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Abstract. For bounded and unbounded domains in R
3, we establish the lo-

calization and the structure of the spectrum of normal vibrations described by

systems of partial differential equations modelling small displacements of com-

pressible stratified fluid in the homogeneous gravity field. We also compare the

spectral properties of gravitational and rotational operators. Our main result

is the construction of Weyl sequence for the essential spectrum, which is an

explicit form of non-uniqueness of the solutions.
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Resumen. Para los dominios acotados y no-acotados en R
3, estudiamos la

localización y la estructura del espectro de las vibraciones normales que se

describen mediante sistemas de ecuaciones en derivadas parciales que modelan

los movimientos pequeños de un ĺıquido estratificado comprensible en el campo

gravitacional homogéneo. También comparamos las propiedades espectrales de

los operadores rotacionales y gravitacionales. Nuestro resultado principal es la

construcción de la sucesión de Weyl para el espectro esencial, la cual representa

expĺıcitamente la no-unicidad de las soluciones.

Palabras y frases clave. Ecuaciones diferenciales parciales, espectro esencial, es-

pacios de Sobolev, ĺıquido estratificado, ondas internas.
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1. Introduction

The objective of this paper is to study the structure and the localization of the
spectrum of partial differential operators which arise in the description of small
motions of an exponentially stratified compressible fluid in the gravity field.

We consider a system of equations in the form





ρ∗
∂u

1

∂t
+ ∂p

∂x1

= 0

ρ∗
∂u

2

∂t
+ ∂p

∂x2

= 0

ρ∗
∂u

3

∂t
+ gρ+ ∂p

∂x3

= 0

∂ρ
∂t

− N2ρ∗
g

u3 = 0

∂p
∂t

+ ρ?

(
∂u1

∂x1

+ ∂u2

∂x2

+ ∂u3

∂x3

)
= 0

, (1.1)

in the domain
{
x ∈ Ω ⊂ R3

}
, t > 0, where −→u (x, t) is a velocity field with

components u1, u2, u3, the function p (x, t) is the scalar field of the dynamic
pressure, ρ (x, t) is the dynamycal density and ρ∗, g,N are positive constants.
The equations (1.1) are deduced in [3] under the assumption that the function
of stationary distribution of density is performed by the function ρ∗e

−Nx3 .
The system (1.1) was studied from different angles, some of the results may

be found in [10], [12], [18], [9], [11], [7]. Particularly, the smoothness of the
solution of stratified system for the case of the intrusion was studied in [18].
The isolated case of uniqueness of solutions for stratified fluid in a class of
increasing functions was considered in [9]. The case of essential spectrum for
ideal (non-compressible) fluid was considered in [10], [12]. The general smooth-
ness of solutions was considered in [11]. The essential spectrum for rotational
(non-stratified) ideal and compressible flows was considered in [17], and mathe-
matical properties for different problems concerning rotational fluids were con-
sidered in [20] and [16].

Without loss of generality, we may assume g = 1 and ρ∗ = 1 in (1.1), which
can be achieved by introducing new unknown functions and renaming them as
follows:

−→u := ρ?
−→u , ρ := gρ.

Thus, we obtain the system





∂u
1

∂t
+ ∂p

∂x1

= 0
∂u

2

∂t
+ ∂p

∂x2

= 0
∂u

3

∂t
+ ρ+ ∂p

∂x3

= 0

∂ρ
∂t

−N2u3 = 0

∂p
∂t

+ ∂u1

∂x1

+ ∂u2

∂x2

+ ∂u3

∂x3

= 0

. (1.2)
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Let us observe certain mathematical similarity of the incompressible case of the
system (1.2) and the system which describes rotational motions of ideal fluid
over the vertical axis (−→ω = (0, 0, ω)):





∂2−→v
∂t2

+ −→ω ×−→v + ∇p = 0

∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

= 0
.

Particularly, we would like to compare the scalar form of the two systems

∂2

∂t2

(
∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

+
∂2Φ

∂x2
3

)
+N2

(
∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

)
= 0,

∂2

∂t2

(
∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

+
∂2Φ

∂x2
3

)
+ ω2 ∂

2Φ

∂x2
3

= 0,

and their corresponding singular solutions ([12]):

E(x, t) =
1

4π |x3|

Nt|x3|

|x|∫

0

J0 (α) dα ,

E(x, t) =
1

4π |x| |x|

ωt|x|
|x|∫

0

J0 (α) dα .

This mathematical analogy between gravitational and rotational waves, may
lead to the corresponding analogy in spectral properties.

In [17] we proved that the essential spectrum of normal vibrations generated
by rotational inner waves for compressible fluids, is the interval of the real axis
[−ω, ω] for bounded domains, and it was the whole axis R1 for the case Ω = R3.
Thus, it seems appropriate to express the conjecture that the operators gene-
rated by (1.2) should possess spectral properties, analogous to the rotational
system. Here we prove that this conjecture is true.

2. Spectral problem formulation

Let Ω be a bounded domain in R3 and let us consider the boundary condition
−→u · −→n |∂Ω = 0 for the system (1.2). We consider the following problem of
normal vibrations

−→u (x, t) = −→v (x) e−λt

ρ (x, t) = Nv4(x)e
−λt

p(x, t) = v5(x)e
−λt , λ ∈ C.

(2.1)

We denote ṽ = (v1, v2, v3, v4, v5) and write the system (1.2) in the matrix form

Lṽ = 0 , (2.2)
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where
L = M − λI

and

M =




0 0 0 0 ∂
∂x1

0 0 0 0 ∂
∂x2

0 0 0 N ∂
∂x3

0 0 −N 0 0

∂
∂x1

∂
∂x2

∂
∂x3

0 0




.

Now, let us define the main symbol L0 (ξ) of the operator L. According to [8],
[1], we can choose the numbers si = tj = 0 for i, j = 1, 2, 3, 4 and s5 = t5 = 1,
such that the elements lij in the matrix L will have the differential order not
greater than si + tj . In this way, the main symbol takes the following form:

L0 (ξ) =




−λ 0 0 0 ξ1
0 −λ 0 0 ξ2
0 0 −λ N ξ3
0 0 −N −λ 0
ξ1 ξ2 ξ3 0 0



,

and thus

detL0 (ξ) = λ
(
λ2 |ξ|2 +N2 |ξ′|

2
)
, (2.3)

where |ξ′|
2

= ξ21 + ξ22 .
We can see that if λ /∈ [−iN, iN ], then for every ξ 6= 0 we have detL0 (ξ) 6= 0

and, consequently, the operator L is elliptic in sense of Douglis-Nirenberg.
Our aim is to investigate the spectrum of the operator M. Let us define the

domain of the operator M as follows:

D (M) =

{ −→u ∈ L2 (Ω) |∃f ∈ L2 (Ω) :(−→u ,∇ϕ
)

= (f, ϕ) ∀ϕ ∈W 1
2 (Ω)

}
×W 1

2 (Ω) ×W 1
2 (Ω) ,

where (·, ·) is an inner product in L2 (Ω) and W 1
2 (Ω) is a Sobolev space with

the norm

‖f‖W 1

2
(Ω) =




∫

Ω

[
|∇f |

2
+ f2

]
dx




1

2

.

First, we will show that M is skew-selfadjoint and thus its spectrum will belong
to the imaginary axis. Then, we will find its structure and localization either
for bounded domains Ω ⊂ R3, or for the whole space R3.

From the physical point of view, the separation of variables (2.1) serves as
a tool to establish the possibility to represent every non-stationary process
described by (1.2) as a linear superposition of the normal vibrations. The
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knowledge of the spectrum of normal vibrations may be very useful for studying
the stability of the flows. Also, the spectrum of operator M is important in
the investigation of weakly non-linear flows, since the bifurcation points where
the small non-linear solutions arise, belong to the spectrum of linear normal
vibrations, i.e., to the spectrum of operator M .

3. Spectral problem solution for compressible fluid

Lemma 3.0.1. The operator M is skew-selfadjoint.

Proof. We observe first that, for compressible fluid, the Lemma cannot be
proved by using the projection of L2 (Ω) onto the space of the solenoidal fields,
as it was done in [10], [12]. Here we will use directly the definition of an adjoint
operator.

Since M can be represented as M = M0 +B, where B is an anti-symmetric
bounded operator

B =




0 0 0 0 0
0 0 0 0 0
0 0 0 N 0
0 0 −N 0 0
0 0 0 0 0



,

then it is sufficient to verify the skew-selfadjointness for the operator M0 with
the domain D (M0) = D (M).

Let ũ, ṽ ∈ D (M0). Integrating by parts, we obtain

(M0ũ, ṽ) =
(
Ou5,

−→v
)

+
(
div−→u , v5

)
= −

(
div−→v , u5

)
−

(−→u ,∇v5
)

= − (ũ,M0ṽ) .

Now, we shall prove the equality

D (M?
0 ) = D (M0) .

First, we verify that D (M∗
0 ) ⊂ D (M0). Since the operator M0 is not acting

on the fourth component of the vector ũ, then, without loss of generality, we
may consider u4 = v4 = f4 = 0.

Let ṽ ∈ D (M∗
0 ). It means that ṽ ∈ L2 (Ω) and that there exists f̃ ∈ L2 (Ω)

such that

(M0ũ, ṽ) =
(
ũ, f̃

)
for all ũ ∈ D (M0) :

(M0ũ, ṽ) = (Ou5,
−→v ) + (div−→u , v5) =

(
−→u ,

−→
f

)
+ (u5, f5) .

Let ũ = (0, 0, 0, 0, u5), u5 ∈W 1
2 (Ω). For such ũ we have

(Ou5,
−→v ) = (u5, f5) .

Now, take ũ = (u1, u2, u3, 0, 0). For such ũ we obtain

(div−→u , v5) =
(
−→u ,

−→
f

)
.
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338 ANDREI GINIATOULLINE & CÉSAR HERNÁNDEZ

It follows from the last relation that v5 has a weak gradient from L2 (Ω) and
v5 ∈ W 1

2 (Ω). Finally, D (M∗
0 ) ⊂ D (M0). The reciprocal inclusion can be

proved analogously and thus the lemma is proved. �X

We recall that the essential spectrum is composed of the points belonging to
the continuous spectrum, limit points of the point spectrum and the eigenvalues
of infinite multiplicity ([14], [19]). We shall use the following criterion which is
attributed to Weyl ([14], [19]) : a necessary and sufficient condition that a real
finite value µ be a point of the essential spectrum of a self-adjoint operator A
is that there exist a sequence of elements xn ∈ D (A) such that

‖xn‖ = 1 , xn ⇀ 0 , ‖(A− µI)xn‖ → 0 . (3.1)

Theorem 3.1. The essential spectrum of the operator M is the interval of the

imaginary axis [−iN, iN ].

Proof. From Lemma 3.1 we know that the spectrum of the operator M belongs
to the imaginary axis. Taking into account (2.3), we consider λ0 ∈ (−iN, iN)\
{0} and choose a vector ξ 6= 0 such that

λ2
0ξ

2
3 + |ξ′|

2 (
λ2

0 +N2
)

= 0.

Therefore, there exists the vector η = (η1, η2, η3, η4, η5) such that L0(ξ)η = 0 :




−λ0η1 + ξ1η5 = 0
−λ0η2 + ξ2η5 = 0

−λ0η3 +Nη4 + ξ3η5 = 0
−Nη3 − λ0η4 = 0

ξ1η1 + ξ2η2 + ξ3η3 = 0

. (3.2)

Solving (3.2) with respect to η, we obtain one of possible solutions:




η1 = ξ1
λ0

η2 = ξ2
λ0

η3 = ξ3λ0

λ2

0
+N2

η4 = −ξ3N
λ2

0
+N2

η5 = 1

.

We observe that ηi 6= 0, i = 1, 2, 3, 4, 5.
Now, let C∞

0 (Ω) be a space of smooth functions with compact support in Ω
and let us choose a function

ψ0(x) ∈ C∞
0 (Ω),

∫

|x|61

ψ2
0 (x) dx = 1.

We fix x0 ∈ Ω and define

ψk(x) = k
3

2ψ0

(
k (x− x0)

)
, k = 1, 2, ...
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One can easily see that, starting from certain k,

‖ψk‖L2(Ω) = 1,

∥∥∥∥
∂ψk
∂xj

∥∥∥∥
L2(Ω)

= C1
j k,

∥∥∥∥∥
∂2ψk
∂x2

j

∥∥∥∥∥
L2(Ω)

= C2
j k

2,

where the constants Cij 6= 0 do not depend on k.
We define the Weyl sequence

ũk =
(
uk1 , u

k
2 , u

k
3 , u

k
4 , q

k
)

as follows:




ukj (x) = ηje
ik3〈x,ξ〉

(
ψk + i

k3ξj

∂ψk

∂xj

)
, j = 1, 2, 3

uk4(x) = η4e
ik3〈x,ξ〉ψk

qk (x) = − i
k3ψke

ik3〈x,ξ〉

〈x, ξ〉 = x1ξ1 + x2ξ2 + x3ξ3 , k = 1, 2, . . .

(3.3)

Now we have to show that the sequence (3.3) actually satisfies all the conditions
(3.1).

For the functions (3.3), the weak convegrence to zero follows from the weak

convergence to zero of the functions eik
3〈x,ξ〉 and the estimates ‖ψk‖L2(Ω) = 1,∥∥∥∂ψk

∂xj

∥∥∥
L2(Ω)

= C1
j k.

The condition ‖xn‖ = 1, actually, is equivalent to the condition that the
norms of the Weyl sequence are separated from zero, and, it is sufficient to
prove that at least the norms of one of the coordinates of the field ũk are
separated from zero. Let us consider the first coordinate

uk1 (x) = η1e
ik3〈x,ξ〉ψk + η1e

ik3〈x,ξ〉 i

k3ξ1

∂ψk
∂x1

(3.4)

For the second term in the sum (3.4) we have

lim
k→∞

∥∥∥∥η1eik
3〈x,ξ〉 i

k3ξ1

∂ψk
∂x1

∥∥∥∥
L2

= lim
k→∞

|η1|

k3 |ξ1|

∥∥∥∥
∂ψk
∂x1

∥∥∥∥
L2

= 0.

However, for the first term we obtain

∥∥∥η1eik
3〈x,ξ〉ψk

∥∥∥
L2

= |η1| ‖ψk‖L2
= |η1| 6= 0.

Now, it remains to verify that
∥∥(M − λ0I) ũ

k
∥∥
L2

→ 0. Let us denote

f̃k = (M − λ0I) ũ
k.
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For the first component fk1 we have

fk1 = −λ0u
k
1 +

∂qk

∂x1
=

= (−λ0η1 + ξ1) e
ik3〈x,ξ〉ψk −

i

k3

(
λ0η1
ξ1

+ 1

)
eik

3〈x,ξ〉 ∂ψk
∂x1

=

= −
i

k3

(
λ0η1
ξ1

+ 1

)
eik

3〈x,ξ〉∂ψk
∂x1

,

since −λ0η1 + ξ1 = 0, which follows from the first equation of (3.2). Thus, we
have

∥∥fk1
∥∥
L2(Ω)

≤
Const

k3

∥∥∥∥
∂ψk
∂x1

∥∥∥∥
L2(Ω)

→
k→∞

0.

Analogously,

fk2 = −λ0u
k
2 +

∂qk

∂x2
=

= (−λ0η2 + ξ2) e
ik3〈x,ξ〉ψk −

i

k3

(
λ0η2
ξ2

+ 1

)
eik

3〈x,ξ〉 ∂ψk
∂x2

=

= −
i

k3

(
λ0η2
ξ2

+ 1

)
eik

3〈x,ξ〉∂ψk
∂x2

,

and
∥∥fk2

∥∥
L2(Ω)

≤
Const

k3

∥∥∥∥
∂ψk
∂x2

∥∥∥∥
L2(Ω)

→
k→∞

0.

In a similar way we have

fk3 = −λ0u
k
3 +Nuk4 +

∂qk

∂x3
=

= (−λ0η3 +Nη4 + ξ3) e
ik3〈x,ξ〉ψk −

i

k3

(
λ0η3
ξ3

+ 1

)
eik

3〈x,ξ〉∂ψk
∂x3

=

= −
i

k3

(
λ0η3
ξ3

+ 1

)
eik

3〈x,ξ〉∂ψk
∂x3

,

and thus
∥∥fk3

∥∥
L2(Ω)

≤
Const

k3

∥∥∥∥
∂ψk
∂x3

∥∥∥∥
L2(Ω)

→
k→∞

0.

For the fourth component we have the expression

fk4 = −Nuk3 − λ0q
k =

= (−λ0η4 −Nη3) e
ik3〈x,ξ〉ψk −

i

k3

Nη3
ξ3

eik
3〈x,ξ〉 ∂ψk

∂x3
=

= −
i

k3

Nη3
ξ3

eik
3〈x,ξ〉∂ψk

∂x3
,
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which is followed by the estimate

∥∥fk4
∥∥
L2(Ω)

≤
Const

k3

∥∥∥∥
∂ψk
∂x3

∥∥∥∥
L2(Ω)

→
k→∞

0.

To evaluate fk5 , we use the last equation of (3.2)

ξ1η1 + ξ2η2 + ξ3η3 = 0,

which leads to

fk5 = div
−→
uk − λ0q

k =

=
i

k3
eik

3〈x,ξ〉


λ0ψk +

3∑

j=1

ηj
ξj

∂2ψk
∂x2

j


 .

Finally, we obtain the estimate

∥∥fk5
∥∥
L2(Ω)

≤
C1

k3
+
C2

k
→
k→∞

0. (3.5)

We have verified that for λ ∈ (−iN, iN) \ {0} the functions defined by (3.3)
actually represent a Weyl sequence. Since the essential spectrum is a closed
set, the points λ = 0, λ = ±iN , belong to it.

It was proved in [13] that the essential spectrum of the operator M is equal
to Q ∪ S, where

Q = {λ ∈ C : (M − λI) is not elliptic in sense of Douglis-Nirenberg}

and

S =

{
λ ∈ C \Q : the boundary conditions of the operator (M − λI)

do not satisfy Lopatinsky conditions

}
.

We have seen that for λ /∈ [−iN, iN ] the system M − λI is elliptic in sense
of Douglis-Nirenberg. Let us prove that, for this case, the boundary condition
−→u · −→n |∂Ω = 0 satisfy Lopatinsky conditions.

Here we remind that the Lopatinsky conditions (see [13]) consist of the linear
independence of the rows of the matrix

G
(
x, ξ̃, τ

)
L̂

(
ξ̃, τ

)

with respect to the module M+
(
ξ̃, τ

)
, for

∣∣∣ξ̃
∣∣∣ 6= 0.

Here x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3), ξ̃ = (ξ1, ξ2), L̂0 (ξ) is the matrix of the
algebraic complements of the main symbol matrix L0 (ξ), G (x, ξ) is the symbol

of the matrix G (x,D) which defines the boundary conditions, M+
(
ξ̃, τ

)
=

∏ (
τ − τj

(
ξ̃
))

, τj

(
ξ̃
)

are the roots of the equation detL
(
ξ̃, τ

)
= 0 with

positive imaginary part.
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Since λ /∈ [−iN, iN ], then we can introduce the parameter a 6= 0 as

a2 =

(
λ2 +N2

λ2

)
,

so that the equation detL (ξ) = 0 takes the form

a2 |ξ′|
2

+ ξ23 = 0. (3.6)

In the upper half of the complex plane, the equation has only one root

τ = ia |ξ′| .

Let us choose a local system of coordinates so that ξ1 = 1, ξ2 = 0.
Then, we have

M+
(
ξ̃, τ

)
= τ − ia ,

L0(τ) =




−λ 0 0 0 1
0 −λ 0 0 0
0 0 −λ N τ
0 0 −N −λ 0
1 0 τ 0 0




,

L̂0(τ) =




−λ2τ2 0 λ2τ −λNτ λ
(
λ2 +N2

)

0 −λ2
(
1 + τ2

)
−N2 0 0 0

λ2τ 0 −λ2 λN λ2τ

λNτ 0 −Nλ −λ2
(
1 + τ2

)
λ2Nτ

λ
(
λ2 +N2

)
0 λ3τ −λ2Nτ λ2

(
λ2 +N2

)


 .

If we write the boundary conditions in form

G (−→u , p)|∂Ω = 0

we obtain immediately that

G = (n1, n2, n3, 0, 0) .

and G is a vector row. Since L̂0(τ) is a matrix whose size is 5× 5, then GL̂(τ)
is a row with five components. In other terms, the Lopatinsky condition is
satisfied, which completes the proof. �X

Now, let us consider the system (2.2) in Ω = R3. For the normal vibrations
problem we have the system

(M∗ − λI) ũ = 0,

where the matrix M∗ is the same matrix M, and the domain of M∗ is defined
as

D (M∗) =

{ −→u ∈ L2

(
R3

) ∣∣∃f ∈ L2

(
R3

)
:

(−→u ,∇ϕ) = (f, ϕ) ∀ϕ ∈ W 2
2

(
R3

)
}
×W 2

2

(
R3

)
×W 2

2

(
R3

)
.

Theorem 3.2. The essential spectrum of the operator M ∗ is the whole imag-

inary axis. Moreover, the points λ such that λ /∈ [−iN, iN ], belong to the

continuous spectrum of the operator M ∗.
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Proof. Let λ ∈ [−iN, iN ]. We note first that, due to the inclusion theorem
W 2

2

(
R3

)
→ C

(
R3

)
, for all ϕ ∈ W 2

2

(
R3

)
we have the property: lim

|x|→∞
ϕ (x) = 0.

Thus, for every ϕ1, ϕ2 ∈W 2
2

(
R3

)
the integration by parts is valid:

∫

R3

∂ϕ1

∂xj
ϕ2dx = −

∫

R3

∂ϕ2

∂xj
ϕ1dx.

Therefore, by Lemma 3.1 we obtain the skew-selfadjointness for the operator
M∗, and, using the same Weyl sequence as in Theorem 3.1, we have that
λ ∈ [−iN, iN ] belongs to the essential spectrum.

It is easy to see that the system (2.2) is equivalent to the scalar equation

∂2u

∂x2
1

+
∂2u

∂x2
2

+
λ2

λ2 +N2

∂2u

∂x2
3

− λ2u = 0. (3.7)

Now, let us consider λ ∈ (−i∞,−iN) ∪ (iN, i∞). In this case, the equation
(3.7) is elliptic. Thus, changing the scale in x3, we can perform the equation
(3.7) as

∆u− λ2u = 0.

From [7], [22] we have that the continuous spectrum of the Laplace operator
acting in W 2

2

(
R3

)
, is composed if the points λ2 ∈ (−∞, 0]. Thus, the points

λ ∈ (−i∞, i∞) form the continuous spectrum of the differential operator in
(3.7) when it is equivalent to the Laplace operator, in other terms, when λ ∈
(−i∞,−iN)∪ (iN, i∞). Finally, we have that the points λ ∈ [−iN, iN ] belong
to the essential spectrum of M∗, and the points λ ∈ (−i∞,−iN) ∪ (iN, i∞)

belong to the continuous spectrum of M∗, and thus the Theorem is proved. �X
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