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Abstract. In this paper, some basic properties of the cohomology solution on

ring surfaces of genus g are presented, and the theorem of Dolbeault and the

theorem of Serre for the operator ∂̄ = ∂

∂z̄
dz̄ are obtained. The index theorem

on such ring surfaces of genus g is also discussed.
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Resumen. En este art́ıculo se presentan algunas propiedades básicas de la

solución cohomológica para superficies sobre anillos de género g y se obtienen

los teoremas de Dolbeault y Serre para el operador ∂̄ = ∂

∂z̄
dz̄. Se discute el

teorema del ı́ndice para tales superficies.
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1. Introduction

A lot of research results have been obtained for the study of the compact
Riemann surface [1], [2], [4], [5], [7]. These results, however, focus mainly
on its function-theoretic property, but rarely on its topological property. In
this paper, we consider the topological property for a special complex compact
Riemann surface, namely, the ring surface with genus g. First in Section 2, we
discuss its cohomology group solution by presenting some basic properties of

aThis work was supported by National Natural Science Foundation of China (grant num-
bers: 10572006, 10632010).

bCorresponding author.
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the solution. Then in Section 3, we investigate its index property and arrive at
two index theorems. And finally in Section 4, we study its spectral sequence
of the Dolbeault double complex form.

2. Some properties of the cohomology group solution on T 2
g

Let T 2
g be the ring surface of genus g, namely, a complex compact Riemann

surface. Let further Θ
(

T 2
g

)

represent the sheaf of germs of holomorphic func-

tions on T 2
g , and Θ∗

(

T 2
g

)

the sheaf of germs of holomorphic functions which are

never equal to zero on T 2
g . Then, H1

(

T 2
g , Θ∗

(

T 2
g

))

represents the holomorphic

line bundle group on T 2
g , called Picard group of T 2

g and denoted by Pic T 2
g .

For the compact Riemann surface T 2
g , we have a sheaf exact sequence as

follows
0→ Z → Θ

(

T 2
g

) exp
−−−→ Θ∗

(

T 2
g

)

→ 0,

where Z is the additive group of integers.
From the above exact sequence, we can obtain the cohomology exact se-

quence
→ H0

(

T 2
g , Θ∗

(

T 2
g

))

→ H1
(

T 2
g , Z

)

→ H1
(

T 2
g , Θ

(

T 2
g

))

exp∗

−−−−→ H1
(

T 2
g , Θ∗

(

T 2
g

)) δ
−→ H2

(

T 2
g ,Z

)

→ .

Since T 2
g is the compact Riemann surface with genus g, we have

H1
(

T 2
g , Θ

(

T 2
g

))

= Cg , H0
(

T 2
g , Θ*

(

T 2
g

)

)

= Z .

H0
(

T 2
g , Z

)

= H2
(

T 2
g , Z

)

, H1
(

T 2
g , Z

)

= Z2g,

And since H1
(

T 2
g , Θ∗

(

T 2
g

))

= PicT 2
g , the above exact sequence becomes

→ Z→ Z2g → Cg exp∗

−−−→ PicT 2
g

δ
−→ Z → .

Let Pic0T 2
g denote the image of exp∗ and NS

(

T 2
g

)

the image of δ, also called

Nėron-Severi group [8] of T 2
g , respectively. Then we have

Theorem 2.1. For the ring surface T 2
g of genus g, we have

Pic0T 2
g ' Cg/Z2g, NS

(

T 2
g

)

' Z.

Now let us consider the following Dolbeault complex form on T 2
g ,

0→ Θ
(

T 2
g

) i
−→ Λ0,0

(

T 2
g

) ∂
−→ Λ0,1

(

T 2
g

) ∂
−→ Λ0,2

(

T 2
g

)

→ 0,

where Λ0,q
(

T 2
g

)

is the sheaf of germs of complex smooth (0, q)-forms on T 2
g

(q = 0, 1, 2) and ∂ = ∂
∂z

dz̄. Letting Hk (g) represent the k -order cohomology
solution of the sheaf g, we have

Theorem 2.2. H1
(

Θ
(

T 2
g

))

' H0
(

Λ0,1
(

T 2
g

))

/∂
(

H0
(

Λ0,0
(

T 2
g

)))

,

Hk
(

Θ
(

T 2
g

))

= 0, k> 1.
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Proof. Consider the mapping ∂ : Λ0,0
(

T 2
g

)

→ Λ0,1
(

T 2
g

)

. Then ker∂ = Θ
(

T 2
g

)

.

On the other hand, since ∂ is a full mapping [6], namely, Im∂ = Λ0,1
(

T 2
g

)

, the
sequence

0→ Θ
(

T 2
g

) i
−→ Λ0,0

(

T 2
g

) ∂
−→ Λ0,1

(

T 2
g

)

→ 0

is exact. And from this exact sequence, we can obtain the cohomology exact
sequence

0→ H0
(

Θ
(

T 2
g

)) i
−→ H0

(

Λ0,0
(

T 2
g

)) ∂̄
−→ H0

(

Λ0,1
(

T 2
g

)) δ
−→

H1
(

Θ
(

T 2
g

))

→ H1
(

Λ0,0
(

T 2
g

))

→ · · · .

Note that both Λ0,0
(

T 2
g

)

and Λ0,1
(

T 2
g

)

are strong sheaves. Therefore, we have

Hk
(

Λ0,0
(

T 2
g

))

= Hk
(

Λ0,1
(

T 2
g

))

= 0, k ≥ 1.

Consequently, the above exact sequence can be transformed to

0→ H0
(

Θ
(

T 2
g

))

→ H0
(

Λ0,0
(

T 2
g

)) ∂
−→ H0

(

Λ0,1
(

T 2
g

)) δ
−→ H1

(

Θ
(

T 2
g

))

→ 0

0→ Hk
(

Θ
(

T 2
g

))

→ 0, k > 1.

Therefore, we finally have

H1
(

Θ
(

T 2
g

))

' H0
(

Λ0,1
(

T 2
g

))

/kerδ ' H0
(

Λ0,1
(

T 2
g

))

/∂
(

H0
(

Λ0,0
(

T 2
g

)))

,

Hk
(

Θ
(

T 2
g

))

= 0 , k > 1.

This completes the proof of Theorem 2.2. �X

Next, let us consider the following Dolbeault complex form on T 2
g ,

0→ Ω1
(

T 2
g

) i
−→ Λ1,0

(

T 2
g

) ∂
∗

−→ Λ1,1
(

T 2
g

) ∂
∗

−→ Λ1,2
(

T 2
g

)

= 0,

where Ω1
(

T 2
g

)

is the sheaf of germs of holomorphic 1-forms on T 2
g , and Λ1,q

(

T 2
g

)

is the sheaf of germs of complex smooth (1, q)-forms on T 2
g (q = 0, 1, 2), respec-

tively. Since ∂̄∗ = ∂
∂z̄

dz̄, similarly, we have

Theorem 2.3. H1
(

Ω1
(

T 2
g

))

' H0
(

Λ1,1
(

T 2
g

))

/∂
∗ (

H0
(

Λ1,0
(

T 2
g

)))

,

H0
(

Ω1
(

T 2
g

))

' ker∂
∗
, Hk

(

Ω1
(

T 2
g

))

= 0, k > 1.

For the complex differential form on the Riemann surface T 2
g , we introduce the

exterior differential operator d = ∂ + ∂, where

∂ =
∂

∂z
dz: Λp,q

(

T 2
g

)

→ Λp+1,q
(

T 2
g

)

,

∂ =
∂

∂z
dz: Λp,q

(

T 2
g

)

→ Λp,q+1
(

T 2
g

)

.

On the other hand, using the Hermite gauge, we introduce the remainder dif-
ferential operator

δ = − ∗ d∗ = − ∗
(

∂ + ∂
)

∗ = V + V ,
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where

V = − ∗ ∂̄∗ : Λp,q
(

T 2
g

)

→ Λp−1,q
(

T 2
g

)

,

V = − ∗ ∂∗ : Λp,q
(

T 2
g

)

→ Λp,q−1
(

T 2
g

)

.

Now let ∆ = 2 (∂V + V ∂) represent the Laplace operator of ∂, and ∆ =

2
(

∂̄ V + V ∂̄
)

the Laplace operator of ∂, respectively. By simple calculations,

in fact we can arrive at that ∆ = ∆ , ∆ (f dz) = 0 if and only if ∆
(

f̄dz
)

= 0.
Therefore, we have

Lemma 2.1. The space of Harmonic forms on T 2
g is Π0,1

(

T 2
g

)

' Π1,0
(

T 2
g

)

.

Theorem 2.4 (Serre dual). H1
(

Θ
(

T 2
g

))

' H0
(

Ω1
(

T 2
g

))

.

Proof. Using the Dolbeault Theorem [4], we have

H1
(

Θ
(

T 2
g

))

' H0,1
∂

(

T 2
g

)

, H0
(

Ω1
(

T 2
g

))

' H0,1

∂

(

T 2
g

)

.

On the other hand, using the Hodge Theorem [4], we have

H0,1
∂

(

T 2
g

)

' Π0,1
(

T 2
g

)

, H0,1

∂

(

T 2
g

)

' Π1,0
(

T 2
g

)

.

Then using Lemma 2.1, we have H1
(

Θ
(

T 2
g

))

' H0
(

Ω1
(

T 2
g

))

.

�X

Theorem 2.5. H0
(

Λ0,1
(

T 2
g

))

/∂̄
(

H0
(

Λ0,0
(

T 2
g

)))

' ker∂̄∗.

Proof. From Theorem 2.2, we have

H0
(

Λ0,1
(

T 2
g

))

/∂
(

H0
(

Λ0,0
(

T 2
g

)))

' H1
(

Θ
(

T 2
g

))

.

On the other hand, from Theorem 2.4, we have

H1
(

Θ
(

T 2
g

))

' H0
(

Ω1
(

T 2
g

))

.

Then from Theorem 2.3, we have H0
(

Ω1
(

T 2
g

))

' ker∂
∗
. �X

3. The index theorem on the ring surface of genus g

Now let us consider the Dolbeault complex form on T 2
g

0→ Θ
(

T 2
g

) i
−→ Λ0,0

(

T 2
g

) ∂̄
←→

V

Λ0,1
(

T 2
g

) ∂̄
←→

V

Λ0,2
(

T 2
g

)

→ 0,

where V is the dual of ∂. Since the Laplace operator of ∂: ∆ = 2
(

∂̄ V + V ∂̄
)

is
an elliptic differential operator, the above complex form is an elliptic complex
form with index being [6]

Ind
(

∂
)

=
∑

(−1)
p
dim H0,p

∂

(

T 2
g

)

=
1

∑

p=0

(−1)
p
dim Π0,p

(

T 2
g

)

= dim Π0,0
(

T 2
g

)

− dim Π0,1
(

T 2
g

)

= 1− g, (3.1)

where g is the genus of T 2
g and dim Π0,1

(

T 2
g

)

= g [3].
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The above index property can be generalized. Let µ
(

T 2
g

)

be the set of all

meromorphic functions on T 2
g . For a divisor D given on T 2

g , we can define a di-

visor sheaf ΘD =
{

f ∈ µ
(

T 2
g

)

|(f) ≥ −D
}

, where (f) represents the principal
divisor of f . If D = P is a point divisor, then ΘD is the set of all meromorphic
functions which have at most a single pole at P . If D = 0, then ΘD = Θ

(

T 2
g

)

.

Furthermore, let µ∗
(

T 2
g

)

represent the sheaf of germs of the meromorphic func-

tions which are never equal to zero on T 2
g . Then, µ∗

(

T 2
g

)

/Θ∗
(

T 2
g

)

represents

a divisor presheaf, and the divisor D ∈ H0
(

µ∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

represents a

family of D = (µi, αi), where αi ∈ µ∗ (µi), αi/αj ∈ Θ∗ (Ui ∩ Uj), ∪
i
Ui = T 2

g .

The exact sequence of sheaves becomes

0→ Θ∗
(

T 2
g

)

→ µ∗
(

T 2
g

)

→ µ∗
(

T 2
g

)

/Θ∗
(

T 2
g

)

→ 0,

from which we can obtain the long exact sequence

0→ H0
(

U∗
(

T 2
g

))

→ H0
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

)) δ
−→ H1

(

Θ∗
(

T 2
g

))

→ H1
(

U∗
(

T 2
g

))

→ H1
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

→ H2
(

Θ∗
(

T 2
g

))

= 0. (3.2)

Recall that Θ∗
(

T 2
g

)

is the sheaf of germs of the holomorphic functions

which are never equal to zero on T 2
g . Using a result from [6], we have that

H1
(

Θ∗
(

T 2
g

))

is the first-order cohomology group of the holomorphic line bun-

dles which are never equal to zero on T 2
g .

If the divisor D ∈ H0
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

, then δD = [D] represents a holo-
morphic line bundle whose connectivity function is gij = αi/αj ∈ Θ∗ (Ui ∩ Uj).
Here, [D] is also called a holomorphic line bundle generated by the divisor D.
Since [D] is a complex line bundle, the first churn class C1 ([D]) ∈ H2

(

T 2
g , Z

)

,

and dim H1
(

Θ∗
(

T 2
g

))

can be measured by the first churn number [6]. Since
any divisor D can be constructed by the point divisors, we have

Lemma 3.1. Suppose that D = P is a point divisor. Then [−P ] = L,

where L is a natural line bundle on the Riemann sphere CP (1) ' S2 : L =
{(

x, z0, z1
) ∣

∣

(

z0, z1
)

are the homogeneous coordinates of x on CP (1)}.

Proof. Since D = P is a point divisor, we can choose the Riemann surface

W = CP (1) = S2 = CU {∞}

as the Riemann sphere. Note that CP (1) can be covered by two open sets

U0 =
{[

z0, z1
]

∈ P (1)
∣

∣z0 6= 0
}

and

U1 =
{[

z0, z1
]

∈ CP (1)
∣

∣z1 6= 0
}

.

Choose the point P as P = [1, 0]. Then, on U0, construct a meromorphic
function α0

([

z0, z1
])

= z1/z0, which has a single pole exactly at the point P ,
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and the divisor D = P . Moreover, let α1 = 1 on U1. Then the connectivity
function of the bundle [P ], defined on U0 ∩ U1, is g01 = α0/α1 = z1/z0.

On the other hand, CP (1) has a natural line bundle L, whose partial cross
sections on the two domains U0 and U1 are σ0 =

(

1, z1/z0
)

and σ1 =
(

z0/z1, 1
)

[3], respectively. And the connectivity function of the bundle L is defined by
σ = g01σ0 =

(

z0/z1
)

σ0, namely, g̃01 = z0/z1. By comparing the connectivity
function of the bundle [P ] to that of the bundle L, we have that the bundle [P ]
is the conjugate bundle of the bundle L, that is to say, for the point divisor P−1

or −P connected to the single pole P , we can have [−P ] = L. This completes

the proof of Lemma 3.1. �X

Note that the first churn class of the natural line bundle L of CP (1) is the
Kähler form on the complex manifold CP (1), namely,

C1 (L) =
−i

2π
∂∂ln (1 + zz) =

−i

2π

dzΛdz

(1 + zz)2
=
−1

π

dxΛdy

(1 + x2 + y2)2
,

and the first churn number (again denoted by C1 (L)) is

C1 (L) =
−1

π

∫

s2

dxΛdy

(1 + x2 + y2)
2

=
−1

π

∞
∫

0

2π
∫

0

rdrdθ

(1 + r2)
2

= −1.

Then C1 ([−P ]) = C1 (L) = −1, from which we have

Corollary 3.1. Suppose that the Riemann surface W has only a point divisor

D = P . Then dim H1 (Θ∗ (W )) = C1 ([P ]) = −deg (P ) = 1.

Corollary 3.2. For any divisor D on W , dim H1 (Θ∗ (W )) = C1 ([D]) = −
deg[D], where deg[D] represents the degree of the divisor D.

From Corollaries 3.1 and 3.2, we obtain

Theorem 3.1. Suppose that D is the divisor on the compact Riemann surface

T 2
g of genus g. Then

dim H0
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

− dim H1
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

= deg (D)− g + 1.

Proof. From [6], we have the Euler number of the exact sequence in (3.2) is 0,
i.e.,

χ
(

H
(

U∗
(

T 2
g

)))

− χ
(

H
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

)))

− dim H1
(

Θ∗
(

T 2
g

))

= 0.

From Corollaries 3.1 and 3.2, we have

dim H0
(

U∗
(

T 2
g

))

− dim H1
(

U∗
(

T 2
g

))

− dim H0
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

+ dim H1
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

+ deg (D) = 0. (3.3)

Then, inserting dim H0
(

U∗
(

T 2
g

))

= 1 and dim H1
(

U∗
(

T 2
g

))

= g [5] in (3.3)
leads to

dim H0
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

− dim H1
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

= deg (D)− g + 1.
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�X

In particular, when the divisor D = 0, Theorem 3.1 reduces to the index
theorem represented by (3.1). Moreover, when the divisor D = 0, and the
genus g = 1, Theorem 3.1 reduces to Theorem 5 in [9].

From Theorem 3.1 we have

Theorem 3.2. Suppose that D is the divisor on T 2
g . If deg (D) > 2g− 2, then

dim H1
(

U∗
(

T 2
g

)

/Θ∗
(

T 2
g

))

= 0.

4. The spectral sequence of the Dolbeault double complex

form on the n dimensional complex ring surface T
n

Combining the operators ∂ and ∂ on the complex ring surface T n, we can
obtain the ∂ − ∂̄ double complex form

Λ0,0 (T n)
∂
−→ Λ0,1 (T n)

∂
−→ Λ0,2 (T n)

∂
−→

↓ ∂ ↓ ∂ ↓ ∂

Λ1,0 (T n)
∂
−→ Λ1,1 (T n)

∂
−→ Λ1,2 (T n)

∂
−→

↓ ∂ ↓ ∂ ↓ ∂

Λ2,0 (T n)
∂
−→ Λ2,1 (T n)

∂
−→ Λ2,2 (T n)

∂
−→

↓ ∂ ↓ ∂ ↓ ∂

.

Define

Zi,j (T n) =
{

ξ ∈ Λi,j (T n) | ∂̄ξ = 0, ∂ξ = 0, i, j ≥ 1
}

,

Bi,j (T n) =
{

∂∂Λi−1,j−1 (T n) |i, j ≥ 1
}

,

H i,j (T n) = Zi,j (T n) /Bi,j (T n) .

Then, obviously we have

Theorem 4.1. Given r ∈ N and r ≤ n. Then

H

(

⊕
i+j=r

Λi,j (T n)

)

= ⊕
i+j=r

H
(

Λi,j (T n)
)

= ⊕
i+j=r

H i,j (T n) .

Given r ∈ N . Let

Tr (T n) = ⊕
i+j=r

Λi,j (T n) ,

and

F pTr (T n) = ⊕
0≤i≤p

Λi,r−i (T n) , 1 ≤ p ≤ r.

Then we have

F pTr (T n) ≤ F p+1Tr (T n) ≤ Tr (T n) , (∗)
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namely, F is a filter of Tr (T n). Then we can obtain the commutative diagram
as follows

F p−1Tr (T n)
∂
−→ F pTr+1 (T n)

↓ η ↓ η

F pTr (T n)
∂
−→ F p+1Tr+1 (T n)

↓ π ↓ π

Λp,r−p (T n)
∂
−→ Λp+1,r−p (T n)

where η is an imbedding mapping, and π a natural surjection homomorphism,
respectively. From the short exact sequence

0→ F p−1Tr (T n)
η
−→ F pTr (T n)

π
−→ Λp,r−p (T n)→ 0,

we can obtain the cohomology exact sequence

→ ⊕
0≤i≤p−1

H i,r−i (T n)
η̄∗

−→ ⊕
0≤i≤p

H i,r−i (T n)
π̄∗

−→

Hp,r−p (T n)
δ̄∗

−→ ⊕
0≤i≤p

H i,r−i+1 (T n)→ .

Furthermore, from the above exact sequence, using the Massey method [10] we
can obtain the Lerry spectral sequence

{

Es
p,r−p (T n) ,

V

∂s
p,r−p

}

, s ≥ 1 ,

where

E1
p,r−p (T n) = Hp,r−p (T n) ,

V

∂1
p,r−p

Hp,r−p (T n)→ Hp,r−p+1 (T n)

is the cohomology mapping induced by

∂p,r−p:Λ
p,r−p (T n)→ Λp,r−p+1 (T n) ,

and

E2
p,r−p (T n) = H

(

E1
p,r−p

)

= ker
V

∂1
p,r−p

/Im
V

∂1
p,r−p−1

· · · , Es
p,r−p (T n) = H

(

Es−1
p,r−p

)

= ker
V

∂s−1
p,r−p

/Im
V

∂s−1
p,r−p−1

.

Here H is the cohomology functor.
Note that the filter (∗) is finite, namely,

0 = F−1Tr (T n) ⊆ F 0Tr (T n) ⊆ · · · ⊆ F pTr (T n) ⊆ · · · ⊆ F rTr (T n) = Tr (T n) .

Hence, from [10], we have that for 1 ≤ p ≤ r ≤ n ∈ N , there exists a certain
number s such that
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(1)

Es
p,r−p (T n) = Es+1

p,r−p (T n) = · · · .

(2)

Es
p,r−p (T n) = F pH (Tr (T n)) /F p−1H (Tr (T n))

= F pH

(

⊕
i+j=r

Λi,j (T n)

)

/F p−1H

(

⊕
i+j=r

Λi,j (T n)

)

= F p ⊕
i+j=r

H i,j (T n) /F p−1 ⊕
i+j=r

H i,j (T n)

= ⊕
0≤i≤p

H i,r−i (T n) / ⊕
0≤i≤p−1

H i,r−i (T n)

= Hp,r−p (T n)

= E1
p,r−p (T n) .

Therefore, we finally have

Theorem 4.2. For the ∂−∂ double complex form on the n dimensional complex

ring surface T n, the Lerry spectral sequence
{

Es
p,r−p (T n) ,

V

∂s
p,r−p

}

, s ≥ 1

converges to E1
p,r−p (T n) = Hp,r−p (T n).
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