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Abstract. In this paper, we apply the maximum principle and the compen-
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the LeRoux system with sources.

Keywords. Weak solution, maximum principle, entropy-entropy flux pair, com-
pensated compactness, Dirac measure.

2000 Mathematics Subject Classification. Primary: 35B40. Secondary: 35L65.

Resumen. En este art́ıculo aplicamos el principio del máximo y el método de la
compactificación compensada para obtener soluciones débiles a los problemas de
Cauchy para las leyes de conservación hiperbólica, no lineal, de flujo cuadrático
y el sistema LeRoux con fuentes.

1. Introduction

In this paper, we study the Cauchy problem for two nonlinear hyperbolic con-
servation laws, one is related to a system of quadratic flux

{
ut + 1

2

(
3u2 + v2

)
x

+ g1(u, v) = 0,
vt + (uv)x + g2(u, v) = 0,

and the other is related to the LeRoux system
{

ut +
(
u2 + v

)
x

+ f(u, v) = 0,
vt + (uv)x + g(u, v) = 0.

By applying the compensated compactness method and the maximum princi-
ple, we get the existence of weak solutions to them.

Next, we introduce some basic lemmas which are very useful later in the
present paper.
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Lemma 1.1. Suppose that vε(x, t) satisfies the parabolic equation

vt +
(
vf(u, v)

)
x

+ g(u, v) = εvxx, (1.1)

and v(x, 0) = v0(x) ≥ δ > 0. Where f(u, v) ∈ C1(R2), g(u, v) is locally
Lipchitz continuous and g(u, v) = vh(u, v), h(u, v) ∈ C(R). If |u(x, t)| ≤
M(ε, δ, T ), |vε(x, t)| ≤ M(ε, δ, T ) on R × [0, T ], then the solution vε(x, t) ≥
c(t, δ, ε) > 0 on R× [0, T ], where c(t, δ, ε) could tend to zero as δ, ε tend to zero
or t tends to infinity.

Proof. We rewrite equation (1.1) as follows:

wt + f(u, v)wx + f(u, v)x + h(u, v) = ε
(
wxx + w2

x

)
, (1.2)

where w = log v. Then

wt = εwxx + ε

(
wx − f(u, v)

2ε

)2

− f(u, v)x − f2(u, v)
4ε

− h(u, v).

The solution w of (1.2) with initial data w0(x) = log
(
v0(x)

)
can be represented

by a Green function Gε(x− y, t) = 1√
4πεt

exp
{
− (x−y)2

4εt

}
:

w =
∫ ∞

−∞
Gε(x− y, t)w0(y)dy

+
∫ t

0

∞∫

−∞

[
ε

(
wx − f(u, v)

2ε

)2

− f(u, v)x − f2(u, v)
4ε

− h(u, v)

]

×Gε(x− y, t− s)dyds. (1.3)

Since
∫ ∞

−∞
Gε(x− ξ, t)dξ = 1,

∫ t

0

∫ +∞

−∞
|Gε

y(x− y, t− s)|dyds = 2

√
t

πε
(t > 0),

it follows from (1.3) that

w ≥ log δ +
∫ t

0

∫ ∞

−∞
(−f(u, v)x − f2(u, v)

4ε
− h(u, v))Gε(x− y, t− s)dyds

= log δ +
∫ t

0

∫ ∞

−∞

[
f(u, v)Gε

y(x− y, t− s)−
(

f2(u, v)
4ε

+ h(u, v)
)

×Gε(x− y, t− s)

]
dyds

≥ log δ − 2M

√
t

πε
−M1t ≥ −C(t, δ, ε) > −∞.

Thus vε(x, t) has a positive lower bound c(t, δ, ε). ¤X
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Lemma 1.2. Assume that u(x, t) satisfies the parabolic equation

ut + a(u, x, t)ux + g(u, x, t) = uxx, (1.4)

and |u(x, 0)| ≤ M, |g(u, x, t)| ≤ C|u| + C̃, where C, C̃ > 0 and a(u, x, t) is
bounded. Then for any T > 0, there exists M(T ) > 0 such that |u(x, t)| ≤ M(T )
on R× [0, T ].

Proof. Multiplying equation (1.4) by 2u, we have
(
u2

)
t
+ a(u, x, t)

(
u2

)
x

= 2uuxx − 2ug(u, x, t)

≤ (2uux)x − 2u2
x + 2|u|

(
C|u|+ C̃

)

≤ (u2)xx + (2C + 1)u2 + C̃2.

Let v = u2e−(2C+1). Then direct calculations show that

vt + avx ≤ vxx + C̃2e−(2C+1)t.

Set w = v + C̃2

2C+1e−(2C+1)t. Then wt + a(u, x, t)wx ≤ wxx and

w|t=0 =
(
u|t=0

)2 +
C̃2

2C + 1
≤ M2 +

C̃2

2C + 1
.

Thus we have w(x, t) ≤ M2 + C̃2

2C+1 by the maximum principle and hence

|u(x, t)| ≤
[(

M2 +
C̃2

2C + 1

)
e(2C+1)t

] 1
2

≤ M(T ).

¤X

From the proof of Lemma 1.2, we get

Corollary 1.1. Assume that u(x, t) ≥ (≤)0 satisfies

ut + a(u, x, t)ux + g(u, x, t) ≤ (≥)uxx, (1.5)

and |u(x, 0)| ≤ M, g(u, x, t) ≥ (≤)Cu + C̃, where C, C̃ ∈ R and a(u, x, t) is
bounded. Then for any T > 0, there exists M(T ) > 0 such that u(x, t) ≤
M(T )(u(x, t) ≥ −M(T )) on R× [0, T ].

Lemma 1.3. (Lu [1]) Let φ1(r), φ2(r) be the solutions of the Fuchsian equation

φ′′ −
(
1 +

c

r2

)
φ = 0, (1.6)

where c is a constant. If φ1(r) > 0, φ′1(r) > 0 for r > 0, then

φ′1(r)
φ1(r)

= 1 + O

(
1
r2

)
, c1φ1(r)e−r = 1 + O

(
1
r

)
; (1.7)

as r approaches infinity;
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If φ2(r) > 0, φ2

′
(r) < 0 for r > 0, then

φ2

′
(r)

φ2(r)
= −1 + O

(
1
r2

)
, c2φ2(r)er = 1 + O

(
1
r

)
; (1.8)

as r approaches infinity, where c1, c2 are two suitable, positive constants.

2. A system of quadratic flux with sources

Let us consider the following Cauchy problem for the nonlinear conservation
laws of quadratic flux [1,2] with sources:

{
ut + 1

2

(
3u2 + v2

)
x

+ g1(u, v) = 0,
vt + (uv)x + g2(u, v) = 0,

(2.1)

with the bounded measurable initial data

u(x, 0) = u0(x), v(x, 0) = v0(x) ≥ 0, (2.2)

where g1(u, v) and g2(u, v) are locally Lipchitz continuous functions.
By simple calculations, the two eigenvalues of system (2.1) are

λ1 = 2u− s
1
2 , λ2 = 2u + s

1
2 ;

and the two Riemann invariants are

W (u, v) = u + s
1
2 , Z(u, v) = u− s

1
2 .

Here and below s = u2 + v2.
We now study the Cauchy problem (2.1)-(2.2) by using the maximum prin-

ciple and the compensated compactness method to obtain the following main
result:

Theorem 2.1. Suppose that g1(u, v), g2(u, v) have the property: there exist
four constants C1, C2, C3, C4 ∈ R such that

g1Wu + g2Wv ≥ C1W + C2, g1Zu + g2Zv ≤ C3Z + C4, (2.3)

and also g2(u, v) = vh(u, v), where h(u, v) is continuous. Then the Cauchy
problem (2.1)-(2.2) has a weak solution in the sense of distribution.

Proof. First consider the Cauchy problem for the related parabolic system{
ut + 1

2

(
3u2 + v2

)
x

+ g1(u, v) = εuxx,
vt + (uv)x + g2(u, v) = εvxx,

(2.4)

with initial data
(
uε(x, 0), vε(x, 0)

)
=

(
u0(x), v0(x) + ε

) ∗Gε, (2.5)

where Gε is a mollifier.
We assert that the viscosity solutions

(
uε(x, t), vε(x, t)

)
of the Cauchy prob-

lem (2.4)-(2.5) exist and satisfy that for any T > 0, |uε(x, t)| ≤ M(T ), 0 <
c(ε, t) ≤ vε(x, t) ≤ M(T ) on R × [0, T ], where M(T ) is a positive constant
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which independent of ε, c(ε, t) is a positive function which could tend to zero
as ε tends to zero or t tends to infinity.

In fact, by simple calculations, we have

Wu = 1 +
u√
s
, Wv =

v√
s
, Wuu =

v2

s
3
2
, Wuv = −uv

s
3
2
, Wvv =

u2

s
3
2
;

Zu = 1− u√
s
, Zv = − v√

s
, Zuu = − v2

s
3
2
, Zuv =

uv

s
3
2
, Zvv = −u2

s
3
2
.

Multiplying the first equation and the second in (2.1) by Wu and Wv respec-
tively and adding the result, we have

Wt + λ2Wx = εWxx −
(
Wuuux

2 + 2Wuvuxvx + Wvvvx
2
)

− [
g1(u, v)Wu + g2(u, v)Wv

]
;

similarly,

Zt +λ1Zx = εZxx− (Zuuux
2 +2Zuvuxvx +Zvvvx

2)− [g1(u, v)Zu + g2(u, v)Zv].

Thus in terms of the inequalities (2.3), we obtain

Wt + λ2Wx + C1W + C2 ≤ εWxx, Zt + λ1Zx + C3z + C4 ≥ εZxx. (2.6)

If we consider (2.6) as inequalities about the variables W and Z, then we
can obtain that for any T > 0, W (uε, vε) ≤ N(T ), Z(uε, vε) ≥ −N(T ) on
R× [0, T ] by Corollary 1.1, where N(T) is independent of ε. Thus we have the
estimates |uε(x, t)| ≤ M(T ), 0 < c(ε, t) ≤ vε(x, t) ≤ M(T ) in light of Lemma
1.1 and hence the assertion by Paper I. Therefore, there exists a subsequence
(still labeled) (uε(x, t), vε(x, t)) such that

w? − lim(uε(x, t), vε(x, t)) = (u(x, t), v(x, t)).

Now we construct four families of entropy-entropy fluxes of Lax type of system
(2.1). Any entropy-entropy flux pair

(
η̄(u, v), q̄(u, v)

)
of system (2.1) satisfies

q̄u = 3uη̄u + vη̄v, q̄v = vη̄u + uη̄v. (2.7)

Eliminating q̄ from (2.7), we get

v(η̄vv − η̄uu) + 2uη̄uv = 0. (2.8)

Let η̄(u, v) = η(u, s), q̄(u, v) = q(u, s). Then by simple calculations, the entropy
equation (2.8) is changed to the following simple equation:

ηss =
1
4s

ηuu, (2.9)

and the entropy flux q corresponding to the entropy η satisfies

qu = 2uηu + 2sηs. (2.10)

If k denotes a constant, then η = h(s)eku solves (2.9) provided that

h′′(s)− k2

4s
h(s) = 0.
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Let a(s) = s
1
4 , r = ks

1
2 , h(s) = a(s)φ(r). Then

φ′′(r)−
(

1 +
3

4r2

)
φ(r) = 0, (2.11)

which is the standard Fuchsian equation. We can find a series solution of (2.11)
with the following form:

φ1(r) = r
3
2

∞∑
n=0

cnr2n = r
3
2 g(r). (2.12)

Then the coefficients cn must satisfy

cn =
cn−1(

2n + 3
2

) (
2n + 1

2

)− 3
4

, for n ≥ 1

and c0 could be any positive constant. Thus

φ2(r) = r
3
2 g(r)

∫ ∞

r

(
r3g2(r)

)−1
dr, (2.13)

is another independent solution of (2.11).
If ηk = a(s)φ(r)eku, we have from (2.10)

(qk)u = 2kuηk +
(

1
2

+ r
φ′(r)
φ(r)

)
ηk (2.14)

and hence, one entropy flux qk corresponding to ηk is

qk = ηk

(
2u + s

1
2 +

r

k

(
φ
′
(r)

φ(r)
− 1

)
− 3

2k

)
. (2.15)

Let η−k = a(s)φ(r)e−ku. Then one entropy flux q−k corresponding to η−k is

q−k = η−k

(
2u− s

1
2 − r

k

(
φ
′
(r)

φ(r)
− 1

)
+

3
2k

)
. (2.16)

It is clear that φ1, φ2 given in (2.12) and (2.13) satisfy that φ1(r) > 0,
φ′1(r) > 0 and φ2(r) > 0 for all s > 0. The strict positivity of φ′′2(r) gives
φ′2(r) < 0 as s > 0 because lim

r→∞
φ2(r) = 0, lim

r→∞
φ′2(r) = 0.

Applying the estimates in Lemma 1.3 to φ1(r), φ2(r), we have

η1
k = a(s)φ1(r)eku = ekw

(
a(s) + O

(
1
r

))
= ekw

(
a(s) + O

(
1
k

))
(2.17)

on any compact subset of s > 0 since r = ks
1
2 ,

q1
k = η1

k

(
2u + s

1
2 +

r

k

(
φ′1(r)
φ1(r)

− 1
)
− 3

2k

)
= η1

k

(
λ2 + O

(
1
k

))
(2.18)

on s ≥ 0 by the fact that factor r(φ′1(r)
φ1(r)

−1) is uniformly bounded. Furthermore

q1
k = η1

k

(
λ2 − 3

2k
+ O

(
1
k2

))
, (2.19)
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on any compact subset of s > 0. Similarly,



η1
−k = e−kz

(
a(s) + O

(
1
k

))
, q1

−k = η1
−k

(
λ1 + 3

2k + O
(

1
k2

))
;

η2
k = ekz

(
a(s) + O

(
1
k

))
, q2

k = η2
k

(
λ1 − 3

2k + O
(

1
k2

))
;

η2
−k = e−kw

(
a(s) + O

(
1
k

))
, q2

−k = η2
−k

(
λ2 + 3

2k + O
(

1
k2

))
(2.20)

on any compact subset of s > 0, and

q1
−k = η1

−k (λ1 + O (1/k)) , q2
k = η2

k (λ1 + O (1/k)) , q2
−k = η2

−k (λ2 + O (1/k))
(2.21)

on s ≥ 0. These estimates about the entropy-entropy flux pairs will be used to
reduce the Young measure ν.

Next we verify the compactness of ηt + qx in H−1
loc . It is obvious that system

(2.1) has a strictly convex entropy η? = u2+v2

2 and the corresponding entropy
flux q? = u3 + uv2. Multiplying the first equation in (2.4) by u and the second
by v, then adding the result, we have

η?(uε, vε)t + q?(uε, vε)x = εη?
xx − ε

(
(uε

x)2 + (vε
x)2

)
− (η?

ug1 + η?
vg2) . (2.22)

Noticing that the term (η?
ug1 + η?

vg2) ∈ L∞
(
R × [0, T ]

)
, ∀ T > 0 and hence

is bounded in L1
loc

(
R × R+

)
, we can easily obtain that ε (uε

x)2 and ε (vε
x)2 are

bounded in L1
loc. For simplicity, we will drop the superscript ε.

The first class of entropy-entropy flux pair of Lax type related to the function
φ1, denoted by η1

±k are clearly smooth function of (u, v). In fact

η1
±k = k

3
2

∞∑
n=0

cn

(
k2s

)n
e±ku;

it is easy to see that (η1
±k)t + (q1

±k)x is compact in H−1
loc .

However the second order derivatives of the second class of entropy-entropy
flux pair of Lax type related to the function φ2, denoted by η2

±k, are singular
at the point (u, v) = (0, 0). In fact

η2
±k = k−

1
2 e±kur2g(r)

∫ ∞

r

(
r3g2(r)

)−1
dr,

where ∫ ∞

r

(
r3g2(r)

)−1
dr = O

(
1
r2

)
, as r → 0

and hence for any fixed k > 0, η2
±k and q2

±k are uniformly bounded from (2.20).
Moreover,

η2
±k = k−

1
2 e±ku

(
1

2g(r)
− r2g(r)

∫ ∞

r

g
′
(r)

r2g3(r)
dr

)
, (2.23)

where

g′(r) =
∞∑

n=1

2ncnr2n−1 ≤
∞∑

n=1

cn−1r
2n−1 = rg(r),
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thus

r2g(r)
∫ ∞

r

g
′
(r)

r2g3(r)
dr = O

(
r2 log r

)
, as r → 0.

This implies that for any fixed k > 0, the first order derivatives of η2
±k are

uniformly bounded. It is clear that the first part I1 = k−
1
2 e±ku 1

2g(r) in η2
±k is

smooth; its second order derivatives are bounded. But the second part in η2
±k

can be written as −r2I2, where

I2 = k−
1
2 e±kug(r)

∫ ∞

r

g
′
(r)

r2g3(r)
dr,

its second order derivatives are singular at the point (0, 0). In fact, all deriva-
tives of second order of function r2I2 are bounded except the terms

(
r2

)
uu

I2,(
r2

)
vv

I2 = 2k2I2, but they are positive.
Therefore, multiplying system (2.4) by ∇η2

±k, we have
(
η2
±k

)
t
+

(
q2
±k

)
x

= ε
(
η2
±k

)
xx
− ε

((
η2
±k

)
uu

u2
x + 2

(
η2
±k

)
uv

uxvx +
(
η2
±k

)
vv

v2
x

)

−
((

η2
±k

)
u

g1 +
(
η2
±k

)
v
g2

)

= ε
(
η2
±k

)
xx
− ε

(
A (u, v)u2

x + B (u, v) uxvx + C (u, v) v2
x

)

− 2k2εI2

(
u2

x + v2
x

)−
((

η2
±k

)
u

g1 +
(
η2
±k

)
v
g2

)
, (2.24)

where A(u, v), B(u, v), C(u, v) are the regular derivatives of second order of
η2
±k.

Let K ⊂ R×R+ be an arbitrary compact set and choose φ ∈ C∞0
(
R×R+

)
such that φK = 1, 0 ≤ φ ≤ 1 and write S = suppφ.

Multiplying (2.24) by φ and integrating over R×R+, we have
∫ ∞

0

∫ ∞

−∞
2k2εI2

(
u2

x + v2
x

)
φdxdt

=
∫ ∞

0

∫ ∞

−∞
−ε

(
A (u, v)u2

x + B (u, v) uxvx + C (u, v) v2
x

)
φ

+ η2
±kφt + q2

±kφx + εη2
±kφxx −

((
η2
±k

)
u

g1 +
(
η2
±k

)
v
g2

)
φdxdt

≤ M (φ) ,

where the last inequality follows from the boundedness of viscosity solutions,
the local boundedness in L1

loc of the regular part A(u, v)u2
x + B(u, v)uxvx +

C(u, v)v2
x and

(
η2
±k

)
u

g1 +
(
η2
±k

)
v
g2.

Considering (2.24) again, we see that the parts

ε
((

η2
±k

)
uu

u2
x + 2

(
η2
±k

)
uv

uxvx + (η2
±k)vvv2

x

)
,

(
η2
±k

)
u

g1 +
(
η2
±k

)
v
g2

are both bounded in L1
loc and hence, compact in W−1,α

loc for a constant α ∈ (1, 2).
The part ε(η2

±k)xx is clearly compact in W−1,2
loc because of the boundedness of
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derivatives of the first order of η2
±k, and the L1

loc estimates for εu2
x and εv2

x.
Noticing the boundedness of

(
η2
±k

)
t
+

(
q2
±k

)
x

in W−1,∞, we get the compactness
of

(
η2
±k

)
t
+

(
q2
±k

)
x

in H−1
loc by Theorem 2.3.2 of [1].

Finally, we shall prove that the family of the Young measures νx,t, deter-
mined by the sequence of viscosity solutions

(
uε(x, t), vε(x, t)

)
of the Cauchy

problem (2.4)-(2.5), must be Dirac measures. Since the viscosity solutions(
uε(x, t), vε(x, t)

)
of Cauchy problem (2.4)-(2.5) are bounded in L∞

(
R× [0, T ]

)
for any T > 0, by Theorem 2.2.1 in Reference [1], we consider the family of
compactly supported probability measure νx,t. Without loss of generality we
may fix (x, t) ∈ R×R+ and consider only one measure ν.

For any entropy-entropy flux pairs(ηi, qi), (i = 1, 2) of system (2.1) satisfying
the compactness of η(uε, vε)t + q(uε, vε)x in H−1

loc , we have

η1(uε, vε) · q2(uε, vε) − η2(uε, vε) · q1(uε, vε)
= η1(uε, vε)q2(uε, vε)− η2(uε, vε)q1(uε, vε).

Here and below we use the notation η(uε, vε) = w?−lim η(uε, vε). Then in light
of the Young measure representation theorem, we get the measure equation

〈ν, η1〉〈ν, q2〉 − 〈ν, η2〉〈ν, q1〉 = 〈ν, η1q2 − η2q1〉. (2.25)

Let Q denote the smallest characteristic rectangle:

Q = {(u, v) : w− ≤ w ≤ w+, z− ≤ z ≤ z+, v ≥ 0}.
We now prove that suppν is either contained in the point (0,0) or in another
point (w?, z?).

Assume that suppν is not the unique point (0,0), then 〈ν, η1
k〉 > 0 and

〈ν, η2
−k〉 > 0, where η1

k, η2
−k are given in (2.17), (2.20).

We introduce two new probability measures µ+
k , µ−k on Q, defined by

〈
µ+

k , h
〉

=

〈
ν, hη1

k

〉
〈
ν, η1

k

〉 , 〈µ−k , h〉 =

〈
ν, hη2

−k

〉
〈
ν, η2

−k

〉 ,

where h = h(u, v) denotes an arbitrary continuous functions. Clearly µ+
k , µ−k

are uniformly bounded with respect to k. Then as a consequence of weak-star
compactness, there exist probability measures µ± on Q such that

〈µ±, h〉 = lim
k→∞

〈µ±k , h〉

after the selection of an appropriate subsequence. Moreover,

suppµ+ = Q ∩ {(u, v) : w = w+}, suppµ− = Q ∩ {(u, v) : w = w−}. (2.26)

In fact, for any function h(w, z) ∈ C0(Q), satisfying

supph(w, z) ⊂ Q ∩ {(u, v) : w ≤ w0},
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where w0 < w+ is any number, as k →∞, we have∣∣〈ν, hη1
k

〉∣∣
|〈ν, η1

k〉|
=

∣∣〈ν, hekw
(
a(s) + O

(
1
k

))〉∣∣
∣∣〈ν, ekw

(
a(s) + O

(
1
k

))〉∣∣ ≤ c1e
k(w0+δ)

c2ek(w+−δ)
→ 0,

where c1, c2 are two suitable positive constants and δ > 0 satisfies 2δ < w+−w0,
since Q is the smallest characteristic rectangle of ν. Thus we get the first
equality of (2.26). A similar treatment gives the second one.

Let (η1, q1) =
(
η1

k, q1
k

)
in (2.25). Then

〈ν, q2〉 − 〈ν, η2〉
〈
ν, q1

k

〉

〈ν, η1
k〉

=

〈
ν, η1

kq2 − η2q
1
k

〉

〈ν, η1
k〉

. (2.27)

Using the estimate (2.19) and letting k →∞ in (2.27), we have

〈ν, q2〉 − 〈ν, η2〉
〈
µ+, λ2

〉
=

〈
µ+, q2 − λ2η2

〉
. (2.28)

Similarly, let (η1, q1) =
(
η2
−k, q2

−k

)
, we have

〈ν, q2〉 − 〈ν, η2〉
〈
µ−, λ2

〉
=

〈
µ−, q2 − λ2η2

〉
. (2.29)

Let (η1, q1) =
(
η1

k, q1
k

)
, (η2, q2) =

(
η2
−k, q2

−k

)
in (2.25), we have

〈
ν, q2

−k

〉
〈
ν, η2

−k

〉 −
〈
ν, q1

k

〉

〈ν, η1
k〉

=

〈
ν, η1

kq2
−k − η2

−kq1
k

〉
〈
ν, η2

−k

〉 〈ν, η1
k〉

. (2.30)

We assert w− = w+. If not, choose δ0 > 0 such that 2δ0 < w+ − w−, then
〈
ν, η2

−k

〉 ≥ c1e
−k(w−+δ0),

〈
ν, η1

k

〉 ≥ c2e
k(w+−δ0)

for two suitable positive constants c1, c2 and hence, the right-hand side of (2.30)
satisfies〈

ν, η1
kq2
−k − η2

−kq1
k

〉
〈
ν, η2

−k

〉 〈ν, η1
k〉

= O

(
1
k

)
e−k(w+−w−−2δ0) → 0, as k →∞,

resulting from the estimates given by (2.17), (2.18) and (2.20). Letting k →∞
in (2.30), we have 〈µ+, λ2〉 = 〈µ−, λ2〉 . Combining this with (2.28)-(2.29) gives
the relation: 〈

µ+, q − λ2η
〉

=
〈
µ−, q − λ2η

〉
(2.31)

for any (η, q) satisfying that ηt + qx is compact in H−1
loc .

Let (η, q) in (2.31) be
(
η2
−k, q2

−k

)
. If w+ − w− > 2δ0, we get from the

left-hand side of (2.31) that
∣∣〈µ+, q − λ2η

〉∣∣ ≥ c1

k
ek(w+−δ0),

and from the right-hand side of (2.31)
∣∣〈µ−, q − λ2η

〉∣∣ ≤ c2

k
e−k(w+−δ0),

for two positive constants c1, c2. This is impossible, hence w+ = w−. Similarly
we can prove z+ = z− by using entropy-entropy flux pairs

(
η2

k, q2
k

)
,
(
η1
−k, q1

−k

)
.
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Thus the support set of ν is either (0, 0) or another point (u?, v?). This com-
pletes the proof of Theorem 2.1 according to the compensated compactness
method. ¤X

Remark 2.1. There are many functions g1(u, v), g2(u, v) satisfying the as-
sumptions of Theorem 2.1. For instance,

g1(u, v) = α
√

u2 + v2 + β,

g2(u, v) =
v

v + 1

(
θ
(√

u2 + v2 − |u|
)

+ γ
)

α, β, γ, θ ∈ R.

In fact, |Wu| = 1 + u√
s
≤ 2, |Wv| = |v|√

s
≤ 1 and

√
s− |u| ≤ W . Thus

g1Wu = αW +
(

1 +
u√
s

)
β ≥ αW − 2|β|,

g2Wv =
v

v + 1
(
θ
(√

s− |u|) + γ
) v√

s
≥ −|θ|W − |γ|,

and hence g1Wu + g2Wv ≥ (α− |θ|)W − (2|β|+ |γ|).
Similarly, g1Zu + g2Zv ≤ (−α− |θ|)Z + (2|β|+ |γ|). Besides, since (g1)u =

α u√
s
, (g1)v = α v√

s
are bounded, g1(u, v) is locally Lipchitz continuous, so is

g2(u, v).

3. The LeRoux system with sources

In this section, we consider the following Cauchy problem for the LeRoux sys-
tem [3,4] with sources:

{
ut +

(
u2 + v

)
x

+ f(u, v) = 0,
vt + (uv)x + g(u, v) = 0,

(3.1)

with the bounded measurable initial data

u(x, 0) = u0(x), v(x, 0) = v0(x) ≥ 0, (3.2)

where f(u, v) and g(u, v) are locally Lipchitz continuous functions.
By simple calculations, the two eigenvalues of system (3.1) are

λ1 =
3u

2
− D

2
, λ2 =

3u

2
+

D

2
and the two Riemann invariants are

w(u, v) = u + D, z(u, v) = u−D.

Here and hereafter D =
√

u2 + 4v.
The main result about the existence of weak solution of the Cauchy problem

(3.1)-(3.2) is given as follows:
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Theorem 3.1. Suppose that f(u, v), g(u, v) have the property: there exist four
constants c1, c2, c3, c4 ∈ R such that

wuf + wvg ≥ c1w + c2, zuf + zvg ≤ c3z + c4, (3.3)

and also g(u, v) = vh(u, v), where h(u, v) is continuous. Then the Cauchy
problem (3.1)-(3.2) has a weak solution in the sense of distribution.

Proof. First consider the Cauchy problem for the related parabolic system
{

ut +
(
u2 + v

)
x

+ f(u, v) = εuxx,
vt + (uv)x + g(u, v) = εvxx,

(3.4)

with initial data
(
uε(x, 0), vε(x, 0)

)
=

(
u0(x), v0(x) + ε

) ∗Gε, (3.5)

where Gε is a mollifier.
By simple calculations, we have

wu = 1 +
u

D
, wv =

2
D

, wuu =
4v

D3
, wuv =

−2u

D3
, wvv = − 4

D3
;

zu = 1− u

D
, zv = − 2

D
, zuu = − 4v

D3
, zuv =

2u

D3
, zvv =

4
D3

.

Multiplying system (3.4) by (wu, wv) and (zu, zv) respectively to obtain

w(u, v)t + λ2w(u, v)x + (wug1 + wvg2)

= εw(u, v)xx − ε
(
wuuu2

x + 2wuvuxvx + wvvv2
x

)

= εw(u, v)xx − ε

D
w(u, v)xz(u, v)x

and

z(u, v)t + λ1z(u, v)x + (zug1 + zvg2)

= εz(u, v)xx − ε
(
zuuu2

x + 2zuvuxvx + zvvv2
x

)

= εz(u, v)xx +
ε

D
w(u, v)xz(u, v)x.

Thus, in view of the inequalities (3.3), we get

wt +
(
λ2 +

ε

D
zx

)
wx + c1w + c2 ≤ εwxx; (3.6)

zt +
(
λ1 − ε

D
wx

)
zx + c3z + c4 ≥ εzxx. (3.7)

If we apply Corollary 1.1 to (3.6), (3.7), then we can obtain that for any
T > 0, w(uε, vε) ≤ N(T ), z(uε, vε) ≥ −N(T ) on R × [0, T ], where N(T) is
independent of ε. Thus we have the estimates |uε(x, t)| ≤ M(T ), 0 < c(ε, t) ≤
vε(x, t) ≤ M(T ) in light of Lemma 1.2. Hence there exists a subsequence (still
labeled)

(
uε(x, t), vε(x, t)

)
such that

w? − lim
(
uε(x, t), vε(x, t)

)
=

(
u(x, t), v(x, t)

)
.
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Now we construct four families of entropy-entropy flux pair of Lax type of
system (2.1). Let ρ = D3, θ = 3

2u. Then for smooth solutions, the LeRoux
system is equivalent to the following system:{

ρt + (ρθ)x = 0,

θt +
(

θ2

2 + 3
8ρ

2
3

)
x

= 0.
(3.8)

Any entropy-entropy flux pair (η, q) as functions of variables (ρ, θ) satisfies

(qρ, qθ) =
(

θηρ +
1
4
ρ−

1
3 ηθ, ρηρ + ηθ

)
. (3.9)

Eliminating the q from (3.9), we have the entropy equation

ηρρ =
1
4
ρ−

4
3 ηθθ. (3.10)

If k denotes a constant, then the function η = h(ρ)ekθ solves (3.10) provided
that

h′′ =
1
4
k2ρ−

4
3 h(ρ).

Let h(ρ) = ρ
1
3 φ(s), s = 3

2kρ
1
3 . Then φ solves the Fuchsian equation

φ′′ −
(

1 +
2
s2

)
φ = 0. (3.11)

Thus, one solution φ1 of (3.11) is

φ1 = s2
∞∑

n=0

c2ns2n = s2g(s), (3.12)

where

g(s) =
∞∑

n=0

c2ns2n, c2n =
c2(n−1)

(2 + 2n)(1 + 2n) + 2
,

c0 is an arbitrary positive constant, and

φ2 = s2g(s)
∫ ∞

s

(
s4g2(s)

)−1
ds (3.13)

is another independent solution of (3.11).
It is clear that φ1, φ2 satisfy that φ1(s) > 0, φ′1(s) > 0 and φ2(s) > 0 for

s ≥ 0. The strict positivity of φ′′2 gives φ′2 < 0 as s > 0 because lim
s→∞

φ2(s) = 0,

lim
s→∞

φ′2(s) = 0.

A simple calculation shows that the two eigenvalues of (3.8) are

λ1 = θ − ρ
1
3

2
, λ2 = θ +

ρ
1
3

2
,

with the corresponding two Riemann invariants

z = θ − 3
2
ρ

1
3 , w = θ +

3
2
ρ

1
3 .
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Thus θw = θz = 1
2 , ρz = ρ

2
3 , ρw = −ρ

2
3 , and

{
qw = 1

2qθ + ρ
2
3 qρ, qz = 1

2qθ − ρ
2
3 qρ;

ηw = 1
2ηθ + ρ

2
3 ηρ, ηw = 1

2ηθ − ρ
2
3 ηρ.

(3.14)

Since qw = λ2ηw, qz = λ1ηz from the definition of entropy, we have

qθ = qw + qz = θηθ + ρηρ. (3.15)

Let ηk = ρ
1
3 φ(s)ekθ, η−k = ρ

1
3 φ(s)e−kθ, we have from (3.15) that





qk = ηk

(
θ − 2

3k + ρ
1
3 φ′(s)
2φ(s)

)
,

q−k = η−k

(
θ + 2

3k − ρ
1
3 φ′(s)
2φ(s)

)
.

(3.16)

Let ηi
±k = ρ

1
3 φi(s)e±kθ. Then the estimates in Lemma 1.3 give





η1
k = ρ

1
3 ekw

(
1 + O

(
1
k

))
, q1

k = η1
k

(
λ2 − 2

3k + O
(

1
k2

))
;

η2
k = ρ

1
3 ekz

(
1 + O

(
1
k

))
, q1

k = η2
k

(
λ1 − 2

3k + O
(

1
k2

))
;

η1
−k = ρ

1
3 e−kz

(
1 + O

(
1
k

))
, q1

−k = η1
−k

(
λ1 + 2

3k + O
(

1
k2

))
;

η2
−k = ρ

1
3 e−kw

(
1 + O

(
1
k

))
, q2

−k = η2
−k

(
λ2 + 2

3k + O
(

1
k2

))
(3.17)

on any compact subset of s > 0, and
{

q1
k = η1

k

(
λ2 + O

(
1
k

))
, q2

k = η2
k

(
λ1 + O

(
1
k

))
,

q1
−k = η1

−k

(
λ1 + O

(
1
k

))
, q2

−k = η2
−k

(
λ2 + O

(
1
k

))
,

(3.18)

on s ≥ 0.
Next we verify the compactness of ηt + qx in H−1

loc for the entropy-entropy
flux pair constructed above. We only prove for (η, q) = (η2

k, q2
k). A similar

treatment gives the proofs for the others.
Obviously, system (3.1) has a convex entropy η? = u2

2 +
∫ v

0
log vdv and the

corresponding entropy flux q? = 2u3

3 +uv log v, so we easily get the boundedness

of ε
(
uε

x

)2 and ε
(vε

x)2

vε in L1
loc. For simplicity, we will drop the superscript ε.

Multiplying system (3.4) by (ηu, ηv), we have

ηt + qx + (ηuf + ηvg) = εηxx − ε
(
ηuuu2

x + 2ηuvuxvx + ηvvv2
x

)
.

Because ∫ ∞

s

ds

s4g2(s)
= O

(
1
s3

)
, as s → 0, (3.19)

for any fixed k > 0 we have that

η =
2
3k

s3g(s)
∫ ∞

s

ds

s4g2(s)
ekθ

and q are both bounded on R × [0, T ] (∀T > 0). Thus η(u, v)t + q(u, v)x is
bounded in W−1,∞, ηuf + ηvg is bounded on R × [0, T ] (∀T > 0) and hence
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bounded in L1
loc. Because

η =
2ekθ

k

(
1

g(s)
− 2s3g(s)

∫ ∞

s

g′(s)ds

s3g3(s)

)
= I1 − 4

k
ekθI, (3.20)

and g′(s)/s ≤ g(s), we have
∫ ∞

s

g′(s)ds

s3g3(s)
= O

(
1
s

)
, as s → 0. (3.21)

Thus ηs and ηθ are both bounded on R×[0, T ] (∀T > 0) and ηs = O(s), as s →
0. Since

su =
3ku

2
(
u2 + 4v

)− 1
2 , sv = 3k

(
u2 + 4v

)− 1
2 ,

then εηx = O (ε (|ux|+ |vx|)) . Hence εηxx is compact in H−1
loc from the bound-

edness of εu2
x and ε

v2
x

v in L1
loc.

Since η = I1 − 4
kekθI, where I1 = 2

kg(s)e
kθ is bounded in C2, we only need

to show the boundedness of L in L1
loc, where

L = ε
(
Iuuu2

x + 2Iuvuxvx + Ivvv2
x

)
.

Let L = L1 + L2, where{
L1 = εIss

(
(su)2 u2

x + 2susvuxvx + (sv)2 v2
x

)
,

L2 = εIs

(
suuu2

x + 2suvuxvx + svvv2
x

)
.

Noticing that g
′
(s)/s ≤ g(s), Is = O(s) (s → 0) and Iss is bounded, we have

that L1 and L2 are controlled by ε
(
O

(
v2

x

|v|
)

+ O
(
u2

x

))
and hence bounded in

L1
loc. Thus the term ε

(
ηuuu2

x + 2ηuvuxvx + ηvvv2
x

)
is bounded in L1

loc. There-
fore, by a standard argument,

(
η2

k

)
t
+

(
q2
k

)
x

is compact in H−1
loc .

Finally, we can prove the Young measure must be a Dirac mass by using the
same method as in the proof of Theorem 2.1. So we end the proof of Theorem
3.1. ¤X

Remark 3.1. There are many functions f(u, v), g(u, v) which satisfy the hy-
potheses of Theorem 3.1. For example, f(u, v) = a

√
u2 + 4v + 1 + b,

g(u, v) =
v√

v + 1

(
c
(√

u2 + 4v − |u|
)

+ d
)

(a, b, c, d ∈ R).

In fact, |wu| = 1 + u
D ≤ 2, wv = 2

D and D − |u| ≤ min(w,−z). Thus

wuf ≥ −|a|(D+1)
(
1 +

u

D

)
−2|b| ≥ −|a|w−2

(|a|+ |b|), wvg ≥ −2|c|w−2|d|
and hence wuf +wvg ≥ (−|a|−2|c|)w−2

(|a|+ |b|+ |d|). Similarly, zuf +zvg ≤
−(|a|+2|c|)z+2

(|a|+|b|+|d|). In addition, it is easy to see that f(u, v), g(u, v)
are locally Lipchitz continuous by the fact that v

√
u2 + 4v is locally Lipchitz

continuous.



106 MING TAO, ZHIXIN CHENG & JIN YAN

References

[1] Y. G. Lu, Hyperbolic conservation laws and the compensated compactess method,
Vol. 128, Chapman and Hall, New York, 2002.

[2] Y. G. Lu, Convergence of the viscosity method for a nonstrictly hyperbolic
system, Acta Math. Sci., 12 (1992), 349–360.

[3] Y. G. Lu, I. Mantilla & L. Rendón, Convergence of approximated solutions
to a nonstrictly hyperbolic system, Advanced Nonlinear Studies, 1 (2001), 65–79

[4] A. Y. LeRoux, Numerical stability for some equations of gas dynamics, Mathe-
matics of Computation, 37 (1981), 435–446.

(Recibido en enero de 2007. Aceptado en abril de 2007)

Department of Mathematics
University of Science and Technology of China

Hefei 230026, P. R. China

e-mail: mtao@mail.ustc.edu.cn

e-mail: czx@mail.ustc.edu.cn

e-mail: yanjin@mail.ustc.edu.cn


