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Abstract. Branched coverings relate closed, orientable 3-manifolds to links

in S
3, and open, orientable 3-manifolds to strings in S

3
r T , where T is a

compact, totally disconnected tamely embedded subset of S
3. Here we give

the foundations of this last relationship. We introduce Fox theory of branched

coverings and state the main theorems. We give examples to illustrate the

theorems.
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Resumen. Las cubiertas ramificadas relacionan las 3-variedades orientables cer-

radas con los enlaces en S
3 y las 3-variedades abiertas con las cuerdas en S

3
rT ,

donde T es un subconjunto compacto, totalmente desconectado y dócilmente en-

cajado en S
3. Aqúı exponemos los fundamentos básicos de esta última relación.

Introducimos la teoŕıa de Fox de las cubiertas ramificadas y enunciamos los

principales teoremas. Damos ejemplos que ilustran los teoremas.
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1. Introduction

Branched coverings (to be defined later) relate closed 3-manifolds to (tame)
knots and links (see [3], [16], [17], [27]).

From this relationship “knot theory” obtains invariants of knots, and “3-
manifold theory” reduces its study to knot theory. As we see, this is a fruitful
relationship.

This paper is devoted to give an exposition of this relationship in the case
of open 3-manifolds and wild knots and strings in S3 via branched coverings.
Details are in the papers [18], [22], [19], [21], [20]. We give new examples and
some new theorems.

2. Some mixed preliminaries

2.1. Topological preliminaries. In Fox´s terminology [7] X is locally con-
nected in Y iff Y has a base whose members intersect X in connected sets.

Every connected, locally connected, locally compact, metrizable and sepa-
rable space X is contained in a compact space Y with the same properties in
such a way that X is dense, open and locally connected in Y , and the end
space E(X) := Y r X is (compact and) totally disconnected. Moreover, this
compactification Y of X (ideal or Freudenthal compactification) is determined
by these properties [9] (see also [7] and [23]).

We say that a compact, totally disconnected subset T of S3 is tamely embed-
ded if there exists a homeomorphism of S3 placing T on a rectilinear segment of
S3 = R3 + ∞. Otherwise, T is wildly embedded. Accordingly, we will consider
tamely (or wildly) embedded Cantor subsets of S3.

A 3-cell will be a space homeomorphic to the closed ball of radius 1 in R3;
an open 3-cell will be a space homeomorphic to R3.

A 3-manifold M is a connected, metrizable topological space such that every
point of M has an open 3-cell neighbourhood. By the theorem of invariance
of domain, that open 3-cell neighbourhood is an open subset of M . Therefore,
every point of M has also a 3-cell neighbourhood. A 3−manifold-with-boundary
M is a connected, metrizable topological space such that every point of M
has a 3-cell neighbourhood. Therefore, every 3-manifold is a 3-manifold-with-
boundary but the converse is false: a 3-cell is a 3-manifold-with-boundary but
it is not a 3 -manifold.

A 3-manifold will be called closed (resp. open) iff it is compact (resp. non-
compact). Of course, an open 3-cell is an open 3 -manifold. The 3-sphere S3

is a closed 3-manifold.

2.2. Combinatorial preliminaires. A polyhedron is the underlying space of
a locally finite simplicial complex. Moise proved [12] that all 3-manifolds-with-
boundary are triangulated by polyhedra.

2.3. Tame and wild sets. A closed set F in a 3 -manifold-with-boundary M
is tame if there is a homeomorphism of M in itself sending F onto a subcomplex
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Figure 1. A wild 2-cell.

of some locally finite simplicial complex triangulating M . If there is no such
homeomorphism, we say that F is wild. For example the 2-cell in S3 shown in
Figure 1 is wild.

The set X is locally tame at a point x of X if there exist a neighbourhood
U of x in M and a homeomorphism of U into M that takes U ∩X onto a tame
set. Otherwise we say that X is locally wild at x.

Bing [1] showed that a closed set is tame in S3 if it is locally tame at each
of its points. The set of points of X at which it is locally tame is open in X
and is called the tame subset of X , while the subset at which it is locally wild
is closed, and is called the wild subset of X .

A subset N of a 3-manifold is a knot if N is homeomorphic to the 1-sphere
S1. A locally finite disjoint union of knots is a link. A wild knot or link has a
non empty wild subset. Otherwise it is a tame knot or link.

Figure 2. A string.
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For instance, the wild 2-cell of Figure 1 bounds a wild knot whose wild
subset is a tamely embedded Cantor set.

A closed subset of a 3-manifold is a string (see Figure 2) if it is homeomorphic
to the real line R

1. A locally finite disjoint union of strings is a string-link. A
wild string or string-link has a non empty wild subset. Otherwise it is a tame
string or string-link.

A knot N in S3 is the unknot if N bounds a tame disk in S3. A string in
R3 is the unstring if it bounds a tame half-plane in R3.

3. Combinatorial branched coverings

Let f : Y → Z be a (continuous) map. An open neighbourhood W of z ∈ Z
is called elementary if f maps each (connected) component of f−1(W ) home-
omorphically onto W . A point of Z that admits an elementary neighbourhood
is an ordinary point. A non-ordinary point is singular. The set of ordinary
points of Z is an open subset Zo of Z. Its complement Zs is the closed set
of singular points. If Y is connected and locally connected, and Z = Zo, f is
called covering.

The definition of branched covering is relatively easy if the spaces involved
are polyhedra.

Thus, if M and N are 3-manifolds and B is a subset of N , then a continuous
map

f : M → N

is a (combinatorial) covering of N branched over B if there are triangulations
of M and N such that

(i) B is a subpolyhedron of the 1-skeletton of N ;
(ii) f is a non-degenerate simplicial map;
(iii) the restriction

f |(M r f−1(B)) : M r f−1(B) → N r B

is a covering called the associated covering. (The associated unbranched
covering is the composition of the covering f |(M r f−1(B)) with the
natural inclusion N r B ⊂ N).

(iv) the set Zs of singular points of f is B. The set B is called the branching
set of f .

Then f−1(B) is a subgraph of M which is the disjoint union of the subgraph

P̃ (pseudo-branching cover) of points at which f is a local homeomorphism

and the subgraph B̃ (branching cover) of points at which f is not a local
homeomorphism.

The importance of this combinatorial definition of branched covering lies in
the fact that, given the monodromy of the associated unbranched covering, it is
possible to construct the branched covering (the monodromy is a representation
of π1(N r B) into the group of bijections of the fiber [25]). We explain what
we understand by this with an example.
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Let (L, ω) be a represented knot or link in X = S3 (resp. a represented string
or string-link in X = R3), where ω is a simple representation (homomorphism)
of π1(X rL) onto the symmetric group S3 of the indices {1, 2, 3}. Thus ω sends
meridians of L to transpositions (1, 2), (1, 3), or (2, 3) of S3, which, following
a beautiful idea of Fox, will be represented by colors Red (R = (1, 2)), Green
(G = (1, 3)) and Blue (B = (2, 3)). If the representation exists we can endow
each overpass of a normal projection of L with one of the three colors R, G, B
in such a way that the colors meeting in a crossing are all equal or all are
different. Moreover, at least two colors are used. A knot or link L (resp. string
or string-link L) in X = S3 (resp. X = R3) with a coloration corresponding to
some ω is a colored knot or link (resp. colored string or string-link).

A colored knot or link (resp. string or string-link) (L, ω) in X = S3 (resp.
X = R3) defines a complete conjugation class of subgroups of π1(X r L).
Namely the set {ω−1(Stabi) : i ∈ {1, 2, 3}} where Stabi is the subgroup of
elements of S3 fixing the index i. This class of subgroups determines an ordinary
covering of three sheets

f ′ : Y → X r L

and an unbranched covering f ′′ = j ◦ f ′ where

j : X r L → X

is the inclusion map. A construction described by Neuwirth in [24] gives an
extension of f ′′to a combinatorial covering f : M(L, ω) → X branched over L
such that the associated unbranched covering of f turns out to be f ′′. Due to
a theorem of Fox (see the next section), this f is unique. We emphasize that f
is uniquely determined by f ′′, not in general by f ′ [11]. The space M(L, ω) is
a closed (resp. open), orientable 3-manifold.

Figure 3. A colored knot.

Example 1. Consider the colored knot (L, ω) of Figure 3. This colored knot
was considered by R. H. Fox in [8]. Neuwirth construction shows that the closed
manifold M(L, ω) is S3 (we do not give details; see [16], [17] and [27]).

On top of the 3-cell Q (resp. S3 r IntQ) of Figure 3 lies a 3-cell.
An easy consequence of this is the following result.
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Figure 4. The move.

The move of Figure 4, [13], [14], [16], [17], has the following property: if this
move is applied to a portion of a colored knot or link (resp. string or string-
link), we obtain a new colored knot or link (resp. string or string-link) whose
corresponding 3-fold branched covering spaces are homeomorphic.

It was proved in [10] and [15], independently, that every closed orientable
3-manifold is of the form M(L, ω) for countably many mutually inequivalent
knots L. In other words, every closed orientable 3-manifold is a simple 3 fold
covering of S3 branched over a knot in many different ways.

Example 2. Consider the colored string (L, ω) in R3 of Figure 5. This colored
string was first considered by R. H. Fox in the paper [6]; entitled “A remarkable
simple closed curve”. We will call L Fox string. We will prove that the space
M(L, ω) is homeomorphic to R3. Thus there exist a 3-fold simple covering
p̂ : R3 → R3 branched over the Fox string L.

Figure 5. Fox string colored.

In fact, select a sequence of 3-cells {Qi}
∞
i=1 such that Qi ⊂ Int(Qi+1) and

∪∞
i=1Qi = R

3 = S3
r {∞},

as indicated in Figure 5. Let

p : M(L, ω) → R
3
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be the simple branched covering given by the representation ω. Then, for i ≥ 1,
p−1(Qi) is a 3-cell Q′

i
. In fact,

p | p−1(Qi) : p−1(Qi) → Qi

is a 3-fold simple covering of the 3-cell Qi, branched over two properly embed-
ded arcs; these arcs are embedded exactly as in case i = 1 (see Figure 5). By
Example 1, p−1(Qi) is a 3-cell Q′

i
. Then

M(L, ω) = ∪∞
i=1Q

′
i
.

And from this follows that M(L, ω) is homeomorphic to R3 [2] as we wanted
to prove.

Exercise. Find an alternative proof using the move of Figure 4.

4. Topological branched coverings

We will see in this paper that open 3-manifolds are naturally related to cover-
ings branched over wild knots and strings. Therefore the combinatorial defini-
tion of branched covering is not sufficient. We need a topological definition of
branched covering.

This definition was provided by R. H. Fox in his celebrated paper [7] (a fresh
exposition of it is in [23]). We now explain this definition.

If Z is a topological space denote by E(z) the set of open neighbourhoods of
z ∈ Z. If f : Y → Z is a map, a thread yz over z is a function W 7−→ yz(W )
where W ∈ E(z) and yz(W ) is a component of f−1(W ) such that

yz(W2) ⊂ yz(W1) if W2 ⊂ W1.

A branched covering is a continuous map g : Y → Z between connected,
locally connected T1 spaces such that

(i) the connected components of the inverse images of the open sets of Z
form a base for the topology of Y ;

(ii) the set Zo of ordinary points is connected, dense and locally connected
in Z;

(iii) the set g−1(Zo) is connected, dense and locally connected in Y ; and
(iv) g is complete, that is, for every thread yz over z, and for every z, the

intersection ⋂

W∈E(z)

yz(W )

is non-empty (and consists of just one point).

The map

g | g−1(Zo) : g−1(Zo) → Z;

is called the unbranched covering associated to g, and the map

g | g−1(Zo) : g−1(Zo) → Zo
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is called the covering associated to g. The degree of the covering associated to
g is, by definition, the degree of g.

In a branched covering g : Y → Z, the set Zs = Z r Zo will be called the
branching set and we will say that g is a covering of Z branched over Zs.

Let zs be a point of Zs. The branching index b(y) of y ∈ g−1(zs) is the
infimum of the degrees of the coverings associated with the branched coverings

g | C : C → W,

where C is the y-component of g−1(W ), for every open, connected neighbour-
hood W of zs. If all these degrees are infinite, we will say that the branching
index is infinite.

The subset of g−1(Zs) of points with branching index 1 is called the pseudo-
branching cover, and the subset of g−1(Zs) of points with branching index ≥ 1
is called the branching cover.

The main result in [7] implies the following

Theorem 4.1. Let f : Y → Z be a continuous map between connected, locally
connected T1 spaces that satisfies conditions (i), (ii), (iii) above. Then there
exists a unique branched covering g : X → Z extending f .

The branched covering g granted by this theorem will be called the Fox
completion of f .

A useful method to construct branched coverings is to complete unbranched
coverings by means of Theorem 4.1. This is the content of the next corollary.

Corollary 4.1. Let g : Y → Z be a branched covering. Then g is the Fox
completion of its associated unbranched covering

g | g−1(Zo) : g−1(Zo) → Z.

Thus, g is determined by the unbranched covering

g | g−1(Zo) : g−1(Zo) → Z;

or by the associated covering

g | g−1(Zo) : g−1(Zo) → Zo

and the inclusion Zo ⊂ Z.
Of course, this construction can be brought about when Zs is tame (see last

section). But for particularly nice wild branching sets we can also bring about
the construction. We explain this in the next section.

5. Constructing branched coverings for nice branching sets

Let T be a compact, totally disconnected subset of a manifold M . A T -tangle
will be a closed subset F of M containing T such that (i) M r F is dense and
locally connected in M and, (ii) F r T is tame in M r T . The interest of this
definition lies in the following
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Theorem 5.1. Let M be a closed manifold. Let g : Y → M be a finite sheeted
covering branched over a T -tangle B. Then g is uniquely determined by the
(combinatorial) covering

g|
(
Y r g−1(T )

)
: Y r g−1(T ) → M r T

branched over the tame set F r T . Moreover, Y is the ideal compactification
of Y r g−1(T ).

Proof. It follows from the Jordan separation theorem that if T is a compact,
totally disconnected subset of a closed n-manifold M , then M is the ideal com-
pactification of M r T . Since M r B is dense and locally connected in M it
follows that M r T is dense and locally connected in M . By the uniqueness of
the ideal compatification, it follows that the inclusion of M rT in M is unique
up to homeomorphism. Therefore the Fox completion of

g|
(
Y r g−1(T )

)
: Y r g−1(T ) → M

is uniquely determined by

g|
(
Y r g−1(T )

)
: Y r g−1(T ) → M r T.

That Y is the ideal compactification of Y r g−1(T ) follows from the following

theorem (see [7] and [23]). �X

Theorem 5.2. Let X and Z1 be metrizable and separable spaces. Assume also
that they are connected, locally connected, locally compact, but not compact.
Let

f : X → Z1

be a surjective branched covering. Let Z be the ideal compactification of Z1 and
let

j : Z1 → Z

be the canonical inclusion. If
g : Y → Z

denotes the Fox completion of

j ◦ f : X → Z,

then Y is the ideal compactification of X if Z has a base such that, for each
member W of it, f−1(W ) has a finite number of components.

Example 1. A tamely embedded or wildly embedded Cantor set C in S3 is a
C-tangle.

Example 2. A wild knot in S3 with one-point wild subset x is an {x}-tangle.
The wild knot in S3 = R

3 + {∞} with wild subset {∞} whose associated tame
string in R3 is Fox string L of Figure 5 will be called Fox remarkable wild-knot.

Example 3. More generally, let L be a tame string-link in R3. Then L̂ :=
L ∪ {∞} is a {∞}-tangle in S3 = R3 ∪ {∞}. The string-link in R3 of Figure 6
gives rise to a very complicated {∞}-tangle in S3.
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Figure 6. Colored string-link.

Example 4. The boundary L of the wild disk of Figure 1 is a wild knot in
S3 with wild subset Lw a tamely embedded Cantor set. Moreover L is a Lw-
tangle because L r Lw is a tame string-link in S3 r Lw (with countably many
components).

Example 5. In S3 = R3∪{∞} consider (see Figure 7) the union L′ of the cir-
cles of diameter 1/3(n+1), lying in the xy-plane and centered at (m/(2 ·3n), 0, 0)
for every integer n ≥ 1 and every integer m such that 0 < m < 2 · 3n and
gcd(m, 6) = 1, together with the circle centered at (1/2, 0, 0) of radius 1. The
adherence L of this set L′ is a C-tangle. Here C is the standard tamely embed-
ded Cantor set and L r C is the union of half-circles L′ r ([0, 1]× {0} × {0}).

A represented T -tangle (L, ω) is a T -tangle L in S3 together with a transitive
representation ω of π1(S

3 r L) into the symmetric group Sn of n indices. The
representation is simple if it represents meridians of L r T by transpositions.

A represented T -tangle (L, ω) in S3 defines a complete conjugation class
of subgroups of π1(S

3
r L). Namely the set {ω−1(Stabi) : i ∈ {1, 2, ..., n}}

where Stabi is the subgroup of elements of Sn fixing the index i. This class of
subgroups determines a combinatorial covering

f ′ : M(L, ω) → S3
r T

branched over the tame set L r T , where M(L, ω) is an open 3-manifold,
oriented and connected that can be constructed by Neuwirth method.

Let f be the composition j ◦ f ′, where

j : S3
r T → S3
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is the inclusion map. Since f satisfies the conditions listed in Theorem 4.1
there exists the Fox completion

f̂ : M̂(L, ω) → S3

of f . This map is a covering of S3 branched over L, extending f ′.

The space M̂(L, ω) is the ideal compactification of the manifold M(L, ω)
(Theorem 5.1).

In general M̂(L, ω) is not a manifold at the points belonging to the end
space

E(M(L, ω)) := M̂(L, ω) r M(L, ω).

Of course, f̂(E(M(L, ω))) = T .
The covering

p̂ : M̂(L, ω) → S3

will be called simple if ω is simple.

Example 6. Fox remarkable wild knot L whose tame part Lr{∞} is depicted
in Figure 5 is a colored {∞}-tangle (L, ω). The manifold M(L, ω) is R3 and

M̂(L, ω) is the one-point compactification of R3. Thus there is a 3-fold simple
branched covering p̂ : S3 → S3 branched over the Fox remarkable wild knot L
[19].

Trading what is outside the 3-cell Q1 of Figure 5 with what is inside it, one
gets the move indicated in Figure 8.

Figure 7. A C -tangle.

Applying this move to colored (tame) knots one gets wild knots having the
same branched coverings. Therefore, exactly as with S3, every closed, oriented
3-manifold is a 3-fold covering of S3 branched over a colored wild knot.

Fox remarkable wild knot L admits a representation η onto S2. The manifold
M(L, η) is the 2-fold cyclic covering of R3 branched over the Fox string of Figure

5. Then M(L, η) is the union of an ascending sequence of solid tori Q̃i, namely,
the solid tori covering the 3-cells Qi of Figure 5. It is not hard to see that the

core of Q̃i goes twice around the core of Q̃i+1 (see Figure 9). An appropriate
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Figure 9. A 2-fold branched covering.

name for this open 3-manifold could be ascending solenoidal manifold (see [20]
and [19]).

Example 7. Consider the C-tangle L of Example 5. Here C is the standard
tamely embedded Cantor set so that π1(S

3 rLw) is trivial. Then π1(S
3 rL) is

freely generated by the meridians of the upper half circles of L′ r L′ r ([0, 1]×
{0}×{0}) and the meridians of the lower half circles of L′ rL′ r ([0, 1]×{0}×
{0}). We define a colored C-tangle (L, ω) coloring the upper (resp. lower)
meridians red (resp. green) as depicted in Figure 7.

This defines a 3-fold simple covering

p̂ : M̂(L, ω) → S3

branched over L.
The space M̂(L, ω) is S3. In fact, applying the move shown in Figure 10,

which does not affect the covering space (see [14]), simultaneously in all possible

places in Figure 7 we see that M̂(L, ω) is homeomorphic to the 3 -fold cyclic
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covering of S3 branched over the unknot. Thus M̂(L, ω) is the 3-sphere. (To
help the reader, in Figure 5 a sequence of the moves of Figures 10 and 11 (and
their inverses) is used to produce the move of Figure 4, [14]).

Figure 10. A move.

As in the previous example, we can apply the move of Figure 8 countably
many times to any colored tangle and we easily obtain that every closed, ori-
ented 3-manifold is a 3-fold simple covering of S3 branched over a colored C-
tangle L such that C is a tamely embedded Cantor set and LrC is a string-link.

(12)

3-Ball Q

(12)

(13)
(13)

3-Ball Q

(12)

(13)

B

Figure 11. A move.

In [18] we have proved the following theorem.
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Theorem 5.3. Let M be an orientable 3-manifold. Let E(M) be the end space
of M . Then there is a colored T -tangle (L, ω) whose associated 3-fold simple
covering

p̂ : M̂(L, ω) → S3

branched over L satisfies:

(i) M̂(L, ω) is the ideal compactification of M ;
(ii) p̂|E(M) maps E(M) homeomorphically onto T ;
(iii) T is tamely embedded in S3;
(iv) if T is not empty, LrT is a tame string-link in S3rT with L r T = L;
(v) M(L, ω) is M and p := p̂ |M is a combinatorial 3-fold simple covering

p : M → S3 r T branched over the tame string-link L r T .

This theorem generalizes [10] and [15]. In these two papers the above the-
orem is proved for closed, orientable 3-manifolds with the additional property
that L is a (tame) knot and T is empty.

A corollary of the above theorem is that if C is a wildly embedded Cantor
set in S3 there exists a 3-fold simple branched covering p : S3 → S3 sending
C homeomorphically onto a tamely embedded Cantor set. This has interesting
consequences (see [21]).

Example 8. Consider the C-tangle of Example 4, which is the boundary L of
the wild disk of Figure 1. We have proved [22] that the n-fold cyclic coverings of
S3 branched over L are all 3-spheres for every n ≥ 2. Moreover the preimages
of C are wildly embedded. There are uncountably many different disks, like
the one of Figure 1, enjoying the same property.

Corollary 5.1. Let M be a closed, orientable 3-manifold which is an n-fold
cyclic covering of S3 branched over a tame knot or link. Then M is also an
n-fold cyclic covering of S3 branched over a C-tangle, where C is a Cantor set
in uncountably many different ways. Moreover C can be made to be tamely
embedded or wildly embedded.

Proof. We see [22] that there is an n-fold cyclic covering S3 → S3 branched
over a wild knot L with Lw a tamely embedded Cantor set. If n = 2m, this
covering factors through an m-fold cyclic covering S3 → S3 branched over a
wild knot L′ with L′

w
a wildly embedded Cantor set, and a 2-fold cyclic covering

S3 → S3 branched over a wild knot L with Lw a tamely embedded Cantor set.
We use these branching sets to create moves. These moves applied to links in
S3 give the required branching sets. �X

These theorems and corollaries can be rephrased in terms of exotic cyclic
actions on closed, orientable 3-manifolds. We leave this to the reader.

Another consequence of the moves in the proof of the above corollary is that
every closed, oriented 3-manifold is a 3-fold simple covering of S3 branched
over a colored wild knot N such that Nw is a Cantor set. Moreover C can be
made to be tamely embedded or wildly embedded.
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6. Open problems

To finish, here are some open problems.

Question 1 (Allan Edmonds). Let L be a wild knot in S3 such that, for some
n ≥ 2 the n-fold cyclic covering of S3 branched over L is the 3-sphere. Then L is
the boundary of an embedded 2-cell with locally tame interior (see MR2031886).

If the answer to this question is yes, the following conjecture follows.

Conjeture 1 (Smith Conjecture for R3). Let L be a tame string in R3 such
that for some n ≥ 2, the n-fold cyclic covering of R

3 branched over L is R
3.

Then L is the unstring.

Question 2. Is there a 3-manifold M and a covering p : M → S3 branched
over a (wildly embedded) Cantor set? I conjecture in the negative. (Note that
there are Cantor sets wildly embedded in S3 with no simply connected comple-
ment.)
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Volumen 41, Número 2, Año 2007


