, we have

Wit oW = eWap = (Want? + 2Watia vy + Wo?)
— [gl (u, v)W, + gz(u,v)Wu];
similarly,
Zi+MZy = € Z 0z — (Zuwtie® + 2 Zuntipe + Zowve?) — g1 (0, 0) Zy 4 go(u, v) Z,].
Thus in terms of the inequalities (2.3), we obtain
Wi+ XoWe + CO1W + Co < eWaw, Zt+MZp +C32+Cy > €y (2.6)

If we consider (2.6) as inequalities about the variables W and Z, then we
can obtain that for any T > 0, W (u®,v%) < N(T), Z(u®,v*) > —N(T) on
R x [0,T] by Corollary 1.1, where N(T) is independent of €. Thus we have the
estimates |u®(z,t)| < M(T), 0<c(e,t) <v(z,t) < M(T) in light of Lemma
1.1 and hence the assertion by Paper I. Therefore, there exists a subsequence
(still labeled) (u®(z,t),v(x,t)) such that

w* — hm(us(z, t)a Ue(xv t)) = (U(:Z?7 t)a U(SC, t))
Now we construct four families of entropy-entropy fluxes of Lax type of system
(2.1). Any entropy-entropy flux pair (7(u, v),g(u,v)) of system (2.1) satisfies
qQu = 3ufly + Uiy, @y = Uiy + ufy. (27)
Eliminating g from (2.7), we get

Let 7j(u,v) = n(u, s), g(u,v) = q(u, s). Then by simple calculations, the entropy
equation (2.8) is changed to the following simple equation:

1
Nss = &nuua (29)
and the entropy flux ¢ corresponding to the entropy 7 satisfies
Qu = 2uny + 2810s. (2.10)
If k denotes a constant, then n = h(s)e*" solves (2.9) provided that
k‘Q

h"(s) — Eh(s) =0.
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Let a(s) = s7, r = ksz, h(s) = a(s)$(r). Then

" (r) — (1 + 3) o(r) =0, (2.11)

4r2

which is the standard Fuchsian equation. We can find a series solution of (2.11)
with the following form:

o1(r) = r3 Z Cpr?t = T%g(r). (2.12)
n=0

Then the coefficients ¢,, must satisfy

Cp—1
2n + %) (2n+%) - %7
and cg could be any positive constant. Thus

ba(r) =r2g(rT) /OO (7‘392(7"))_1(17‘, (2.13)

r

cn:( forn>1

is another independent solution of (2.11).
If = a(s)é(r)eF", we have from (2.10)

1 ()

uw =2k = 2.14

(@ = 2bun + (5 + 50 Y (2.14)
and hence, one entropy flux g corresponding to 7 is
oo (6 (r) 3

= 2 - -1)—-=1. 2.15
qk 77k<u+52+k_<¢<r) ) 2k> ( )

Let n_1 = a(s)¢(r)e~**. Then one entropy flux ¢_j, corresponding to 7_y, is

oo (6 (r) 3

k=1N_k | 2u— - = -1 — . 2.16

q—k ﬁk(u 52 k<¢(r) >+2k> (2.16)

It is clear that ¢1, ¢2 given in (2.12) and (2.13) satisfy that ¢1(r) > 0,
@i (r) > 0 and ¢2(r) > 0 for all s > 0. The strict positivity of ¢5(r) gives
¢h(r) < 0as s >0 because lim ¢a(r) =0, lim ¢5(r) = 0.

Applying the estimates in Lemma 1.3 to ¢1(r), ¢2(r), we have

1 1
n = a(s)pr(r)e = kv (a(s) +0 (r)) =ehv (a(s) +0 (k)) (2.17)

on any compact subset of s > 0 since r = ksi

G = T <ZU+55 +% <zi2:; - 1) - 23k> = (Ag +0 <;>) (2.18)

on s > 0 by the fact that factor r( ii g:g —1) is uniformly bounded. Furthermore

1_ 1 _ 3 1
Qk—nk()‘2 5n TO =) ) (2.19)
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on any compact subset of s > 0. Similarly,

’7515 26:”( a(s )+01(%)) Lﬁg :n%k (A +%+O(1%2))a
go senldarolely o g Zm Oy Ot
2, =e ¥ (a(s)+0(3),  @x =11 (Met 5 +0(5))

(2.20)
on any compact subset of s > 0, and

gty =1ty M+ O(/K), gi = ng M+ O (1/k), ¢y, =124 (A2 + O (1/k))
(2.21)
on s > 0. These estimates about the entropy-entropy flux pairs will be used to
reduce the Young measure v.
Next we verify the compactness of n; + ¢, in Hj,
U +'u2
2

o - 1t is obvious that system
(2.1) has a strictly convex entropy n* = and the corresponding entropy
flux ¢* = u3 +uv?. Multiplying the first equation in (2.4) by u and the second

by v, then adding the result, we have
0,0 4 (0, 0%)e = ey — 2 (5) + (05)°) = (hgn +mige) . (2:22)

Noticing that the term (7591 + n5g2) € L>(R x [0,T]), V T > 0 and hence
is bounded in L}, (R x R"), we can easily obtain that ¢ (u2)? and e (v5)? are
bounded in L},.. For simplicity, we will drop the superscript e.
The first class of entropy-entropy flux pair of Lax type related to the function
¢1, denoted by nl, are clearly smooth function of (u,v). In fact
. o0
iy = k3 Z Cn (kzs)neik“;
n=0
it is easy to see that (n1,): + (¢L,). is compact in H,!.
However the second order derivatives of the second class of entropy-entropy
flux pair of Lax type related to the function ¢, denoted by n%,, are singular

at the point (u,v) = (0,0). In fact

Z1 4 o -1
p =kt [0 ) ar

/Too(r?’gz(r))ldr -0 (:2)  asr—0

and hence for any fixed k > 0, n2, and ¢%, are uniformly bounded from (2.20).

I\/[OI'QOVGI‘,
_1 1 g],(’l”)
2 +ku 2
i 3 — — 7 d 2.2
Ntk = k e <2 (r) r g(rr)/": r2 3(71) 7’) B ( 3)

o0 o0
"(r) = g 2ne,r < E Cn1r? = rg(r),
n=1 n=1

where

where
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thus ,
(o)
2 g (r) 2
dr =0(r°1 , 0.
r g(r)/r 253(r) r (r’logr), asr—
This implies that for any fixed k > 0, the first order derivatives of n3, are

uniformly bounded. It is clear that the first part I; = k2 ethu 2g1(r) in n?, is

smooth; its second order derivatives are bounded. But the second part in W:th
can be written as —r2I,, where
s > g(r)
I, = k—zetFug(r / dr,
2 g( ) 7,293 (7")
its second order derivatives are singular at the point (0,0). In fact, all deriva-
tives of second order of function r2I, are bounded except the terms (TQ)WIQ,
r?) I, = 2k?I,, but they are positive.
VU
Therefore, multiplying system (2.4) by Vn?2,, we have

(W:th)t + (‘J:th)w =€ (Uik)m - €<(nik)uu ui +2 (nik)uv UzpVp + (nik)vv vg)
— (1), 91+ (n2e), 92)

=¢ (nik)m - E(A (u,v) u2 4+ B (u,v) upvy + C (u,v) vi)

okl (a2 +02) = ((nde), o0+ (130),02),  (224)

where A(u,v), B(u,v), C(u,v) are the regular derivatives of second order of
N3k

Let K C R X R* be an arbitrary compact set and choose ¢ € C§° (R X R+)

such that ¢ =1, 0 < ¢ < 1 and write S = suppo.
Multiplying (2.24) by ¢ and integrating over R x R*, we have

/ / 2k?el, (ui + vi) ¢ dxdt
0 —oo

= /OOO/C: —5(A(u,v)ui + B (u,v) Ugpvy +C(u,v)v§)¢)

+ b+ e+ eninten — (0e), 01 + (034), 02) @ duvdt
< M(¢),
where the last inequality follows from the boundedness of viscosity solutions,
the local boundedness in Lj . of the regular part A(u,v)u? + B(u,v)uzv, +

C(u,v)v; and (nik)ugl + (Uik)vgz
Considering (2.24) again, we see that the parts

(130 2 42 (20 ot + )oet?)s (), 01+ (124),, 02
are both bounded in LllOc and hence, compact in Wl;j’a for a constant « € (1,2).

The part €(n3,)zs is clearly compact in VVl;C1 2 hecause of the boundedness of
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ioe €stimates for eu and ev?.
Noticing the boundedness of (nik)t—I— (qik)gg in W12, we get the compactness
of (W:Ztk)t + (q?tk)w in H,,! by Theorem 2.3.2 of [1].

Finally, we shall prove that the family of the Young measures v, ;, deter-
mined by the sequence of viscosity solutions (u6 (x,t),vg(amt)) of the Cauchy
problem (2.4)-(2.5), must be Dirac measures. Since the viscosity solutions
(uf(z,t),v°(x,t)) of Cauchy problem (2.4)-(2.5) are bounded in L> (R x [0, T7)
for any T > 0, by Theorem 2.2.1 in Reference [1], we consider the family of
compactly supported probability measure v, ;. Without loss of generality we
may fix (z,t) € R x RT and consider only one measure v.

For any entropy-entropy flux pairs(n;, ¢;), (i = 1, 2) of system (2.1) satisfying

the compactness of n(u®,v%); + q(u®,v¥)z in H; !, we have

derivatives of the first order of n3,, and the L}

m(u,v%) - ga(uf,v%) = ma(uf, 0%) - qi (us, v%)
= m(us, v)ga(us, v%) — n2(uf, v%)qi (us, v°).

Here and below we use the notation 7(u, v¢) = w* —limn(u®,v*). Then in light
of the Young measure representation theorem, we get the measure equation
(vm)(v,q2) — (v,m) (v, 1) = (v, maz — 1m2q1)- (2.25)
Let @ denote the smallest characteristic rectangle:
Q={(w,v):w_ <w<wy, z_<z<zy, v>0}

We now prove that suppv is either contained in the point (0,0) or in another
point (w*, z*).

Assume that suppr is not the unique point (0,0), then (v,n)) > 0 and
(v,n%,) > 0, where ni, n?, are given in (2.17), (2.20).

We introduce two new probability measures u;, ty, on Q, defined by

(v, hny.) (v h)
(vimg) (vn?y)

where h = h(u,v) denotes an arbitrary continuous functions. Clearly ,u;r, My
are uniformly bounded with respect to k. Then as a consequence of weak-star
compactness, there exist probability measures u* on Q such that

(™, h) = lim (i, h)

<Nza h> = <:ul:7 h> =

after the selection of an appropriate subsequence. Moreover,
suppu’ = Q N {(u,v) :w =wy}, suppp” = QN {(u,v) :w=w_}. (2.26)
In fact, for any function h(w, z) € Cy(Q), satisfying

supph(w,z) C Q N {(u,v) : w < wp},
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where wy < w4 is any number, as k — 0o, we have
[ i) _ (v, he’““( OB _ caekor?

= ~ — 0,

(v mi)| (v, ek (a(s ( NI = kD)
where ¢y, co are two suitable positlve constants and § > 0 satisfies 20 < wi —wy,
since @ is the smallest characteristic rectangle of v. Thus we get the first
equality of (2.26). A similar treatment gives the second one.

Let (m,q1) = (nt,qp) in (2.25). Then
(voat)  (vimpae — 2qi)

<V7 q2> - <V7 772> = (227)
(v i) (v i)
Using the estimate (2.19) and letting & — oo in (2.27), we have
(v,42) — (v m2) (T A2) = (uF, g2 — Aamz) - (2.28)
Similarly, let (n1,q1) = (77 e 47 k) we have
v, q2) — (yma) (W™, X2) = (1™, g2 — Aampa) . (2.29)
Let (m,q1) = (> ak)» (12, 2) = (024, ¢%,) in (2.25), we have
W) (maw) _ (nm@y — 12x) )
5 = 5 T (2.30)
<V7 77_k> (v, np) <V7 n_k> (v, nk>
We assert w_ = wy. If not, choose §g > 0 such that 26y < wy — w_, then
<V7 n3k> > Cleik(w_+60)7 <V7 7]/1> > C2ek(w+750)

for two suitable positive constants c1, co and hence, the right-hand side of (2.30)
satisfies

1,2 .2 1
i o () e
sk s Mk

3 as k — oo,

resulting from the estimates given by (2.17), (2.18) and (2.20). Letting k — oo
n (2.30), we have (1™, A2) = (u™, A2) . Combining this with (2.28)-(2.29) gives
the relation:

(BFq=dam) = (u™,q — Xam) (2.31)

for any (1, q) satisfying that 7; + g, is compact in H, !

loc*

Let (n,q) in (2.31) be (n%,,q¢%;). If wy —w_ > 25y, we get from the
left-hand side of (2.31) that

(i, g = Agn)| > Sheblws—00),
and from the right-hand side of (2.31)
(1™, q = Aa)| < Zekwe—d0),

for two positive constants ¢y, co. This is 1mp0551ble hence w4 = w_. Similarly

we can prove zy = z_ by using entropy-entropy flux pairs (n2,q?), (nik, atr)-
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Thus the support set of v is either (0,0) or another point (u*,v*). This com-
pletes the proof of Theorem 2.1 according to the compensated compactness
method. o

Remark 2.1. There are many functions gi(u,v),ga(u,v) satisfying the as-
sumptions of Theorem 2.1. For instance,

g1 (u,v) = avu?+0v2 4+ 5,
gp(wv) = ——= (0(Ve? 2 —ful) +7)  aBr0eR

v+1
In fact, |Wu|:1+%§2, |WU|:\%§1 and /s — |u| < W. Thus

U
g Wy =aW + <1+ \/§> 8> aW — 2|3,

v
(0 (Vs — lul) +7) 7 > —[0|W — |,
and hence g1 Wy, + gaWp > (o — [0))W — (2[B] + [v])-

Similarly, g1Zu + 922, < (—a —10])Z + (2|8] + |7|). Besides, since (g1)y =
a%, (g1)y = a% are bounded, g1(u,v) is locally Lipchitz continuous, so is

92(u,v).

W v
g2 YT o+

3. The LeRoux system with sources

In this section, we consider the following Cauchy problem for the LeRoux sys-
tem [3,4] with sources:

e (0 +0), + fl0) =0, 1)
v 4 (u)z + g(u,v) =0, '
with the bounded measurable initial data
u(x,0) = ug(x), v(x,0) = vo(z) > 0, (3.2)

where f(u,v) and g(u,v) are locally Lipchitz continuous functions.
By simple calculations, the two eigenvalues of system (3.1) are

_3711_9 )\_37'LL+B
T2 ST

and the two Riemann invariants are

A1

w(u,v) =u+ D, z(u,v) =u—D.

Here and hereafter D = vu? + 4v.
The main result about the existence of weak solution of the Cauchy problem
(3.1)-(3.2) is given as follows:
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Theorem 3.1. Suppose that f(u,v),g(u,v) have the property: there exist four
constants c1, co, c3, c4 € R such that

Wy f +wyg > crw + co, zuf + 209 < €32 + ¢y, (3.3)

and also g(u,v) = vh(u,v), where h(u,v) is continuous. Then the Cauchy
problem (3.1)-(3.2) has a weak solution in the sense of distribution.

Proof. First consider the Cauchy problem for the related parabolic system

Ut + (u2 + U)w + f(ua U) = EUgg,
{ vtt + (uv)z + g(u, v) = vy, (34)
with initial data

(ug(x,()),vs(z,())) = (uo(z),vo(:zz) + 6) * G°, (3.5)

where G¢ is a mollifier.
By simple calculations, we have

_ u 2 4w _ —2u 4
wu—l"_ﬁy wv—57 wuu—ﬁ7 wuv_ﬁv w'uv__ﬁv
u 2 4qu 2u 4

2y =1-— Zy = —

D’ D’ zuu:_ﬁ7 Zuv:ﬁv Zvv:ﬁ-

Multiplying system (3.4) by (wy,w,) and (2, z,) respectively to obtain
w(u, v)t + Aaw(u, v)s + (Wugt + woga)

= ew(U,v)gey — 5(wuuui + 2WypUp Vg + wwvi)

€
= ecw(U, V)ze — =wW(U V)7 2(U, V)

D
and
Z(”v U)t + )\1Z(u, v)x + (Zugl + ng2)
=ez(U, V) gy — s(zuuui + 220Uz Vs + zwvg)
=ez2(u,v)ze + %w(u, 0) 22 (1, v) 4.

Thus, in view of the inequalities (3.3), we get

wy + ()\2 + %ZI) Wy + Clw + o < EWgy; (3.6)
zi + ()\1 — %wx) Ze +C32+Cq > €24 (3.7)

If we apply Corollary 1.1 to (3.6), (3.7), then we can obtain that for any
T >0, wus,v?) < N(T), z(u®,v%) > —N(T) on R x [0,T], where N(T) is
independent of e. Thus we have the estimates |u®(z,¢)| < M(T), 0 < c(e,t) <
ve(z,t) < M(T) in light of Lemma 1.2. Hence there exists a subsequence (still
labeled) (u®(z,t),v*(x,t)) such that

w* —lim (u® (2, t), v* (2, 1)) = (u(z,t),v(, 1)).
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Now we construct four families of entropy-entropy flux pair of Lax type of
system (2.1). Let p = D3, 6 = %u Then for smooth solutions, the LeRoux
system is equivalent to the following system:

{ pt + (pe)w =0,

9t+(§+§p%)$:0. (3.8)

Any entropy-entropy flux pair (7, q) as functions of variables (p, §) satisfies

1 1
(QPa q@) = (977;7 + ZP 310, PNp + 779) . (39)
Eliminating the ¢ from (3.9), we have the entropy equation
1 4
Npp = ZP 3160 (310)

If k denotes a constant, then the function n = h(p)e*? solves (3.10) provided
that

1
W' = K p h(p).
Let h(p) = p%qS(s), 5= %kp%. Then ¢ solves the Fuchsian equation
2
o — (1+ 82> ¢ = 0. (3.11)

Thus, one solution ¢y of (3.11) is

o = s° Z Con 82" = szg(s), (3.12)

n=0

where

_ = 2n _ C2(n—1)
g(S) - nZ:OC2nS ) Con (2 n 2n)(1 n 2n) n 2;

co is an arbitrary positive constant, and

02 = 59ls) [ (') s (3.13)

is another independent solution of (3.11).

It is clear that ¢, ¢o satisfy that ¢1(s) > 0, ¢}(s) > 0 and ¢o(s) > 0 for
s > 0. The strict positivity of ¢} gives ¢, < 0 as s > 0 because lim ¢o(s) =0,
lim ¢4(s) = 0.
S§— 00

A simple calculation shows that the two eigenvalues of (3.8) are

1 1

p§ p§
M =0—-— Aa =0+ —
1 2 ) 2 + 2 )
with the corresponding two Riemann invariants
31 3 1
=0— —p3 =04+ —p3.
z 5P w=0+35p
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Thus 6, =0, % P = pg, Puw = —pg, and
{ Qw=3q0+p3q,, q.= gqa—p3qp, (3.14)
1 2 .
Nw = 5N + P3N, Nw = 2779_p377p
Since g = AaMw, gz = A17, from the definition of entropy, we have
Qo = quw + q= = 0o + . (3.15)
Let ny = p%¢(s) N = p3 @(s)e ", we have from (3.15) that

1
_ 2 3¢'(s)
qk = Nk (9_%+p2¢(s) )a
1,
Gk =Nk <9+ 7 p;’;}ﬁﬂ) :

Let 0, = p3¢i(s)et*?. Then the estimates in Lemma 1.3 give

(3.16)

o= pie (1+0(3)), g = mi (e =50 ()
g = pre (1+0(z)), G = (M= 0 ()
nty = pre M (1+0(3)), 0ty = b (Mt +0(52));
n pre M (1+0(3)), ?p = (et +0(%))
(3.17)
on any compact subset of s > 0, and
{ 1q,1‘ = 77;% (A2 +0 (%)1) ; G = m(M+O0 (%)1) ’ (3.18)
@~k = M-k ()‘1+O(E))’ Py = ()‘2"‘0(%))’

on s > 0.

Next we verify the compactness of n; + ¢, in H, l;i for the entropy-entropy
flux pair constructed above. We only prove for (1,q) = (n?,q¢7). A similar
treatment gives the proofs for the others.

Obviously, system (3.1) has a convex entropy n* = “72 + fov log vdv and the
corresponding entropy flux ¢* = E +uw log v, so we easily get the boundedness

2
of &(u; ) and e in L;,.. For s1mphclty, we will drop the superscript e.

Multiplying system (3.4) by (9, 1), we have
N+ G+ (uf +109) = eNze — € (Muutts + 20uptave + Mupv2) -

*° ds 1
/5 % =0 (3‘3> 5 as § — 0, (319)
for any fixed k£ > 0 we have that
2 3 ®ds 4
n=gpsy(s )/S RIS
and ¢ are both bounded on R x [0,T] (VI > 0). Thus n(u,v); + q(u,v), is
bounded in W=1°° n, f + n,g is bounded on R x [0,T] (VT > 0) and hence

Because
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bounded in Llloc. Because
2ek0 /1 . * g'(s)ds
e Y 2P = — 2T 3.20
(200 [ ) = e (3:20)
and ¢'(s)/s < g(s), we have

/:O g;;i)(ij =0 <i> ; as s — 0. (3.21)

Thus 71, and 7y are both bounded on Rx[0,T] (VT > 0) and n, = O(s), as s —
0. Since

3k 1 1
SUZTU(U2+4U) 2, sv:3k(u2+4v) 2,
then en, = O (¢ (Jug| + |v4|)) . Hence en, is compact in H,! from the bound-

2
edness of eu2 and 2= in Lj,.

Since n = I; — %ek‘gl, where I; = ﬁ(s)eke is bounded in C2, we only need

to show the boundedness of L in L} ., where
L=c¢ (quui + 20,0 Up Uy + Im)vi) .
Let L = Ly + Lo, where

Ly = el ((su)2 U2 + 28,8, UgVy + (sv)2 vi) ,
Lo

Noticing that ¢'(s)/s < g(s), I, = O(s) (s — 0) and I, is bounded, we have
2
that Ly and Lo are controlled by & (O (I%T\) + 0 (ui)) and hence bounded in

Llloc. Thus the term e (nuuui + 2Ny Uz Vg + nvvvg) is bounded in Llloc. There-
fore, by a standard argument, (77,%) .t (qi)x is compact in H l;cl
Finally, we can prove the Young measure must be a Dirac mass by using the

same method as in the proof of Theorem 2.1. So we end the proof of Theorem

3.1. o

Remark 3.1. There are many functions f(u,v), g(u,v) which satisfy the hy-
potheses of Theorem 3.1. For example, f(u,v) = avu? +4v+ 1+,

g(u,v) = \/%ﬁ (c (\/u2 +4v — |u|) —i—d) (a,b,c,d € R).

In fact, |w,| =1+ % <2, w, =2 and D — |u| < min(w, —z). Thus

2 2
el (suuuz + 280Uz Vg + sm,v_,ﬂ) .

wof = —lal(D+1) (1+ 5 ) =20b] = —lalw—=2(lal +1b]),  w,g > —2|clw—2]d

and hence wy f+w,g > (—|a|—2[c|)w—2(la|+|b|+|d|). Similarly, z.,f+z,g <
—(lal+2c])z+2(|a|+[b] +|d|). In addition, it is easy to see that f(u,v),g(u,v)
are locally Lipchitz continuous by the fact that vvu? + 4v is locally Lipchitz
continuous.
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