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Resumen. En este art́ıculo introducimos y estudiamos propiedades topológicas

de λ-derivada, λ-borde, λ-frontera y λ-exterior de un conjunto usando el con-

cepto de λ-conjunto abierto. Presentamos un nuevo estudio de axiomas de

separación usando las nociones de operador λ-abierto y λ-clausura.
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1. Introduction

Maki [12] introduced the notion of Λ-sets in topological spaces. A Λ-set is
a set A which is equal to its kernel(= saturated set), i.e. to the intersection
of all open supersets of A. Arenas et al. [1] introduced and investigated the
notion of λ-closed sets and λ-open sets by involving Λ-sets and closed sets.
This enabled them to obtain some nice results. In this paper, for these sets,
we introduce the notions of λ-derived, λ-border, λ-frontier and λ-exterior of
a set and show that some of their properties are analogous to those for open
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sets. Also, we give some additional properties of λ-closure. Moreover, we offer
and study new separation axioms by utilizing the notions of λ-open sets and
λ-closure operator.

Throughout this paper we adopt the notations and terminology of [12] and
[1] and the following conventions: (X, τ), (Y, σ) and (Z, ν) (or simply X , Y
and Z) will always denote spaces on which no separation axioms are assumed
unless explicitly stated.

Definition 1. Let B be a subset of a space (X, τ). B is a Λ-set (resp. V -set)
[12] if B = BΛ (resp. B = BV ), where:

BΛ =
⋂

{U | U ⊃ B, U ∈ τ} and BV =
⋃

{F | B ⊃ F, F c ∈ τ} .

Theorem 1.1 ([12]). Let A, B and {Bi | i ∈ I} be subsets of a space (X, τ).
Then the following properties are valid:

a) B ⊂ BΛ.
b) If A ⊂ B then AΛ ⊂ BΛ.
c) BΛΛ = BΛ.

d)

(

⋃

i∈I

Bi

)Λ

=
⋃

i∈I

BΛ
i .

e) If B ∈ τ , then B = BΛ (i.e. B is a Λ-set).

f) (Bc)
Λ

=
(

BV
)c

.

g) BV ⊂ B.
h) If Bc ∈ τ , then B = BV (i.e. B is a V -set).

i)

(

⋂

i∈I

Bi

)Λ

⊂
⋂

i∈I

BΛ
i .

j)

(

⋃

i∈I

Bi

)V

⊃
⋃

i∈I

BV
i .

k) If Bi is a Λ-set (i ∈ I), then
⋃

i∈I

Bi is a Λ-set.

l) If Bi is a Λ-set (i ∈ I), then
⋂

i∈I

Bi is a Λ-set.

m) B is a Λ-set if and only if Bc is a V -set.
n) The subsets ∅ and X are Λ-sets.

2. Applications of λ-closed sets and λ-open sets

Definition 2. A subset A of a space (X, τ) is called λ-closed [1] if A = B ∩C,
where B is a Λ-set and C is a closed set.

Lemma 2.1. For a subset A of a space (X, τ), the following statements are
equivalent [1]:
(a) A is λ-closed.
(b) A = L ∩ Cl(A), where L is a Λ-set.
(c) A = AΛ ∩ Cl(A).
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Lemma 2.2. Every Λ-set is a λ-closed set.

Proof. Take A ∩ X , where A is a Λ-set and X is closed. �X

Remark 2.3. [1]. Since locally closed sets and λ-sets are concepts independent
of each other, then a λ-closed set need not be locally closed or be a Λ-set.
Moreover, in each T0 non-T1 space there are singletons which are λ-closed but
not a Λ-set.

Definition 3. A subset A of a space (X, τ) is called λ-open if Ac = X\A is
λ-closed.

We denote the collection of all λ-open (resp. λ-closed) subsets of X by
λO(X) or λO(X, τ) (resp. λC(X) or λC(X, τ)). We set λO(X, x) = {V ∈
λO(X) | x ∈ V } for x ∈ X . We define similarly λC(X, x).

Theorem 2.4. The following statements are equivalent for a subset A of a
topological space X:
(a) A is λ-open.
(b) A = T ∪ C, where T is a V -set and C is an open set.

Lemma 2.5. Every V -set is λ-open.

Proof. Take A = A ∪ ∅, where A is V -set, X is Λ-set and ∅ = X\X . �X

Definition 4. Let (X, τ) be a space and A ⊂ X. A point x ∈ X is called
λ-cluster point of A if for every λ-open set U of X containing x, A ∩ U 6= ∅.
The set of all λ -cluster points is called the λ-closure of A and is denoted by
Clλ(A).

Lemma 2.6. Let A, B and Ai (i ∈ I) be subsets of a topological space (X, τ).
The following properties hold:
(1) If Ai is λ-closed for each i ∈ I, then ∩i∈IAi is λ-closed.
(2) If Ai is λ-open for each i ∈ I, then ∪i∈IAi is λ-open.
(3) A is λ-closed if and only if A = Clλ(A).
(4) Clλ(A) = ∩{F ∈ λC(X, τ) | A ⊂ F}.
(5) A ⊂ Clλ(A) ⊂ Cl(A).
(6) If A ⊂ B, then Clλ(A) ⊂ Clλ(B).
(7) Clλ(A) is λ-closed.

Proof. (1) It is shown in [1], 3.3
(2) It is an immediate consequence of (1).
(3) Straightforward.
(4) Let H =

⋂

{F | A ⊂ F, F is λ-closed}. Suppose that x ∈ H . Let U be a
λ-open set containing x such that A

⋂

U = ∅. And so, A ⊂ X\U . But X\U
is λ-closed and hence Clλ(A) ⊂ X\U . Since x /∈ X\U , we obtain x /∈ Clλ(A)
which is contrary to the hypothesis.

On the other hand, suppose that x ∈ Clλ(A), i.e., that every λ-open set of
X containing x meets A. If x /∈ H , then there exists a λ-closed set F of X
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such that A ⊂ F and x /∈ F . Therefore x ∈ X\F ∈ λO(X). Hence X\F is a
λ-open set of X containing x, but (X\F )

⋂

A = ∅. But this is a contradiction
and thus the claim.
(5) It follows from the fact that every closed set is λ–closed.

�X

In general the converse of 2.6(5) may not be true.

Example 2.7. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}. Then Cl ({a}) =
{a, c} 6⊂ Clλ ({a}) = {a}.

Definition 5. Let A be a subset of a space X. A point x ∈ X is said to be
λ-limit point of A if for each λ-open set U containing x, U ∩ (A\{x}) 6= ∅. The
set of all λ-limit points of A is called a λ-derived set of A and is denoted by
Dλ(A).

Theorem 2.8. For subsets A, B of a space X, the following statements hold:

(1) Dλ(A) ⊂ D(A) where D(A) is the derived set of A.
(2) If A ⊂ B, then Dλ(A) ⊂ Dλ(B).
(3) Dλ(A) ∪ Dλ(B) ⊂ Dλ(A ∪ B) and Dλ(A ∩ B) ⊂ Dλ(A) ∩ Dλ(B).
(4) Dλ (Dλ(A)) \A ⊂ Dλ(A).
(5) Dλ(A ∪ Dλ(A)) ⊂ A ∪ Dλ(A).

Proof. (1) It suffices to observe that every open set is λ-open.
(3) it is an immediate consequence of (2).
(4) If x ∈ Dλ(Dλ(A))\A and U is a λ -open set containing x, then U ∩
(Dλ(A)\{x}) 6= ∅. Let y ∈ U ∩ (Dλ(A)\{x}). Then since y ∈ Dλ(A) and
y ∈ U , U ∩ (A\{y}) 6= ∅. Let z ∈ U ∩ (A\{y}). Then z 6= x for z ∈ A and
x /∈ A. Hence U ∩ (A\{x}) 6= ∅. Therefore x ∈ Dλ(A).
(5) Let x ∈ Dλ(A ∪ Dλ(A)). If x ∈ A, the result is obvious. So let x ∈
Dλ(A∪Dλ(A))\A, then for λ-open set U containing x, U∩(A∪Dλ(A)\{x}) 6= ∅.
Thus U ∩ (A\{x}) 6= ∅ or U ∩ (Dλ(A)\{x}) 6= ∅. Now it follows from (4) that
U ∩ (A\{x}) 6= ∅. Hence x ∈ Dλ(A). Therefore, in any case Dλ(A∪Dλ(A)) ⊂
A ∪ Dλ(A). �X

In general the converse of (1) may not be true and the equality does not
hold in (3) of Theorem 2.8.

Example 2.9. Let X = {a, b, c} with topology τ = {∅, {a}, {a}, X}. Thus
λO(X, τ) = {∅, {a}, {c}, {a, b}, {a, c}, {b, c}, X}. Take:

(i) A = {a}. We obtain D(A) 6⊆ Dλ(A).
(ii) C = {a} and E = {b, c}. Then Dα(C ∪ E) 6= Dα(C) ∪ Dα(E).

Theorem 2.10. For any subset A of a space X, Clλ(A) = A ∪ Dλ(A).

Proof. Since Dλ(A) ⊂ Clλ(A), A ∪ Dλ(A) ⊂ Clλ(A). On the other hand,
let x ∈ Clλ(A). If x ∈ A, then the proof is complete. If x /∈ A, then each
λ-open set U containing x intersects A at a point distinct from x. Therefore
x ∈ Dλ(A). Thus Clλ(A) ⊂ A ∪ Dλ(A) which completes the proof. �X
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Definition 6. A point x ∈ X is said to be a λ-interior point of A if there
exists a λ-open set U containing x such that U ⊂ A. The set of all λ-interior
points of A is said to be λ-interior of A and is denoted by Intλ(A).

Theorem 2.11. For subsets A, B of a space X, the following statements are
true:
(1) Intλ(A) is the largest λ-open set contained in A.
(2) A is λ-open if and only if A = Intλ(A).
(3) Intλ(Intλ(A)) = Intλ(A).
(4) Intλ(A) = A\Dλ(X\A).
(5) X\Intλ(A) = Clλ(X\A).
(6) X\Clλ(A) = Intλ(X\A).
(7) A ⊂ B, then Intλ(A) ⊂ Intλ(B).
(8) Intλ(A) ∪ Intλ(B) ⊂ Intλ(A ∪ B).
(9) Intλ(A) ∩ Intλ(B) ⊃ Intλ(A ∩ B).

Proof. (4) If x ∈ A\Dλ(X\A), then x /∈ Dλ(X\A) and so there exists a λ-open
set U containing x such that U ∩ (X\A) = ∅. Then x ∈ U ⊂ A and hence
x ∈ Intλ(A), i.e., A\Dλ(X\A) ⊂ Intλ(A). On the other hand, if x ∈ Intλ(A),
then x /∈ Dλ(X\A) since Intλ(A) is λ-open and Intλ(A) ∩ (X\A) = ∅. Hence
Intλ(A) = A\Dλ(X\A).

(5) X\Intλ(A) = X\(A\Dλ(X\A)) = (X\A) ∪ Dλ(X\A) = Clλ(X\A). �X

Definition 7. bλ(A) = A\Intλ(A) is said to be the λ-border of A.

Theorem 2.12. For a subset A of a space X, the following statements hold:
(1) bλ(A) ⊂ b(A) where b(A) denotes the border of A.
(2) A = Intλ(A) ∪ bλ(A).
(3) Intλ(A) ∩ bλ(A) = ∅.
(4) A is a λ-open set if and only if bλ(A) = ∅.
(5) bλ(Intλ(A)) = ∅.
(6) Intλ(bλ(A)) = ∅.
(7) bλ(bλ(A)) = bλ(A).
(8) bλ(A) = A ∩ Clλ(X\A).
(9) bλ(A) = Dλ(X\A).

Proof. (6) If x ∈ Intλ(bλ(A)), then x ∈ bλ(A). On the other hand, since
bλ(A) ⊂ A, x ∈ Intλ(bλ(A)) ⊂ Intλ(A). Hence x ∈ Intλ(A) ∩ bλ(A) which
contradicts (3). Thus Intλ(bλ(A)) = ∅.
(8) bλ(A) = A\Intλ(A) = A\(X\Clλ(X\A)) = A ∩ Clλ(X\A).

(9) bλ(A) = A\Intλ(A) = A\(A\Dλ(X\A)) = Dλ(X\A). �X

Definition 8. Frλ(A) = Clλ(A)\Intλ(A) is said to be the λ-frontier of A.

Theorem 2.13. For a subset A of a space X, the following statements are
hold:
(1) Frλ(A) ⊂ Fr(A) where Fr(A) denotes the frontier of A.
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(2) Clλ(A) = Intλ(A) ∪ Frλ(A).
(3) Intλ(A) ∩ Frλ(A) = ∅.
(4) bλ(A) ⊂ Frλ(A).
(5) Frλ(A) = bλ(A) ∪ Dλ(A).
(6) A is a λ-open set if and only if Frλ(A) = Dλ(A).
(7) Frλ(A) = Clλ(A) ∩ Clλ(X\A).
(8) Frλ(A) = Frλ(X\A).
(9) Frλ(A) is λ-closed.
(10) Frλ(Frλ(A)) ⊂ Frλ(A).
(11) Frλ(Intλ(A)) ⊂ Frλ(A).
(12) Frλ(Clλ(A)) ⊂ Frλ(A).
(13) Intλ(A) = A\Frλ(A).

Proof. (2) Intλ(A) ∪ Frλ(A) = Intλ(A) ∪ (Clλ(A)\Intλ(A)) = Clλ(A).
(3) Intλ(A) ∩ Frλ(A) = Intλ(A) ∩ (Clλ(A)\Intλ(A)) = ∅.
(5) Since Intλ(A) ∪ Frλ(A) = Intλ(A) ∪ bλ(A) ∪ Dλ(A); Frλ(A) = bλ(A) ∪
Dλ(A).
(7) Frλ(A) = Clλ(A)\Intλ(A) = Clλ(A) ∩ Clλ(X\A).
(9) Clλ(Frλ(A)) = Clλ(Clλ(A)∩Clλ(X\A)) ⊂ Clλ(Clλ(A))∩Clλ(Clλ(X\A)) =
Frλ(A). Hence Frλ(A) is λ-closed.
(10) Frλ(Frλ(A)) = Clλ(Frλ(A))∩Clλ(X\Frλ(A)) ⊂ Clλ(Frλ(A)) = Frλ(A).
(12) Frλ(Clλ(A)) = Clλ(Clλ(A))\Intλ(Clλ(A)) = Clλ((A))\Intλ(Clλ(A)) =
Clλ(A)\Intλ(A) = Frλ(A).

(13) A\Frλ(A) = A\(Clλ(A)\Intλ(A)) = Intλ(A). �X

The converses of (1) and (4) of the Theorem 2.13 are not true in general as
are shown by Example 2.14.

Example 2.14. Consider the topological space (X, τ) given in Example 2.7 .
If A = {a}. Then Fr(A) 6⊆ Frλ(A) and if B = {a, c}, then Frλ(B) 6⊆ bλ(B).

Recall that a function f : (X, τ) → (Y, σ) is said to be λ-continuous [1] if
f−1(V ) ∈ λC(X) for every closed subset V of Y .

Theorem 2.15. For a function f : X → Y , the following are equivalent:
(1) f is λ-continuous;
(2) for every open subset V of Y, f−1(V ) ∈ λO(X);
(3) for each x ∈ X and each V ∈ O(Y, f(x)), there exists U ∈ λO(X, x) such
that f(U) ⊂ V .

Proof. (1) → (2) : This follows from f−1(Y \V ) = X\f−1(V ).
(1) → (3) : Let V ∈ O(Y ) and f(x) ∈ V . Since f is λ-continuous f−1(V ) ∈
λO(X) and x ∈ f−1(V ). Put U = f−1(V ). Then x ∈ U and f(U) ⊂ V .
(3) → (1) : Let V be an open set of Y and x ∈ f−1(V ). Then f(x) ∈ V .
Therefore by (3) there exists a Ux ∈ λO(X) such that X ∈ Ux and f(Ux) ⊂ V .
Therefore X ∈ Ux ⊂ f−1(V ). This implies that f−1(V ) is a union of λ-open

sets of X . Consequently f−1(V ) ⊂ λO(X). Hence f is λ-continuous. �X
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In the following theorem ]Λ.c. denotes the set of points x of X for which a
function f : (X, τ) → (Y, σ) is not λ-continuous.

Theorem 2.16. ]Λ.c. is identical with the union of the λ-frontiers of the
inverse images of λ-open sets containing f(x).

Proof. Suppose that f is not λ-continuous at a point x of X . Then there exists
an open set V ⊂ Y containing f(x) such that f(U) is not a subset of V for
every U ∈ λO(X) containing x. Hence we have U ∩

(

X \ f−1(V )
)

6= ∅ for every

U ∈ λO(X) containing x. It follows that x ∈ Clλ
(

X \ f−1(V )
)

. We also have

x ∈ f−1(V ) ⊂ Clλ
(

f−1(V )
)

. This means that x ∈ Frλ

(

f−1(V )
)

.
Now, let f be λ-continuous at x ∈ X and V ⊂ Y be any open set containing
f(x). Then x ∈ f−1(V ) is a λ-open set of X . Thus x ∈ Intλ(f−1(V )) and

therefore x /∈ Frλ

(

f−1(V )
)

for every open set V containing f(x). �X

Definition 9. Extλ(A) = Intλ(X\A) is said to be a λ-exterior of A.

Theorem 2.17. For a subset A of a space X, the following statements are
hold:
(1) Ext(A) ⊂ Extλ(A) where Ext(A) denotes the exterior of A.
(2) Extλ(A) is λ-open.
(3) Extλ(A) = Intλ(X\A) = X\Clλ(A).
(4) Extλ(Extλ(A)) = Intλ(Clλ(A)).
(5) If A ⊂ B, then Extλ(A) ⊃ Extλ(B).
(6) Extλ(A ∪ B) ⊂ Extλ(A) ∪ Extλ(B).
(7) Extλ(A ∩ B) ⊃ Extλ(A) ∩ Extλ(B).
(8) Extλ(X) = ∅.
(9) Extλ(∅) = X.
(10) Extλ(A) = Extλ(X\Extλ(A)).
(11) Intλ(A) ⊂ Extλ(Extλ(A)).
(12) X = Intλ(A) ∪ Extλ(A) ∪ Frλ(A).

Proof. (4) Extλ(Extλ(A)) = Extλ(X\Clλ(A)) = Intλ(X\(X\Clλ(A))) =
Intλ(Clλ(A)).
(10) Extλ(X\Extλ(A)) = Extλ(X\Intλ(X\A)) = Intλ(X\(X\Intλ(X\A))) =
Intλ(Intλ(X\A)) = Intλ(X\A) = Extλ(A).
(11) Intλ(A) ⊂.Intλ(Clλ(A)) = Intλ(X\Intλ(X\A)) = Intλ(X\Extλ(A)) =

Extλ(Extλ(A)). �X

Example 2.18. Consider the topological space (X, τ) given in Example 2.7.
Hence, if A = {a} and B = {b}, Then Extλ(A) 6⊆ Ext(A), Extλ(A ∩ B) 6=
Extλ(A) ∩ Extλ(B) and Extλ(A ∪ B) 6= Extλ(A) ∪ Extλ(B).

3. Some new separation axioms

We recall with the following notions which will be used in the sequel:
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362 MIGUEL CALDAS, SAEID JAFARI & GOVINDAPPA NAVALAGI

A space (X, τ) is said to be R0 [3] (resp. λ-R0 [2]) if every open set contains
the closure of each of its singletons. A space (X, τ) is said to be R1 [3] (resp.
λ-R1 [2]) if for x, y in X with Cl({x}) 6= Cl({y}), there exist disjoint open sets
U and V such that Cl({x}) is a subset of U and Cl({y}) is a subset of V. A
space is T0 if for x, y ∈ X such that x 6= y there exists a open set U of X
containing x but not y or an open set V of X containing y but not x. A space
(X, τ) is T1 if to each pair of distinct points x and y of X , there exists a pair
of open sets one containing x but not y and the other containing y but not x.
A space is (X, τ) is T2 if to each pair of distinct points x and y of X, there
exists a pair of disjoint open sets, one containing x and the other containing y.
Recall that a space (X, τ) is called a T 1

2

-space [11] if every generalized closed

subset of X is closed or equivalently if every singleton is open or closed [6]. In
[1], Arenas et al. have shown that a space (X, τ) is called a T 1

2

-space if and

only if every subset of X is λ-closed.

Definition 10. Let X be a space. A subset A ⊂ X is called a λ-Difference set
(in short λ-D-set) if there are two λ-open sets U , V in X such that U 6= X
and A = U \ V .

It is true that every λ-open set U 6= X is a λ-D-set since U = U \ ∅.

Definition 11. A space (X, τ) is said to be:

(i) λ-D0 (resp. λ-D1) if for x, y ∈ X such that x 6= y there exists a λ-D-
set of X containing x but not y or (resp. and) a λ-D-set containing y
but not x.

(ii) A topological space (X, τ) is λ-D2 if for x, y ∈ X such that x 6= y there
exist disjoint λ-D-sets G and E such that x ∈ G and y ∈ E.

(iii) λ-T0 (resp. λ-T1) if for x, y ∈ X such that x 6= y there exists a λ-open
set U of X containing x but not y or (resp. and) a λ-open set V of X
containing y but not x.

(iv) λ-T2 if for x, y ∈ X such that x 6= y there exist disjoint λ-open sets U
and V such that x ∈ U and y ∈ V .

Remark 3.1.

(i) If (X, τ) is λ-Ti, then it is λ-Ti−1, i = 1, 2.
(ii) Obviously, if (X, τ) is λ-Ti, then (X, τ) is λ-Di, i = 0, 1, 2.
(iii) If (X, τ) is λ-Di, then it is λ-Di−1, i = 1, 2.

Theorem 3.2. For a space (X, τ) the following statements are true:
(1) (X, τ) is λ-D0 if and only if (X, τ) is λ-T0.
(2) (X, τ) is λ-D1 if and only if , (X, τ) is λ-D2.

Proof. The sufficiency for (1) and (2) follows from the Remark 3.1.
Necessity condition for (1). Let (X, τ) be λ-D0 so that for any distinct pair of
points x and y of X at least one belongs to a λ-D set O. Therefore we choose
x ∈ O and y /∈ O. Suppose O = U \ V for which U 6= X and U and V are
λ-open sets in X . This implies that x ∈ U . For the case that y /∈ O we have
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(i) y /∈ U , (ii) y ∈ U and y ∈ V . For (i), the space X is λ-T0 since x ∈ U and
y /∈ U . For (ii), the space X is also λ-T0 since y ∈ V but x /∈ V .

The necessity condition for (2). Suppose that X is λ-D1. It follows from
the definition that for any distinct points x and y in X there exist λ-D sets G
and E such that G containing x but not y and E containing y but not x. Let
G = U \ V and E = W \ D, where U, V, W and D are λ-open sets in X . By
the fact that x /∈ E, we have two cases, i.e. either x /∈ W or both W and D
contain x. If x /∈ W , then from y /∈ G either (i) y /∈ U or(ii) y ∈ U and y ∈ V .
If (i) is the case, then it follows from x ∈ U \V that x ∈ U \ (V ∪W ), and also
it follows from y ∈ W \ D that y ∈ (U ∪ D). Thus we have U \ (V ∪ W ) and
W \ (U ∪ D) which are disjoint. If (ii) is the case, it follows that x ∈ U \ V
and y ∈ V since y ∈ U and y ∈ V . Therefore (U \ V ) ∩ V = ∅. If x ∈ W and
x ∈ D, we have y ∈ W \ D and x ∈ D. Hence (W \ D) ∩ D = ∅. This shows

that X is λ-D2. �X

Theorem 3.3. If (X, τ) is λ-D1, then it is λ-T0.

Proof. Remark 3.1(iii) and Theorem 3.2. �X

We give an example which shows that the converse of Theorem 3.3 is false.

Example 3.4. Let X = {a, b} with topology τ = {∅, {a}, X}. Then (X, τ) is
λ-T0, but not λ-D1 since there is not a λ-D-set containing a but not b.

Example 3.5. Let X = {a, b, c, d} with topology τ = {∅, {c}, {b}, {b, c}, {b, c, d},
X}. Then we have that {a}, {a, d}, {a, b, d} and {a, c, d} are λ-open and (X, τ)
is a λ-D1, since {a}, {b} = {a, b, d}\{a, d}, {c} = {a, c, d}\{a, d}, {d} =
{a, d}\{a}. But (X, τ) is not λ-T2.

Example 3.6.

(1) As a consequence of the Example 3.4, we obtain that (X, τ) is λ-T0, but not
λ-T1.
(2) As a consequence of the Example 3.5, we obtain that (X, τ) is λ-T0, but not
λ-T2.

A subset Bx of a space X is said to be a λ-neighbourhood of a point x ∈ X
if and only if there exists a λ-open set A such that x ∈ A ⊂ Bx.

Definition 12. Let x be a point in a space X. If x does not have a λ−neigh-
borhood other than X, then we call x a λ-neat point. neigtbourhood

Theorem 3.7. For a λ-T0 space (X, τ) the following are equivalent:
(1) (X, τ) is λ-D1;
(2) (X, τ) has no λ-neat point.

Proof. (1) → (2) : If X is λ-D1 then each point x ∈ X belongs to a λ-D-set
A = U\V ; hence x ∈ U. Since U 6= X , thus x is not a λ-neat point.
(2) → (1) : If X is λ-T0, then for each distinct pair of points x, y ∈ X , at
least one of x, y, say x has a λ -neighborhood U such that x ∈ U and y /∈ U.
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Hence U 6= X is a λ-D-set. If X does not have a λ-neat point, then y is not
a λ-neat point. So there exists a λ-neighbourhood V of y such that V 6= X .
Now y ∈ V \U , x /∈ V \U and V \U is a λ-D-set. Therefore X is λ-D1. �X

Corollary 3.8. A λ-T0 space X is not λ-D1 if and only if there is a unique
λ-neat point in X.

Proof. We only prove the uniqueness of the λ-neat point. If x and y are two
λ-neat points in X , then since X is λ-T0, at least one of x and y, say x, has a
λ-neighborhood U such that x ∈ U, y /∈ U. Hence U 6= X . Therefore x is not a
λ-neat point which is a contradiction. �X

Theorem 3.9. A space X is λ-T0 if and only if for each pair of distinct points
x, y of X, Clλ({x}) 6= Clλ({y}).

Proof. Sufficiency. Suppose that x, y ∈ X , x 6= y and Clλ({x}) 6= Clλ({y}).
Let z be a point of X such that z ∈ Clλ({x}) but z /∈ Clλ({y}). We claim
that x /∈ Clλ({y}). For, if x ∈ Clλ({y}), then Clλ({x}) ⊂ Clλ({y}). This
contradicts the fact that z /∈ Clλ({y}). Consequently x belongs to the λ-open
set [Clλ({y})]c to which y does not belong.
Necessity. Let X be a λ-T0 space and x, y be any two distinct points of X .
There exists a λ-open set G containing x or y, say x but not y. Then Gc

is a λ-closed set which does not contain x but contains y. Since Clλ({y}) is
the smallest λ-closed set containing y (Lemma 2.6), Clλ({y}) ⊂ Gc, and so

x /∈ Clλ({y}). Consequently Clλ({x}) 6= Clλ({y}). �X

Theorem 3.10. A space X is λ-T1 if and only if the singletons are λ-closed
sets.

Proof. Suppose X is λ-T1 and x is any point of X . Let y ∈ {x}c. Then x 6= y.
So there exists a λ-open set Ay such that y ∈ Ay but x/∈ Ay. Consequently
y ∈ Ay ⊂ {x}c i.e., {x}c =

⋃

{Ay/y ∈ {x}c} which is λ -open.
Conversely, let x, y ∈ X with x 6= y. Now x 6= y implies y ∈ {x}c. Hence{x}c is
a λ-open set containing y but not x. Similarly {y}c is a λ-open set containing

x but not y. Accordingly X is a λ-T1 space. �X

Theorem 3.11. A topological space X is λ-T1 if and only if X is T0.

Proof. This is proved by Theorem 3.10 and [1][Theorem 2.5.] �X

Example 3.12. The Khalimsky line or the so-called digital line ([8], [9]) is the
set of the integers, Z, equipped with the topology Ķ, having {{2n− 1, 2n, 2n +
1} : n ∈ Z} as a subbase. This space is of great importance in the study
of applications of point-set topology to computer graphics. In the digital line
(Z, Ķ), every singleton is open or closed, that is, the digital line is T0. Thus by
Theorem 3.11, the digital line is λ-T1 which is not T1.

Remark 3.13. From Example 3.4, Example 3.5, Example 3.6 and Example
3.12 we have the following diagram:

Volumen 41, Número 2, Año 2007



MORE ON λ-CLOSED SETS 365

λ-T0

↑ ↖
λ-T1 → λ-D1

↑ ↗
λ-T2

(1) T1 =⇒ λ-T1 and T2 =⇒ λ-T2. The converses are not true:

Example 3.14. Let (X, τ) be a topological space such that X = {a, b, c}
and τ = {∅, {a}, {a, b}, X}. Then we have that

λO(X, τ) = {∅, {a}, {c}, {a, b}, {a, c}, {b, c}, X} .

Therefore:
(i) (X, τ) is λ-T1 but it is not T1. (see also as another example the

Khalimsky line i.e., the digital line which is given in Example
3.12).

(ii) (X, τ) is λ-T2 but it is not T2.

(2) T0 implies λ-T0 But the converse is not true as it is shown in the
following example.

Example 3.15. Let X = {a, b} with topology τ = {∅, {a}, X}. Then
(X, τ) is λ-T0. Observe that (X, τ) is not T0.

(3) λ-T1 implies λ-T0 and λ-T2 implies λ-T0. The converses are not true
(Example 3.6).

(4) λ-R1 implies λ-R0. The converse is not true (Example 3.15).
(5) λ-T1 does not imply R0 and λ-T0 does not imply R0. (Example 3.14).
(6) R1 implies R0 [3]. The converse is not true as it is shown by the

following example.

Example 3.16. Let X = {a, b} with indiscrete topology τ . Then (X, τ)
is R0 but it is not R1.

(7) (i) λ-R0 6=⇒ R0 and (ii) λ-R1 6=⇒ R1 (Example 3.14).
(8) (8) (i) T 1

2

implies T0 which is equivalent with λ-T1 (see Theorem 3.11)

and (ii) T 1

2

implies λ-T 1

2

. The converses are not true. For case (i), it is

well known and for case (ii), it follows form the fact that every λ-T1 is
λ-T 1

2

(where a topological space is λ-T 1

2

[2] if every singleton is λ-open

or λ-closed).
(9) λ-T1 6=⇒ T 1

2

. It is shown in the following example.

Example 3.17. [[1][Example 3.2]] Let X be the set of non-negative
integers with the topology whose open sets are those which contain 0 and
have finite complement. This space is not T 1

2

, but it is T0 is equivalent

with λ-T1 (see Theorem 3.11). Therefore also λ-T 1

2

does not imply T 1

2

.
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(10) X is a T 1

4

-space [1] if and only if every finite subset of X is λ-closed.

We see that T 1

4

-space is strictly placed between T 1

2

and λ-T1. On the

other hand, the space X = {a, b, c} with τ = {∅, {a}, {a, b}, X} is λ-T1

but not T 1

4

. Example 3.17 is a example of a space T 1

4

which is not T 1

2

.

In what follows, we refer the interested reader to [10] for the basic definitions
and notations. Recall that a representation of a C∗-algebra A consists of a
Hilbert space H and a ∗-morphism π : A −→ B(H), where B(H) is the C∗-
algebra of bounded operators on H. A subspace I of a C∗-algebra A is called
a primitive ideal if A= ker(π) for some irreducible representation (H, π) of A.
The set of all primitive ideals of a C∗-algebra A plays a very important role in
noncommutative spaces and its relation to particle physics. We denote this set
by Prim A. As Landi [10] mentions, for a noncommutative C∗-algebra, there
is more than one candidate for the analogue of the topological space X :

1. The structure space of A or the space of all unitary equivalence classes
of irreducible ∗-representations and

2. The primitive spectrum of A or the space of kernels of irreducible ∗-
representations which is denoted by Prim A. Observe that any element
of Prim A is a two-sided ∗-ideal of A.

It should be noticed that for a commutative C∗-algebra, 1 and 2 are the
same but this is not true for a general C∗-algebra A. Natural topologies can
be defined on spaces of 1 and 2. But here we are interested in the Jacobsen (or
hull-kernel) topology defined on Prim A by means of closure operators. The
interested reader may refer to [4] for basic properties of Prim A. It follows
from Theorem 3.11 that Prim A is also a λ-T1-space. Jafari [7] has shown that
T1-spaces are precisely those which are both R0 and λ-T1.

Theorem 3.18. A space X is λ-T2 if and only if the intersection of all λ-closed
λ-neighborhoods of each point of the space is reduced to that point.

Proof. Let X be λ-T2 and x ∈ X . Then for each y ∈ X , distinct from x, there
exist λ-open sets G and H such that x ∈ G, y ∈ H and G ∩ H = ∅. Since
x ∈ G ⊂ Hc, then Hc is a λ-closed λ-neighborhood of x to which y does not
belong. Consequently, the intersection of all λ-closed λ -neighborhood of x is
reduced to {x}.
Conversely, let x, y ∈ X and x 6= y. Then by hypothesis, there exists a λ-closed
λ-neighbourhood U of x such that y /∈ U . Now there is a λ-open set G such
that x ∈ G ⊂ U . Thus G an U c are disjoint λ-open sets containing x and y,
respectively. Hence X is λ-T2. �X

Definition 13. A space (X, τ) will be termed λ-symmetric if for any x and y
in X, x ∈ Clλ({y}) implies y ∈ Clλ({x}).

Definition 14. A subset A of a space (X, τ) is called a λ-generalized closed
set (briefly λ-g-closed) if Clλ(A) ⊂ U whenever A ⊂ U and U is λ-open in
(X, τ).
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Lemma 3.19. Every λ-closed set is λ-g-closed.

Example 3.20. In Example 3.6, if A = {a}, then A is a λ-g-closed set, but it
is not a λ-closed set (hence it is not a closed set).

Theorem 3.21. Let (X, τ) be a space. Then,
(i) (X, τ) is λ-symmetric if and only if {x} is λ–g-closed for each x in X.
(ii) If (X, τ) is a λ-T1 space, then (X, τ) is λ-symmetric.
(iii) (X, τ) is λ-symmetric and λ-T0 if and only if (X, τ) is λ-T1.

Proof. (i) Sufficiency. Suppose x ∈ Clλ({y}), but y /∈ Clλ({x}). Then {y} ⊂
[Clλ({x})]c and thus Clλ({y}) ⊂ [Clλ({x})]c. Then x ∈ [Clλ({x})]c, a contra-
diction.
Necessity. Suppose {x} ⊂ E ∈ λO(X, τ) = {B ⊂ X | B is λ-open}, but
Clλ({x}) 6⊆ E. Then Clλ({x}) ∩ Ec 6= ∅; take y ∈ Clλ({x}) ∩ Ec. Therefore
x ∈ Clλ({y}) ⊂ Ec and x /∈ E, a contradiction.
(ii) In a λ-T1 space, singleton sets are λ-closed (Theorem 3.10) and therefore
λ-g-closed (Lemma 3.19). By (i), the space is λ-symmetric.
(iii) By (ii) and Remark 3.1(i) it suffices to prove only the necessity condition.
Let x 6= y. By λ-T0, we may assume that x ∈ E ⊂ {y}c for some E ∈ λO(X, τ).
Then x /∈ Clλ({y}) and hence y /∈ Clλ({x}). There exists a F ∈ λO(X, τ) such

that y ∈ F ⊂ {x}c and thus (X, τ) is a λ-T1 space. �X

Theorem 3.22. Let (X, τ) be a λ-symmetric space. Then the following are
equivalent.
(i) (X, τ) is λ-T0,
(ii) (X, τ) is λ-D1,
(iii) (X, τ) is λ-T1.

Proof. (i) → (iii) : Theorem 3.21.

(iii) → (ii) → (i) : Remark 3.1 and Theorem 3.3. �X

A function f : (X, τ) → (Y, σ) is called λ-irresolute if f−1(V ) is λ-open in
(X, τ) for every λ-open set V of (Y, σ).

Example 3.23. Let (X, τ) be as Example 3.14 and f : (X, τ) → (X, τ) such
that f(a) = c, f(b) = c and f(a) = a. Then f is λ-irresolute, but it is not
irresolute.

Example 3.24 ([1]). Consider the classical Dirichlet function f : R → R,
where R is the real line with the usual topology:

f(x) =







1 if x is rational

0 if x is otherwise

Therefore f is λ-continuous, but it is not continuous.

Theorem 3.25. If f : (X, τ) → (Y, σ) is a λ-irresolute surjective function and
S is a λ-D-set in Y , then f−1(A) is a λ-D-set in X.
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Proof. Let A be a λ-D-set in Y . Then there are λ-open sets U and V in
Y such that A = U\V and U 6= Y . By the λ-irresoluteness of f , f−1(U)
and f−1(V ) are λ-open in X . Since U 6= Y , we have f−1(U) 6= X . Hence

f−1(A) = f−1(U)\f−1(V ) is a λ-D-set. �X

Theorem 3.26. If (Y, σ) is λ-D1 and f : (X, τ) → (Y, σ) is λ-irresolute and
bijective, then (X, τ) is λ-D1.

Proof. Suppose that Y is a λ-D1 space. Let x and y be any pair of distinct
points in X . Since f is injective and Y is λ-D1, there exist λ-D-sets Ax and By

of Y containing f(x) and f(y) respectively, such that f(y) /∈ Ax and f(x) /∈ By.
By Theorem 3.25, f−1(Ax) and f−1(By) are λ − D− sets in X containing x

and y, respectively. This implies that X is a λ-D1 space. �X

We now prove another characterization of λ-D1 spaces.

Theorem 3.27. A space X is λ − D1 if and only if for each pair of distinct
points x and y in X, there exists a λ-irresolute surjective function f of X onto
a λ-D1 space Y such that f(x) 6= f(y).

Proof. Necessity. For every pair of distinct points of X , it suffices to take the
identity function on X .
Sufficiency. Let x and y be any pair of distinct points in X . By hypothesis,
there exists a λ-irresolute, surjective function f of a space X onto a λ-D1 space
Y such that f(x) 6= f(y). Therefore, there exist disjoint λ-D-sets Ax and By

in Y such that f(x) ∈ Ax and f(y) ∈ By. Since f is λ-irresolute and surjective,
by Theorem 3.25, f−1(Ax) and f−1(By) are disjoint λ-D-sets in X containing

x and y, respectively. Hence by Theorem 3.2(2), X is λ-D1 space. �X
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