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Función de Goodstein
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Abstract. Goodstein’s function G : N → N is an example of a fast growing

recursive function. Introduced in 1944 by R. L. Goodstein [9], Kirby and Paris
[12] showed in 1982, using model theoretic techniques, that Goodstein’s result
that G is total, i.e., that G(n) is defined for all n ∈ N, is not a theorem of
first order Peano Arithmetic. We compute Goodstein’s function in terms of
the Löb-Wainer fast growing hierarchy of functions; from this and standard
proof theoretic results about this hierarchy, the Kirby-Paris result follows im-
mediately. We also compute the functions of the Hardy hierarchy in terms of
the Löb-Wainer functions, which allows us to provide a new proof of a similar
result, due to Cichon [2].
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Resumen. La función de Goodstein G : N → N es un ejemplo de una función
recursiva de crecimiento rápido. Introducida en 1944 por R. L. Goodstein [9],
Kirby y Paris [12] demostraron en 1982, usando técnicas de teoŕıa de modelos,
que el resultado de Goodstein de que G es total, es decir, que G(n) está definida
para todo n ∈ N, no es un teorema de la Aritmética de Peano de primer orden.
Calculamos la función de Goodstein en términos de la jerarqúıa de funciones de
crecimiento rápido de Löb y Wainer; usando esto y resultados clásicos de teoŕıa
de la demostración acerca de esta jerarqúıa, el teorema de Kirby y Paris se
sigue de inmediato. También calculamos las funciones de la jerarqúıa de Hardy
en términos de las funciones de Löb y Wainer, con lo que obtenemos una nueva
demostración de un resultado similar, debido a Cichon [2].

Palabras y frases clave. Función de Goodstein, jerarqúıa de Hardy, jerarqúıa de
crecimiento rápido, aritmética de Peano.
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1. Introduction

Goodstein sequences were introduced in 1944 by Rueben Louis Goodstein [9],
who proved that every such sequence is eventually zero. In 1982, Kirby and
Paris [12] used model theoretic techniques (the method of indicators) to show
that Goodstein’s result, a first order statement in the language of arithmetic,
is nevertheless not a theorem of first order Peano Arithmetic PA. Goodstein’s
function G : N → N assigns to each n the first m such that the Goodstein
sequence corresponding to n becomes zero from m on. In this paper we present
a computation of Goodstein’s function in terms of a classical “fast growing”
hierarchy of functions due to Löb and Wainer, see Theorem 1.11. This is a
well studied hierarchy, and the Kirby-Paris result is an immediate corollary
of our computation and standard proof theoretic results about this hierarchy.
A similar proof of the Kirby-Paris result was obtained by Cichon [2] using
a different hierarchy originally introduced by Hardy. It is straightforward to
compute the functions of the Hardy hierarchy in terms of the Löb-Wainer
functions, and this calculation and Theorem 1.11 provide us with a new proof
of Cichon’s theorem, see Corollary 1.16.

This paper is organized as follows: In Subsection 1.1 we describe Good-
stein’s function, recall the definition of the Löb-Wainer hierarchy and the proof
theoretic results (due to Wainer [16]) that we need, and state our main result,
Theorem 1.11. In Subsection 1.2 we recall the definition of the Hardy hier-
archy and derive Cichon’s result from Theorem 1.11. Section 2 is devoted to
the proof of Theorem 1.11; it is perhaps interesting to note that the argument
organizes itself in a natural way as a transfinite induction of length ε0. Finally,
in Section 3 we briefly mention how the results of Kirby and Paris [12] follow
from Theorem 1.11.

We want to thank William Sladek, whose interest in Goodstein’s theorem
and its unprovability in PA led to this paper.

1.1. Goodstein’s theorem. Goodstein’s theorem [9] provides a nice example
of a finitary combinatorial result that cannot be proven without an explicit
appeal to infinite sets, see Kirby and Paris [12]. This claim requires some
explanation.

We assume acquaintance with the basic theory of ordinal numbers; the reader
may find an introduction in almost any textbook in logic or set theory, like Cori
and Lascar [3] or Kunen [13]. Recall that ε0 is the first ordinal α such that
α = ωα (ordinal exponentiation).

For the reader not familiar with Peano Arithmetic PA or formal logic, it
suffices to say any natural number theoretic statement can be easily expressed
in the language of PA, and that PA is an appropriate formalization of the
intuitive concept of “finitary mathematics”, thus showing that PA cannot prove
a statement S means that it is unavoidable to invoke infinite objects in any
proof of S.
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We can make the above more precise in two ways: First, that PA captures
finitary mathematics can be argued as follows: Recall that ZFC is the standard
list of axioms for set theory, in which all of classical mathematics can be easily
formalized, and is the accepted framework for carrying out such a formalization.
Let ZFCfin be the theory that results when the axiom of infinity (“there are
infinite sets”) is removed from ZFC and replaced with its negation (“every set
is finite”, i.e., every set is in bijection with a natural number; formally this
is stated as saying that there are no limit ordinals). Then it is easy to see
that PA is bi-interpretable with ZFCfin, which means that both theories are
exactly the same, only stated in slightly different languages. Precisely: One
can define recursive translations t and t′ between the language of arithmetic and
the language of set theory so that if φ is a theorem of PA, then its translation φt

is a theorem of ZFCfin and, conversely, if ψ is a theorem of ZFCfin, then ψt′ is a
theorem of PA. Moreover, for any sentence φ in the language of arithmetic, PA
proves that φ is equivalent to (φt)t′ , and similarly for statements in the language
of set theory and ZFCfin. This argument provably comes from Ackermann
[1]. A different justification of PA as the appropriate formalization of finitary
mathematics can be found in the works of Gentzen, see [7] and [8], where the
connection between PA and the ordinal ε0 is highlighted.

Second, PA is sufficiently powerful to appropriately code and discuss some
infinite sets; for example, any ordinal below ε0 is formalizable inside PA, mean-
ing in particular that if α < ε0 and an arithmetic statement can be proven
by finitary means together with an appeal to transfinite induction of length α,
then the statement can be proven in PA. Precisely: The subsystem ACA0 of sec-
ond order arithmetic is conservative over PA for arithmetic sentences, but can
refer to and discuss infinite objects. The infinite sets that can be appropriately
discussed in ACA0 are usually called predicative. That predicativism as under-
stood by Weyl [17] is captured by ACA0 follows from work of Feferman, see [5]
and [6]. That ACA0 is conservative over PA means that PA follows from ACA0

and any arithmetic statement provable in ACA0 (perhaps by explicit appeal to
infinite objects) can also be derived purely within PA. For a discussion of ACA0

and related theories, Simpson’s monograph [15] is highly recommended.
Thus, if one shows that a statement S is not provable from PA, it follows

that any proof of S must make explicit use of infinite, in fact, impredicative
objects. Goodstein’s theorem is an example of one such statement. It states
that G(n) is defined for all n, where G, Goodstein’s function, is the number of
steps that a certain process takes with input n before it halts. To describe the
process, we need a couple of definitions.

Definition 1.1. The depth-1 base b representation of n ∈ N is just the usual
base b representation of n:

n = bm1n1 + · · · + bmknk ,

where m1 > · · · > mk ≥ 0 and 1 ≤ ni < b for each i.
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By replacing each mi with their base b representation we obtain the depth-2
representation of m. In general, the depth-(m + 1) representation is obtained
by replacing each mi with their depth-m base b representation (so we iterate
taking base b representations m+ 1 times).

For example, the depth-1 base 2 representation of 266 is 28 + 23 + 21, its

depth-2 base 2 representation is 223

+ 221+1 +21 and so its depth-3 (or higher)
base 2 representation is

266 = 222+1

+ 22+1 + 2.

As with 266, notice that for any n and b, as m increases, the depth-(m + 1)
base b representations of n eventually stabilize. (It is something of a tradition
to mention 266 when discussing Goodstein’s theorem, after one of the examples
highlighted in Kirby-Paris [12].)

Definition 1.2. We call this stable representation the complete base b repre-
sentation of n ∈ N (this is sometimes called the super base b representation of
n).

Definition 1.3. The change of base function Rb : N → N takes a natural num-
ber n, and then replaces every b with b+1 in the complete base b representation
of n.

Thus

R2(266) = 333+1

+ 33+1 + 3 = 443426488243037769948249630619149892887.

Definition 1.4. The Goodstein Sequence beginning with n, (n)k, is defined by
(n)1 = n and for k ≥ 1,

(n)k+1 =

{

Rk+1((n)k) − 1 if (n)k > 0
0 if (n)k = 0.

For example, the sequence for n = 3 is 3, 3, 3, 2, 1, 0, 0, . . .

Definition 1.5. The Goodstein Function G : N → N is defined to be the
smallest number k for which (n)k = 0.

The main result of Goodstein [9] is the following:

Theorem 1.6. The function G is well defined, i.e., G(n) exists for all n.

Here are the first few values of the function G:

G(0) = 1
G(1) = 2
G(2) = 4
G(3) = 6
G(4) = 3 · 2402653211 − 2 ≈ 6.895× 10121210694.
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Contrast G(4) with the number of elementary particles in the universe, which
is estimated1 to be below 1090; the number of digits of G(5) is much larger than
G(4). G is clearly a recursive function (i.e., there is a finite algorithm that from
input n allows us to compute G(n)); however, the values of G grow incredibly
fast, so fast that G in fact eventually dominates any recursive function that PA
can prove is defined for all inputs. This was originally proved by Kirby and
Paris [12].

We prove Theorem 1.6 by presenting an “explicit” formula for G(n). It is as
explicit as it is reasonable to expect; it describes G(n) in terms of the functions
fα of the fast growing hierarchy.

Any ordinal α < ε0 can be written in a unique way as α = ωβ(γ + 1) where
β < α. By transfinite recursion, define for limit α < ε0 an increasing sequence
d(α, n) cofinal in α by setting

d(α, n) = ωβγ +

{

ωδn if β = δ + 1,
ωd(β,n) if β is limit.

The fast growing hierarchy (fα)α<ε0 of functions f : N → N, due to Löb and
Wainer [14], can now be defined as follows:

Definition 1.7.

(1) f0(n) = n+ 1.
(2) For α < ε0, fα+1(n) = fn

α (n), where the superindex indicates that fα

is iterated n times.
(3) For limit α < ε0, fα(n) = fd(α,n)(n).

For example: f1(n) = 2n, f2(n) = n2n and f3(n) is (significantly) larger
than a stack of powers of two of length n; fω(n) = fn(n) grows like (the
diagonal of) Ackermann’s function, and f

ωω32(n) = f
ωω3+ωω2n(n), which itself

requires some amount of time and effort to be computed. We caution the reader
not to confuse the nth iterate fn(m) of a function f applied to m with the nth

(multiplicative) power f(m)n of the number f(m).
For f, g : N → N, say that f is eventually dominated by g iff for all but

finitely many values of n, f(n) < g(n). Proofs of the following statements can
be found in Wainer [16]:

Fact 1.8.

(1) Each fα is strictly increasing.
(2) If α < β < ε0 then fα is eventually dominated by fβ.
(3) Each fα is recursive, and provably total in PA.

Let ζ0 = 0 and ζk+1 = ωζk . The following is the main result of Wainer [16]:

Theorem 1.9. If f is a recursive function, provably total in IΣk+1 (Peano
Arithmetic with the induction axiom restricted to Σk+1-formulas), then f is
eventually dominated by some fα, α < ζk+1. In particular, any recursive f

provably total in PA is eventually dominated by some fα, α < ε0. �X

1See for example http://www.cs.umass.edu/∼immerman/stanford/universe.html

Revista Colombiana de Matemáticas
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Definition 1.10. Let Rω
n(m) be the “change of base” function replacing each

n by ω in the complete base n representation of m; for this, we express m as a
decreasing sum of powers of n, so the resulting ordinal Rω

n(m) is written in its
Cantor normal form.

For example, since 266 = 33+2 + 32 · 2 + 3 + 2, then

Rω
3 (266) = ωω+2 + ω22 + ω + 2.

We can now state the main result of this paper, describing Goodstein’s function
in terms of the functions fα.

Theorem 1.11.

(1) Let

n = 2m1 + 2m2 + · · · + 2mk

where m1 > m2 > · · · > mk. Let αi = Rω
2 (mi). Then

G(n) = fα1
(fα2

(. . . (fαk
(3)) . . . )) − 2.

(2) More generally, let Gb(n) be defined as G, but we start by writing n in
base b rather than 2, so (if not 0) (n)2 = Rb(n)−1, (n)3 = Rb+1((n)2)−
1, etc. Let

n = bm1n1 + · · · + bmknk ,

where m1 > · · · > mk and 1 ≤ nk < b be the base b representation of
n. Let αi = Rω

b (mi). Then

Gb(n) = fn1

α1

(

fn2

α2

(

. . .
(

fnk
αk

(b+ 1)
)

. . .
))

− b.

For example, G(266) = fωω+1(fω+1(6))− 2, because 266 = 222+1

+ 22+1 + 21

and f1(3) = 6. Similarly,

G(4) = fω(3) − 2 = f3(3) − 2 = 3 · 23 · 23·23

· 23·23
·23·23

− 2.

Goodstein’s Theorem 1.6 follows at once from Theorem 1.11. As mentioned
above, Theorem 1.11 also gives immediately as corollaries the unprovability
results of Kirby and Paris [12], see Section 3.

1.2. The Hardy hierarchy. Goodstein’s sequences can be defined in at least
two ways. As opposed to how we define them here, one can also define them by,
at each step, subtracting one from the current number and then increasing the
current base. Call g(n) the corresponding Goodstein’s function. The reader
should have no problem showing that the following holds:

Fact 1.12.

(1) g is total iff G is total.

(2) Assume that g is total. For any n ∈ N, g(n+ 1) = G(n) + 1. �X
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Our computation of G in terms of a fast growing hierarchy is not the first
one: Cichon [2] analyzed g and found a formula for it in terms of the Hardy
hierarchy (called this way after being introduced by Hardy [10] in order to
‘exhibit’ a set of reals of size ℵ1), see also the paper [4] by Fairtlough and
Wainer. The Hardy hierarchy of functions is defined as follows:

Definition 1.13.

(1) H0(n) = n.
(2) For α < ε0, Hα+1(n) = Hα(n+ 1).
(3) For limit α < ε0, Hα(n) = Hd(α,n+1)(n).

One can easily provide an explicit computation of the members of the Hardy
hierarchy in terms of the functions fα; the following is obtained directly from
the definitions by a straightforward induction on α:

Theorem 1.14. For 0 < α < ε0, let

α = ωβ0n0 + · · · + ωβknk

be the Cantor normal form of α, so α > β0 > · · · > βk and ni > 0 for all i.
Then

Hα(n) = fn0

β0
(. . . (fnk

βk
(n+1)) . . . )−1. �X

In particular,

Hωα(n) = fα(n+ 1) − 1(1)

and we have the following:

Corollary 1.15. If α ≥ β then Hα ◦Hβ = Hα+β. �X

Cichon’s computation, Corollary 1.16 below, is an immediate consequence
of Theorems 1.11 and 1.14.

Corollary 1.16 (Cichon [2]). For all n ∈ N, g(n) = HRω
2
(n)(1). �X

Formula (1) is proven in Fairtlough and Wainer [4] (among other places).
Actually, (1) is stated there in terms of a slightly different hierarchy (Fα)α<ε0 ,
where it takes the form Hωα = Fα. This hierarchy is also used in the paper
[11] by Ketonen and Solovay; a straightforward induction from the definition
given in [4] establishes the identity

Fα(n) = fα(n+ 1) − 1

so, in terms of the Fα, Theorem 1.14 takes the form

Hα(n) = Fn0

β0

(

. . .
(

Fnk

βk
(n)

)

. . .
)

for α, β0, . . . as above.
Of course, Corollary 1.15 can also be proven directly from the definition. We

caution the reader that the result as stated in [4, Lemma 2.17] (that the identity
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holds for all α, β) is incorrect, since for β limit, the identity d(α + β, n) =
α+ d(β, n) may fail (consider for example α = 1 and β = ω).

Using Corollary 1.15 one may recover Theorem 1.14 by first arguing by
induction on α that Hωα = Fα and then considering the Cantor normal form
of an arbitrary ordinal below ε0. Assuming Cichon’s Theorem 1.16, this gives
a different proof of Theorem 1.11.

What differentiates our argument from Cichon’s is the analysis at limit or-
dinals that leads to Lemma 2.8.

2. The proof

To prove Theorem 1.11 it is better to work in terms of Ba(n), the first base
for which we reach zero when we start the process with the complete base a
representation of n. Clearly, B2(n) = G(n) + 1.

Lemma 2.1. For any a and any m, Ba(am − 1) = fRω
a (m)(a) − 1.

Example 2.2. Using Theorem 1.11 we can compute G(15) as

G(15) = fω+1(fω(f1(f0(3)))) − 2,

while using Lemma 2.1 gives us

G(15) = G(16 − 1) = fωω(2) − 2.

It may be instructive to reconcile both expressions: Notice that f0(3) = 4 and
f1(4) = 8 = f2(2) = fω(2), so the first expression simplifies to

G(15) = fω+1

(

f2
ω(2)

)

− 2 = f2
ω+1(2) − 2 = fω+2(2) − 2.

Finally, we use Definition 1.7 repeatedly to find

fωω(2) = fω2(2) = fω2(2) = fω+2(2).

Assuming Lemma 2.1, Theorem 1.11 is immediate by induction on k. For
example, to prove item (1), just notice that (n)2 = 3R2(m1) + · · ·+ 3R2(mk) − 1
and Rω

3 (R2(m)) = Rω
2 (m) for any m.

We now proceed to the proof of Lemma 2.1. This requires a transfinite
induction of length ε0.

Definition 2.3. For α < ε0 we define exponential polynomials pα(x) by induc-
tion: If α > 0, let

α = ωβ0n0 + · · · + ωβknk

be the Cantor normal form of α, so α > β0 > · · · > βk and ni > 0 for all i.
Define N(α) to be the largest integer mentioned in the Cantor normal form

of α, so N(n) = n for n < ω and, inductively,

N(α) = max {N(β0), . . . , N(βk), n0, . . . , nk} .

Set
pα(x) = xpβ0

(x)n0 + · · · + xpβk
(x)nk,

where pn(x) = n for all n ∈ ω.

Volumen 41, Número 2, Año 2007



GOODSTEIN’S FUNCTION 389

Definition 2.3 obviously implies the following inequality and identity.

Lemma 2.4. N (Rω
a (m)) < a and pRω

a (m)(a) = m for all a,m. �X

By Lemma 2.4, Lemma 2.1 follows immediately from the following, to which
we devote the rest of this section.

Lemma 2.5. For all α < ε0 and all a ≥ N(α), Ba

(

apα(a) − 1
)

= fα(a) − 1.

Proof. The proof is by induction on α. For α = 0 the result is clear.
Assume the result for α, and argue for α + 1: pα+1(a) = pα(a) + 1 so

apα+1(a)−1 = apα(a)(a−1)+apα(a)−1 and the induction hypothesis gives that

Ba

(

apα+1(a) − 1
)

= Bfα(a)−1

(

(fα (a) − 1)
pα(fα(a)−1)

(a− 1)
)

which, for a > 1, equals Bfα(a)

(

fα (a)
pα(fα(a))

(a− 2) + fα (a)
pα(fα(a))

− 1
)

.

A straightforward induction, the base case of which we just displayed, now
shows that for k ≤ a− 1,

Ba

(

apα+1(a) − 1
)

= B
f

k+1
α (a)−1

(

(

fk+1
α (a) − 1

)pα(fk+1
α (a)−1)

(a− 1 − k)

)

,

so in particular for k = a− 1, Ba

(

apα+1(a) − 1
)

= Bfa
α(a)−1(0) = fα+1(a) − 1,

as wanted.
To treat the limit case we need a preliminary definition, compare with Ke-

tonen and Solovay [11].

Definition 2.6. Define α →
n
β, for β ≤ α < ε0, iff there is a sequence α0 ≥

α1 ≥ · · · ≥ αk where α0 = α, αk = β and for all i < k, either αi is successor
and αi+1 = αi, or else αi is limit and αi+1 = d(αi, n).

A straightforward induction using Definition 2.3 shows the following:

Lemma 2.7. If α →
a
β then N(α) ≥ N(β), fα(a) = fβ(a) and, if a ≥ N(α),

then pα(a) = pβ(a). �X

Suppose now that α is limit and the result holds for all β < α. As before,
apα(a) − 1 = apα(a)−1(a− 1) + apα(a)−1 − 1. Let γ = Rω

a (pα(a) − 1). Then

Ba

(

apα(a) − 1
)

= Bfγ (a)−1

(

(fγ (a) − 1)
pα(fγ (a)−1)

(a− 1)
)

,

and induction shows that for k ≤ a− 1,

Ba

(

apα(a) − 1
)

= B
f

k+1
γ (a)−1

(

(

fk+1
γ (a) − 1

)pα(fk+1
γ (a)−1)

(a− 1 − k)

)

,

so in particular for k = a− 1 we have

Ba

(

apα(a) − 1
)

= fa
γ (a) − 1 = fRω

a (pα(a)−1)+1(a) − 1.

Lemma 2.8. For all nonzero α < ε0 and all a ≥ N(α), α →
a
Rω

a (pα(a)−1)+1.
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By Lemma 2.8, α →
a
Rω

a (pα(a) − 1) + 1. By Lemma 2.7,

fα(a) = fRω
a (pα(a)−1)+1(a),

and the result follows. �X

All that remains is to prove Lemma 2.8, to which we now turn.

Proof. Once again, the argument is by induction. If α = β + 1, in particular if
α = 1, then pα(a) = pβ(a) + 1 and Rω

a (pβ(a)) = β, as long as a > N(β), i.e.,
a ≥ N(α). Thus, Rω

a (pα(a) − 1) + 1 = β + 1 = α in this case, as wanted.
Now suppose that α is limit and the result holds below α. By induction,

we may as well assume that α = ωβ for some nonzero β < α. In particular,
β →

a
Rω

a (pβ(a) − 1) + 1 if a ≥ N(α) ≥ N(β).

We have pα(a) − 1 = apβ(a) − 1 = apβ(a)−1(a− 1) + apβ(a)−1 − 1 and

Rω
a (pα (a) − 1) + 1 = ωRω

a (pβ(a)−1) (a− 1) +Rω
a

(

apβ(a)−1 − 1
)

+ 1.

Let γ = Rω
a (pβ(a) − 1). Since β < α, by the induction hypothesis β →

a
γ + 1

(so γ < β and ωβ →
a
ωγ+1) and

ωγ →
a
Rω

a

(

apγ(a) − 1
)

+ 1.

Then

ωβ →
a
ωγ+1 →

a
ωγa = ωγ(a− 1) + ωγ →

a
ωγ(a− 1) +Rω

a

(

apγ(a) − 1
)

+ 1.

Finally, by Lemma 2.4, pγ(a) = pβ(a) − 1. This completes the proof. �X

3. G and PA

An easy combinatorial argument (considering “walks” from larger ordinals to
smaller ones along the sequences d(α, n)) shows that to prove that the sequence
(fα)α<ε0 is strictly increasing in the eventual domination order, it suffices to
show that if α is limit and n < m, then fd(α,n)(k) < fd(α,m)(k) whenever
k > n,N(α). This leads to considering the relation →

n
and Theorem 1.11 can

be seen as a result of this analysis. A similar analysis of eventual domination
is in Ketonen and Solovay [11], although the details vary somewhat, since the
argument is carried out in terms of the sequence (Fα)α<ε0 .

From Theorem 1.11 and Wainer’s Theorem 1.9 it follows immediately that
G is not provably total in PA, since it is easy to see that G eventually dominates
each fα. For m ∈ ω define the m-Goodstein sequence beginning with n as (n)k

above, but now instead of complete base b representations use only depth-(m+
1) base b representations. The proof of Theorem 1.11 also gives at once that the
resulting function Gm eventually dominates each fα, α < ζm+1, and therefore
Gm is not provably total in IΣm+1, although Gm has rate of growth comparable

Volumen 41, Número 2, Año 2007



GOODSTEIN’S FUNCTION 391

to that of fζm+1
and so it is provably total in IΣm+2. Similarly, Theorem 1′ of

Kirby and Paris [12] follows at once from the argument of Theorem 1.11.
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