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Abstract. While conventional tomography is associated to the Radon trans-
form in Euclidean spaces, electrical impedance tomography, or EIT, is associ-
ated to the Radon transform in the hyperbolic plane. We discuss some recent
work on network tomography that can be associated to a problem similar to
EIT on graphs and indicate how in some sense it may be also associated to the
Radon transform on trees.
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Resumen. Mientras la tomograf́ıa convencional es asociada a la transformada de
Radon en espacios Euclideos, la tomograf́ıa de impedancia eléctrica, o EIT, es
asociada a la transformada de Radón en el plano hiperbólico. Aqúı exponemos
nuestro más reciente trabajo sobre tomografia de redes que puede ser asoci-
ado a un problema similar a EIT en grafos y también, en cierto sentido, a la
transformada de Radon en árboles .

1. Introduction

In a number of beautiful papers [28, 29, 30], Escobar studied very interesting
questions about Riemannian metrics whose scalar curvatures or other scalar
functions of the curvature tensor are prescribed. This type of questions are
similar to the relation between the Pompeiu problem [10, 11], a problem in
integral geometry, and the inverse conductivity problem, a classical inverse
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problem on PDE. In the recent past the authors have been considering a discrete
version of this type of questions in the context of communication networks and
we hope to give the reader a glimpse into this very interesting mathematical
subject which is related to a number of significant questions about monitoring
the integrity of communication networks. For instance, the early detection
and, hopefully, prevention of breakdowns in such networks. In particular, we
are interested in trying to identify and thwart a particular kind of malicious
attack, the saturation of the network by a very large number of incoming
messages.

The mathematical model is as follows. Let G be a finite connected graph
with boundary ∂G. The edges of the graph have either endpoints which are
nodes in G or one of them in G and the other one in ∂G. (Note that in this
model we don’t consider “boundary edges” where both nodes lie in ∂G). To
simplify, the reader could think that G is a finite connected regular lattice. If
{a, b} is an edge, the corresponding weight ω(a, b) is a non-negative number
that represents the traffic along the edge {a, b}, e.g., the number of messages
exchanged between a and b at a given moment. (For simplicity, it may be easier
to consider the weights as a percentage of the total number of some sufficiently
large bound, thus, their values could equally be non-negative real numbers.)

In the continuous case, the corresponding problem is the inverse conductivity
problem, which is akin to the work of Escobar in [28, 29]. Namely, let D be the
unit disk in the plane, α a non-negative function on D, and consider the input-
output map defined by the Neumann-to-Dirichlet boundary value problem:

(¨)
{

∆U + αU = 0 in D
∂U
∂n = u on ∂D

given an input function u on ∂D we have a corresponding solution U of the
problem (¨), which is unique for α > 0.

Returning to the context of networks, given the corresponding graph G,
its collections of nodes V and edges E, and a weight ω, we can define a
corresponding Laplace operator ∆ω in terms of the degree dωx associated to
every vertex x via the formula

dωx =
∑

y∈V

ω(x, y)

Namely, for a function f,

∆ωf(x) :=
∑

y∈V

[f(y)− f(x)]·ω(x, y)
dωx

, x ∈ V

For a subgraph S of a graph G we define the boundary ∂S by

∂S = {z ∈ V | z /∈ S and z ∼ y for some y ∈ S}
where z ∼ y means that the two nodes z and y are connected by an edge in
E. Also, by S we denote a graph whose nodes and edges are in S ∪ ∂S. The



NETWORK TOMOGRAPHY 145

(outward) normal derivative ∂f
∂nω

(z) at z ∈ ∂S is defined to be

∂f

∂ nω
(z) =

∑

y∈S

[f(z)− f(y)]·ω(z, y)
d′ω z

,

where d′ω z =
∑
y∈S

ω(z, y)

In this model, there are two kinds of disruptions of traffic data that could
arise. In one of them, disruptions occurs when an edge “ceases” to exist, in this
case the “topology” of the graph has changed, and we refer to the important
work of Fan Chung and her collaborators which offers crucial insights into this
question. (See, for instance, [19], [20] and [21]). We would also like to point
out here Colin de Verdiere’s book [46] for early work on this subject which
is rarely mentioned in the literature. In the other, the weights change because
of “increase” of traffic, that is, the network configuration remains the same
but the weights have either increased or remained the same. In this second
situation, we can appeal to the following theorem, whose proof appears in [12].

Theorem 1.1. [12] Let ω1 and ω2 be weights with ω1 ≤ ω2 on S × S, and f1,
f2 : S → R be functions satisfying for j = 1, 2,





∆ωj fj(x) = 0, x ∈ S
∂fj

∂nωj
(z) = Φ(z), z ∈ ∂S∫

S
fjdωj = K

for any given function Φ : ∂S → R with
∫

∂S
Φ = 0, and a given constant K

with K > m0, where m0 = max
j=1,2

|mj | · vol(S,wj), mj = min
z∈∂S

fj(z), j = 1, 2 and

vol(S, wj) =
∑
x∈S

dωj x. If we assume that

(i)ω1(z, y) = ω2(z, y) on ∂S ×
◦

∂S
(ii) f1|∂S = f2|∂S ,

then we have
f1 ≡ f2

and
ω1(x, y) = ω2(x, y)

for all x and y in S.

That is, the theorem allows us to decide whether there is an increase of traffic
somewhere in the network or not. While this is only a uniqueness theorem,
nevertheless, one can effectively compute the actual weights from the knowledge
of the Dirichlet data for convenient choices of the input Neumann data in a way
similar to that done in [24] and [26] for lattices. Similarly, the Green function
of this Neumann boundary value problem can be represented by an explicit
matrix.
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Let us now discuss the relationship between the above results to the problem
of understanding a large network like the internet.

One way to make more concrete the problem of visualizing the internet ap-
pears in [37] and [38]. It indicates that the natural domain might be a hyper-
bolic space of dimension higher than 2 although, large subsets of the internet
could be modelled using trees. One can see that this suggestion leads to a
question closely resembling EIT, and it is natural to consider it as a problem in
hyperbolic tomography [6], [7]. On the other hand, Theorem 1 represents a sig-
nificant result on the inversion of the Neumann-Dirichlet problem by studying it
directly on “weighted graphs”. The corresponding case of the Radon transform
in the hyperbolic plane has been studied in [6], [7], and [33]. Also, experimental
evidence indicates that at least locally, the network could be modelled as being
part of a tree and therefore it can be visualized using 2-dimensional hyperbolic
geometry. As a consequence, a different way to study locally this kind of net-
works would be by using the Radon transform on trees. As it turns out, an
inversion formula for the Radon transform on trees is already known and it can
be found in [8].

For the sake of completeness, we will describe here a simplified version of the
Radon transform on trees and its inversion formula. As explained below, this
seems to be enough to deal with the network problems one is often interested
in.

2. The Radon transform on homogeneous trees

Let us now remind the reader what do we mean by a tree T. A tree T is a finite
or countable collection V of vertices {vj , j = 0, 1, ....} and a collection E of
edges ejk = (vj , vk), in other words, pairs of vertices. We orient the edge ejk by
thinking that vj is the first node and vk the second node. We always include
the edges ekj in this collection, which have the reverse orientation. Given two
vertices u and v, we say they are neighbors if (u, v) is an edge and write u v v
in this case. A geodesic γ from u0 to ul is a collection u0 , u1 , ....., ul−1 , ul of
pairwise distinct vertices such that u0 v u1 , u1 v u2 , ...., ul−1 v ul . If
it turns out that u0 v ul then we consider the closed geodesic path γ by
adding the edge (ul , u0 ) to γ. Unless explicitly mentioned, our geodesics will
not be closed. To simplify the notation, for any geodesic γ = u0 v u1 v u1 v
u2 v .... v ul−1 v ul open or closed, we denote by −γ the geodesic with
the opposite orientation , i.e., -γ = ul v ul−1 v .... v u0 . The collection of
all (open) geodesics is denoted by Γ. If T is infinite, then a complex valued
function is defined to be in L1(T ) if

∑

v∈V

|f(v)| < ∞
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The Radon transform R of a function f ∈ L1(T ) is simply the bounded function
Rf on Γ defined by

Rf(γ) =
∑
v∈γ

f(v)

Given a node v we denote by ν(υ) the number of edges that contain v as
an endpoint. This number is usually called the degree of the node. We will
assume throughout that we always have ν(υ) ≥ 3 to ensure that the Radon
transform in injective. (In our applications this is only needed for nodes v
that lie in supp(f). In the terminology of [8] we are assuming there are neither
black holes nor flat points in T. Under these conditions, the Radon transform
in a tree is invertible. In fact, the explicit inversion formula resembles that
of the inversion for the Radon transform in the Euclidean plane [9], [13], [14],
and [33]. Unfortunately, even in this case, we need to introduce a significant
amount of auxiliary notations. For the purpose of illustration we describe the
inversion formula here only for the case of homogeneous trees and we refer to
[8] for the general case.

3. Inversion of the Radon transform on homogeneous trees

Consider a homogeneous tree T in which each vertex touches q + 1 edges with
q ≥ 2. If n is a nonnegative integer, let v(n) be the number of vertices of T at
distance n from a fixed vertex of T . It follows that

v(n) =
{

1 if n = 0
(q + 1)qn−1 if n ≥ 1

We give the following definitions. Let v, w be two vertices in T that are con-
nected by a path (v = v0, ...., vm = w), then the distance between v and w is
the nonnegative integer |v, w| = m. Also, for f ∈ L1(T ), let µn be the average
operator defined by

µnf(v) =
1

v(n)

∑

|v,w|=n

f(w), for v ∈ T

It can be seen that µn is basically a convolution with the radial kernel

hn(v, w) =
{ 1

v(n) if |v, w| = n

0 if |v, w| 6= n

Let β = q/(2(q + 1)) and R∗ be the dual Radon transform defined for
Φ ∈ L∞(Γ) by

R∗Φ(v) =
∫

Γv

Φ(γ)dρv(γ)

for each vertex v ∈ T, with respect to a suitable family {ρv : v ∈ T} of measures
on Γv, where Γv is the set of all of the geodesics containing the vertex v.

In order to obtain the inversion of R we observe that R∗R acts as a convo-
lution operator given by the radial kernel βh0 +

∞∑
n=1

2βhn.
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Proposition 3.1. The identity

R∗R = βµ0 +
∞∑

n=1

2βµn on L1(T ),

holds in L1(T ), where the series is absolutely convergent in the convolution
operator norm on L2(T ), thus providing a bounded extension of R∗R to L2(T ).

Theorem 3.2. The unique bounded extension to L2(T ) of the operator R∗R
is invertible on L2(T ), and its inverse is the operator

E =
2(q + 1)3

q(q − 1)2

[
µ0 +

∞∑
n=1

(−1)n2µn

]

which acts as the convolution operator with the radial kernel

2(q + 1)3

q(q − 1)2
[h0 +

∞∑
n=1

(−1)n2hn].

As above, this series converges absolutely in the convolution operator norm on
L2(T ). In particular, E is bounded.

Corollary 3.1. The Radon transform R:L1(T ) → L∞(Γ) is inverted by

ER∗Rf = f.
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