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Abstract. The paper studies the special classes of the stationary and nonsta-
tionary solutions of VM system and their connection with the systems of nonlo-
cal semilinear elliptic equations with boundary conditions. Using the proposed
lower-upper solution method, we proved an existence theorem for a semilinear
nonlocal elliptic boundary value problem under corresponding restrictions over
the distribution function (ansatz RSS [52, 53]).
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Resumen. El art́ıculo estudia clases especiales de soluciones estacionarias y
no estacionarias de sistemas VM y su conexión con los sistemas semilineales
eĺıpticos no locales con condiciones de frontera. Usando el método de bajo-alto
demostramos un teorema de existencia para un problema eĺıptico semilineal
no local con valor de frontera bajo las restricciones correspondientes sobre la
función de distribución (ver ansatz RSS [52, 53]) .

1. Introduction

At present, the investigation of the Vlasov equation goes in two different di-
rections. The first direction is related to the existence theorems for Cauchy
problem and uses an apriori estimation technique as basis for research. The
second one implements the reduction of the initial problem to a simplified one,
introducing a set of distribution functions (ansatz), followed by reconstruction
of the characteristics for electromagnetic fields in an evident form.

This is a rather restrictive approach, since the distribution function has a
special form. On the other hand, it allows us to solve a problem in an explicit
form, which is important for applications.
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The statement and investigation of the boundary value problem for the
Vlasov equation are very difficult and have been considered in simplified cases
only (see. Abdallach [1], Guo [31], Degond [21]). Reducing it to the boundary
value problem for a system of nonlinear elliptic equations allows us to show
a solvability in some cases. Doing the same for the initial statement of the
problem is not that simple.

Nevertheless, both directions are related in terms of special structures used
for studying kinetic equations. For example:

• Energy integral is applied in both cases for obtaining energy estimations
in existence theorems and for construction of Lyapunov functionals;

• Virial identities in stability and instability analysis in special classes of
solutions of Vlasov equation.

It is known that the solution of Vlasov equation (see Vlasov [61, 62]) is an
arbitrary function of first integrals of the characteristic system (until now their
smoothness remains a complicated unsolved problem), defining the trajectory
of a particle motion in electromagnetic field

ṙ = V, V̇ =
qi

mi

(
E(r, t) +

1
c
V ×B(r, t)

)
, (1.1)

where r
4
= (x, y, z) ∈ Ω2 ⊆ R3, V

4
= (Vx, Vy, Vz) ∈ Ω1 ⊂ R3 – position

and velocity of a particle, E
4
= (Ex, Ey, Ez) – a tension of electrical field,

B
4
= (Bx, By, Bz) – magnetic induction and mi, qi – mass and charge of a

particle of i-th kind. For N -component distribution function, the classical
Vlasov-Maxwell(VM) system has the form

∂tfi + V · ∇rfi +
qi

mi

(
E +

1
c
V ×B

)
·∇V fi = 0, i = 1, . . . , N, (1.2)

∂tE = c curlB − j, (1.3)

divE = ρ, (1.4)

∂tB = −c curlE, (1.5)

divB = 0. (1.6)
The charge and current densities are defined by formulae

ρ(r, t) = 4π

N∑

i=1

qi

∫

Ω1

fidV, (1.7)

j(r, t) = 4π

N∑

i=1

qi

∫

Ω1

fiV dV. (1.8)

We impose the specular reflection condition on the boundary for the distribu-
tion function

fi(t, r, v) = fi

(
t, r, v − 2(vNΩ(r))NΩ(r)

)
, t ≥ 0, r ∈ ∂Ω, v ∈ Ω
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where NΩ(r) is a normal vector to the boundary surface.
In applied problems, the impact of magnetic field is often neglected. This

limit system is known as the Vlasov-Poisson (VP) one, where the Maxwell
equations degenerate to the Poisson equation

4ϕ = 4π

N∑

i=1

qi

∫

Ω1

fidV, (1.9)

where ϕ(r, t) – a scalar potential of the electrical field.
In general case the distribution function may be represented in the form

fi = fi(Hi1,Hi2, . . . , Hil), i = 1, . . . , N, (1.10)

where Hil is the first integral (is constant along the characteristics of the equa-
tion) for (1.1).

In fact, it is not easy to select a structure of the distribution function (1.10)
which is connected with electromagnetic potentials aiming to transform the ini-
tial system into a simplified form. Hence, in practice, we are usually restricted
to energy integrals Hi = −ci|V |2 + ϕ(r, t) or H0

i = −di|V |2 + ϕ(r) as in the
stationary problem case (see Vlasov [61, 62]). Meanwhile, an introduction of
the following ansatz

Hil = ϕil + (V, dil) + (AilV, V ) +
∑

m+k+j=3

ail
mkjV

m
1 V k

2 V j
3 (1.11)

generalizes the form of the distribution function. Here V
4
= (V1, V2, V3) and

(AilV, V ) are quadratic forms; the following ones are the forms of higher de-
grees. In this case matrices Ail and coefficients ail

mkj should be connected with
the system (1.2)–(1.6) converting the first integrals for the characteristic system
(1.1) into Hil.

The first statement of existence problem of classical solutions for the one-
dimensional Vlasov equation has been given by Iordanskii [37], and the exis-
tence of generalized (weak) solutions for the two-dimensional problem has been
proved by Arsen’ev [10].

The results of Neunzert [46], Horst [33], Batt [11], Illner, Neunzert [36], Ukai,
Okabe [56], DiPerna, Lions P. [22], Wollman [64, 65], Batt, Rein [14], Pfaffel-
moser [48] are devoted to existence of solutions for (1.2) and (1.9). Degond
[20], Glassey, Strauss [25], Glassey, Schaeffer [26–28], Horst [34, 35], Cooper,
Klimas [18], Schaeffer [54], Guo [31], Rein [50] concern its generalization to the
VM system (1.2)–(1.6).

Some rigorous results obtained recently (see Guo [31], Abdallach [1], De-
gond [21], Abdallach, Degond and Mehats [2], Vedenyapin [58–60], Batt and
Fabian [15], Braasch [16], Guo and Ragazzo [32], Dolbeault [23], Poupaud [49],
Caffarelli, Dolbeault, Markowich, Schmeiser [17], Ambroso [7]) are related to
analysis of (1.2)–(1.6), (1.2)–(1.9) on bounded domains with boundary condi-
tions.
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We have to mention that techniques used to prove the existence of solutions
of Cauchy problem for the VM and VP systems for

(
x ∈ R3, v ∈ R3

)
have

limited applicability on bounded domains. Hence a necessity to study VM and
VP systems with boundary conditions is valid. That is why before presenting
our own results, we have to outline some already published results on VM and
VP systems in bounded domains.

Existence and properties of solutions of the VM and VP systems
in bounded domains. In the case of spherical symmetry rather complete
results were obtained by Batt, Faltenbacher, Horst [13]. In the next paper by
Batt, Berestycki, Degond, Perthame [12] a family of “local isotropic” solutions
of nonstationary problem of the VP system for the distribution function

f(t, r, V ) = Φ
(

W (t, r) +
(U −Ar)2

2

)
, U(t, r) = W (t, r) +

(Ar)2

2
, (1.12)

t ∈ R, r ∈ D ⊂ R3, v ∈ R3, Φ : R→ [0,∞), W : R3 → R,

were constructed. Here U – potential and A – antisymmetric 3 × 3- matrix.
Under this assumptions, the VP system is reduced to the Dirichlet boundary
value problem for the nonlinear elliptic equation

4W + 2|w| = 4π

∫

R3
Φ

(
W +

1
2
|v|2

)
dv, w = (w1, w2, w3) ∈ R.

The existence of the solution for the named problem is proved using the lower–
upper solution method.

The stationary solutions of the n-component VP system for the distribution
function depending on the energy integral fi(E) were studied by Vedenyapin
[58–60]. He proved the existence of a solution to Dirichlet’s problem

−4u(r) = ψ(u), u(r)|∂D = u0(r), (1.13)

ψ(u) = 4π

n∑

k=1

qk

∫

R3
gk

(
1
2
mk|v|2 + qku

)
dv

where an arbitrary function ψ satisfies the condition (i) d
duψ(u) ≥ 0. Here

u(r) – scalar potential, gk(·) – nonnegative continuously differentiable func-
tions, D ⊂ R3 – domain with a smooth enough boundary , u0(r) – potential
given on the boundary. If r ∈ D ⊂ Rp, v ∈ Rp, then the boundary value
problem (1.13) has a unique solution for arbitrary nonnegative functions gk

(Vedenyapin [58]).
Rein [51] proved the existence of a solution of (1.13) by a variational method

under condition (i).
In the paper [15] Batt and Fabian studied a transformation of the stationary

VP system into (1.13) in general case, considering distribution functions de-
pending on energy fi(E) and on the sum of energy and momentum fi(E + P ).
Using a lower–upper solution method (Pao [47]), they proved the existence of
the solutions of (1.13) under condition (i). Therefore the condition (i) became
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a primary condition to prove the existence theorems for the problem (1.13).
The general weak global solution of the VP system has been presented by
Weckler in [63].

Dolbeault [23] proved the existence and uniqueness of Maxwellian solutions

f(t, x, v) =
1

(2πT )N/2
ρ(x)e

−|v|2
2T , (x, v) ∈ Ω× RN (1.14)

using variational methods.
A new direction in the study of the VP system is connected with the

free boundary problems for semiconductor modeling. Caffarelli, Dolbeault,
Markowich, Schmaiser [17] considered a semilinear elliptic integro-differential
equation with Neumann boundary condition

ε4φ = q(n− p− C) Ω, (1.15)

∂φ

∂ν
= 0 ∂Ω,

where local densities of electrons n(x) and holes p(x) in insulated semiconductor
are given by Boltzmann-Maxwellian statistics

n(x) =
N exp

(
qφ(x)/(kT )

)
∫
Ω

exp
(
qφ/(kT )

)
dx

, p(x) =
P exp

(−qφ(x)/(kT )
)

∫
Ω

exp
(−qφ/(kT )

)
dx

.

C(x) – is given background, x ∈ Ω, Ω ⊂ Rd a bounded domain. Using a
variational problem statement they proved the existence and uniqueness of the
solutions and showed that the limit potential is a solution of the free boundary
problem.

Concerning a study of the nonlocal problem (1.15), we recommend the paper
by Maslov [42].

Existence and properties of solutions of the VM system in the boun-
ded domains. If we change velocity v by its relativistic analogue v̂ = v√

1+|v|2
we have to face another complicated problem, since the classical VM system is
not invariance in the sense of Galilei and Lorentz.

Adding boundary conditions

E(t, x)×NΩ(x) = 0, B(t, x)NΩ(x) = 0, t ≥ 0, x ∈ ∂Ω (1.16)

to the system (1.2)–(1.8) we obtain a different problem statement. Here NΩ is
the unit normal vector to ∂Ω and reflection condition

fk(t, x, v) = fk

(
t, x, ṽ(x, v)

)
, t ≥ 0, x ∈ ∂Ω, v ∈ R3, (1.17)

where ṽ : R3 → R3 – bijective mapping for x ∈ ∂Ω. One of the most known
reflection mechanisms is a specular reflection condition of the form

ṽ(x, v) = v − 2
(
vNΩ(x)

)
NΩ(x), x ∈ ∂Ω, v ∈ R3, (1.18)

or invertible reflection condition

ṽ(x, v) = −v, x ∈ ∂Ω, v ∈ R3. (1.19)
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At present, only a few number of papers study the VM system in bounded
domains. For the first time the boundary value problem for one-dimensional
VM system has been considered by Cooper, Klimas [18].

In the paper of Rudykh, Sidorov, Sinitsyn [52] stationary classical solutions
(f1, . . . , fn, E,B) for the VM system of the special form (RSS ansatz)

fk(x, v) = ψk

(−αkv2 + µ1kU1(x), vd + µ2kU2(x)
)
,

E(x) =
1

α1q1
∇U1(x),

B(x) = − 1
q1d2

(
d×∇U2(x)

)

were constructed. Here functions ψk : R2 → [0,∞) and parameters d ∈ R3\{0},
αk > 0, µik 6= 0 (k ∈ {1, . . . , n}, i ∈ {1, 2}) – are given; Functions U1, U2 have
to be defined. This approach (RSS ansatz) is closely connected with the paper
of Degond [20].

Batt, Fabian [15] applied RSS ansatz technique for the VM system with dis-
tribution functions ψ(E), ψ(E, F ), ψ(E, F, P ), where functions E(x, v), F (x, v)
and P (x, v) – are the first integrals of Vlasov equation (1.2). Braasch in his
own thesis [16] extended RSS results to the relativistic VM system.

Collisionless kinetic models (classical and relativistic VM systems).
In this area existence theorems (and global stability) of renormalized solutions
on bounded domains (when trace is defined on the boundary) were proved by
Mischler [44, 45]. Abdallah and Dolbeault [5] also developed the entropic meth-
ods on bounded domains for qualitative study of behavior of global solutions
of the VP system. Regularity theorems of weak solutions on the basis of scalar
conservation laws and averaging lemmas were proved by Jabin, Perthame [38].
Jabin [39] also obtained local existence theorems of weak solutions of the VP
system on bounded domains. For modeling of ionic beams Ambroso, Fleury,
Lucquin-Desreux, Raviart [8] proposed some new kinetic models with a source.
Existence theorems of global solutions of the Vlasov-Einstein system in the
case of hyperbolic symmetry were proved by Andreasson, Rein, Rendall [9].

Quantum models: Vigner-Poisson (VP) and Schrödinger-Poisson
(SP) systems. The paper of Abdallah, Degond, Markowich [3] considered
the Child-Langmuir regime for stationary Schrödinger equation. The authors
developed a semi-classical analysis for quantum kinetic equations passing from
limit h → 0 to classical Vlasov equation with special boundary “transition”
conditions from quantum zone to classical. New results were obtained for
Boltzmann-Poisson, Euler-Poisson, Vigner-Poisson-Fokker-Plank systems (like
existence and uniqueness of the solutions, hydrodynamic limits, solutions with
a minimum energy and dispersion properties).
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Mixed quantum–classical kinetic systems. In the paper of Abdallah
[4] the Vlasov-Schrödinger (VS) and Boltzmann-Schrödinger systems for one-
dimensional stationary case are considered. Nonstationary problems for VS
system with boundary “transition” conditions from classical zone (Vlasov equa-
tion) to quantum (Schrödinger equation) are studied in the paper by Abdallah,
Degond, Gamba [4].

We study the special classes of stationary and nonstationary solutions of VM
system. Being constructed, such solutions lead us to systems of nonlocal semi-
linear elliptic equations with boundary conditions. Applying the lower-upper
solution method, existence theorems for solutions of the semilinear nonlocal
elliptic boundary value problem under corresponding restrictions upon a dis-
tribution function are obtained. It was shown that under certain conditions
upon electromagnetic field, the boundary conditions and specular reflection
condition for distribution function are satisfied.

2. Stationary solutions of Vlasov-Maxwell system

In this section we consider the system

V · ∂

∂r
fi(r, V ) +

qi

mi

(
E +

1
c
V ×B

)
· ∂

∂V
fi(r, V ) = 0, (2.1)

rotE = 0, (2.2)

divB = 0, (2.3)

divE = 4π

N∑

k=1

qk

∫

Ω1

fk(r, V )dV, (2.4)

rotB =
4π

c

N∑

k=1

qk

∫

Ω1

V fk(r, V )dV. (2.5)

Here fi(r, V ) – distribution function of the particles of i-th kind; r
4
= (x, y, z) ∈

∈ Ω2, V
4
= (Vx, Vy, Vz) ∈ Ω1 ⊂ R3 – coordinate and velocity of particle respec-

tively; E, B – electric field strength and magnetic induction; mi, qi – mass and
charge of particle of i-th kind.

We shall seek stationary distributions of the form

fi(r, V ) = fi

(
−αi|V |2 + ϕi, V · di + ψi

) 4
= f̂i(R, G) (2.6)

and corresponding self consistent electromagnetic fields E and B satisfying
(2.1)–(2.5). We assume that

i) f̂i(R, G) – fixed differentiable functions of own arguments; αi ∈ R+,
di ∈ R3 are free parameters, |di| 6= 0; ϕi = c1i + liϕ, ψi = c2i + kiψ, where
c1i, c2i – constant; for all ϕi, ψi the integrals∫

R3
fidV,

∫

R3
V fidV,
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are convergent. Unknown functions ϕi(r), ψi(r) have to be defined in such
a manner that system (2.1)–(2.5) will satisfies the relation

(
E(r), di

)
= 0,

i = 1, . . . , N . The last condition is necessary for solvability of (2.1) in a class
(2.6) for ∂f̂i/∂R|v=0 6= 0.

2.1. Reduction of the problem (2.1)–(2.5) to the system of nonlinear
elliptic equations. We construct the system of equations to define the set
of functions ϕi, ψi. Substituting (2.6) into (2.1) and equating to zero the
coefficients at ∂f̂i/∂R and ∂f̂i/∂G we obtain

E(r) =
mi

2αiqi
∇ϕi, (2.7)

B(r)× di = −mic

qi
∇ψi, (2.8)

(
E(r), di

)
= 0. (2.9)

Here ϕi, ψi – arbitrary functions satisfying conditions

(∇ϕi, di) = 0, i = 1, . . . , N, (2.10)

(∇ψi, di) = 0. (2.11)

Vector B is

B(r) =
λi(r)
d2

i

di − [di ×∇ψi]
mic

qid2
i

, (2.12)

where λi(r) = (B, di) – function which has to be defined. Having defined ϕi, ψi

such that system (2.2)–(2.5) is satisfied, we can find unknown functions fi, E,B
by formulae (2.6), (2.7), (2.12).

Unknown vectors ∇ϕi,∇ψi are linearly dependent by virtue of (2.7), (2.8).
Then we shall seek ϕi, ψi in the form

ϕi = c1i + liϕ, ψi = c2i + kiψ, (2.13)

where c1i, c2i – constants. Because of (2.7), (2.8) parameters li, ki are linked
by the following relations

li =
m1

α1q1

αiqi

mi
, i = 1, . . . , N, (2.14)

ki
q1

m1
d1 =

qi

mi
di. (2.15)

From (2.4) with (2.7) we obtain the system

4ϕi =
8παiqi

mi

N∑

k=1

qk

∫

Ω1

fk(r, V )dV. (2.16)

Since div[di ×∇ψi] = 0, then substituting (2.12) into (2.3) we have
(∇λi(r), di

)
= 0. (2.17)
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Taking into account (2.12), from (2.5) we obtain the system of linear algebraic
equations for ∇λi

∇λi × di =
mic

qi
di4ψi +

4π

c
d2

i

N∑

k=1

qk

∫

Ω1

V fkdV. (2.18)

To solve (2.18) it is necessary and sufficient due to Fredholm’s theorem (see [55])
that ψi satisfies the equation

4ψi = − 4πqi

mic2

N∑

k=1

qk

∫

Ω1

(V, di)fkdV. (2.19)

Furthermore, vector
Ci(r)di + di × J(r) (2.20)

is a general solution of (2.18) with

J
4
=

4π

c

N∑

k=1

qk

∫

Ω1

V fkdV,

Ci – arbitrary function. Taking into account (2.13)–(2.15), it is easy to show
that functions ϕ,ψ satisfy the system

4ϕ =
8παq

m

N∑

k=1

qk

∫

Ω1

fkdV, (2.21)

4ψ = − 4πq

mc2

N∑

k=1

qk

∫

Ω1

(V, d)fkdV, (2.22)

with α
4
= a1, q

4
= q1, m

4
= m1, d

4
= d1.

Lemma 2.1. Vector di × J(r) is a potential and a unique solution of (2.18)
satisfying condition (2.17).

Proof. Since ψ satisfies (2.22), then (2.20) is a general solution of (2.18). Due
to (2.17) we can set Ci ≡ 0. Therefore di×J – unique solution of (2.17), (2.18).
We show that di × J – potential. In fact

rot[di × J ] = −(di,∇)J + d(∇, J),

where
(∇, J) ≡ 0, (di,∇)J = (di,∇)rotB = rot(di,∇)B.

Due to (2.12)

(di,∇)B = (di,∇)
{

λi

d2
i

di − [di ×∇ψi]
mic

qid2
i

}

=
di

d2
i

(∇λi, di)− mic

qid2
i

× [di ×∇(di,∇ψi)],

(∇λi, di) = 0, (∇ψi, di) = 0.
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Hence rot[di × J ] ≡ 0, di × J = ∇λi, and Lemma is proved. ¤X

Corollary 2.1.
∇λi(r) = [di × J(r)]. (2.23)

Lemma 2.2. Let b(x) = (b1(x), b2(x), b3(x)), x ∈ R3,

∂bi

∂xj
=

∂bj

∂xi
, i, j = 1, 2, 3. (2.24)

Then b(x) = ∇λ(x), where

λ(x) =
∫ 1

0

(b(τx), x)dτ + const. (2.25)

The proof is developed by straight calculation.

Corollary 2.2.

di

d2
i

λi =
d

d2

(
β+

∫ 1

0

(
d×J(τx), x

)
dτ

)
, i = 1, . . . , N, β−const. (2.26)

Result follows from Lemma 2.2, Corollary 2.1 and (2.15).
We are looking for the solutions (2.21), (2.22) satisfying orthogonality con-

ditions (2.10), (2.11). Assuming d1i 6= 0, i = 1, 2, 3 we shall seek solutions in
the form ϕ = ϕ(ξ, η), ψ = ψ(ξ, η)

ξ =
(

y

d12
− z

d13

)
+

d2
11

d2
11 + d2

12

(
x

d11
− y

d12

)
,

η =
|d1|d11d12

d13(d2
11 + d2

12)

(
x

d11
− y

d12

)
, d1

4
= (d11, d12, d13). (2.27)

Moreover the problem is reduced to the study of nonlinear (semilinear) elliptic
equations

4ϕ = µ

N∑

k=1

qk

∫

Ω1

fkdV, (2.28)

4ψ = ν

N∑

k=1

qk

∫

Ω1

(V, d)fkdV, (2.29)

where

d
4
= d1, 4· = ∂2·

∂ξ2
+

∂2·
∂η2

;

µ =
8παq

mw(d)
; ν = − 4πq

mc2w(d)
; w(d) =

d2

d13(d2
11 + d2

12)
.

We notice that every solution (2.28), (2.29) due to (2.27) satisfies orthogonality
conditions (2.10), (2.11). From the preceding assertion it follows
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Theorem 2.1. Let the distribution function have the form (2.6). Then the
electromagnetic field {E, B} is defined by formulas

E(r̂) =
m

2αq
∇ϕ,

(2.30)

B(r̂) =
d

d2

{
β +

∫ 1

0

(d× J(τ r̂), r̂)dτ

}
−[d×∇ψ(r̂)]

mc

qd2
,

where r̂
4
= (ξ, η); β – const; functions ϕ(r̂), ψ(r̂) satisfy system (2.28), (2.29).

Let us introduce a scalar and vector potentials U(r), A(r),

E(r) = −∇U(r), B(r) = rotA. (2.31)

Due to (2.7), (2.12) and (2.26) field {E, B} is defined via potentials {U,A} by
formulae

U = − m

2αq
ϕ, A =

mc

qd2
ψd + A1(r), (2.32)

where (A1, d) = 0. Unknown potentials U,A can be defined in a subspace D of
smooth enough functions on the set Ω ⊂ R3 with a smooth boundary ∂Ω and
moreover to satisfy conditions

(∇U, d) = 0,
(∇(A, d), d

)
= 0 (2.33)

and on the boundary

U |∂Ω2 = u0(r), (A, d)|∂Ω2 = u1(r). (2.34)

Corollary 2.3. Let the distribution function have the form (2.6). Then the
VM system (2.1)–(2.5) with boundary conditions (2.34) has a solution

fi = fi

(−αi|V |2 + c1i + liϕ
∗(r), diV + c2i + kiψ

∗(r)
)
,

where li, ki satisfy (2.14) and (2.15),

E =
m

2αq
∇ϕ∗(r),

(2.35)

B =
d

d2

{
β +

∫ 1

0

(
d× J∗(τr), r

)
dτ

}
−[

d×∇ψ∗(r)
] mc

qd2
,

J∗(r) =
4π

c

N∑

k=1

qk

∫

Ω1

V fdV.

Functions ϕ∗, ψ∗ belong to D and are defined from system (2.28), (2.29) with
boundary conditions

ϕ|∂Ω2 = −2αq

m
u0(r), (2.36)

ψ|∂Ω2 =
q

mc
u(r). (2.37)
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2.2. Reduction of system (2.28)–(2.29) to a single equation.

Lemma 2.3. If

f(V + d, r) = f(−V + d, r), d ∈ R3, (2.38)

then the following equality holds

j = d · ρ, (2.39)

where j =
∫
Ω1

V fdV or is the vector of current density; ρ =
∫
Ω1

fdV –or is
the charge density.

Proof. Making change of variables in integral
∫
Ω1

V fdV of the form Vi = ξi +
di (i = 1, 2, 3), we obtain∫

Vif(V, r)dV = J1 + J2 + J3,

where
J1 = di

∫

Ω1

f(ξ + d, r)dξ,

J2 + J3 =
∫ ∞

0

∫ ∞

0

∫ ∞

0

ξif(ξi + d, r)dξ +
∫ 0

−∞

∫ 0

−∞

∫ 0

−∞
ξif(ξi + d, r)dξ.

It is easy to show that J3 = −J2 and (2.39) follows. ¤X

Taking into account Lemma 2.3, (2.28), (2.29) can be transformed to the
form

4ϕ = µ

N∑

i=1

qiAi, (2.40)

4ψ =
νd2

2α

N∑

i=1

kiqi

li
Ai, (2.41)

where Ai =
∫
Ω1

fidV , i = 1, . . . , N .
Let (ξ, η) ∈ Ω where Ω is a bounded domain in R2 with a smooth boundary

∂Ω. We set a value of scalar potential on the boundary ∂Ω:

ϕ(ξ, η)|∂Ω = A(ξ, η). (2.42)

Lets consider two cases, when (2.40), (2.41) is reduced to one equation.
Case 1. li = ki, i = 1, . . . , N .

Lemma 2.4. If li = ki and u∗ satisfies equation

4u = a(d, α)
N∑

k=1

qiAi(γi + liu) (2.43)

with
γi = c1i + c2i, i = 1, . . . , N, u = ϕ + ψ,

a(d, α) = 2πq
(
4α2c2 − d2

)
/

(
mc2αw(d)

)
,
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then system (2.40), (2.41) has a solution

ϕ = Θ(d, α)u∗ + ϕ0, ψ =
(
1−Θ(d, α)

)
u∗ − ϕ0, (2.44)

where
Θ(d, α) = 4α2c2/(4α2c2 − d2), 4α2c2 6= d2.

Knowing some solution u∗ of the equation (2.43) being solved under the
conditions of Lemma 2.4 and the value of potential on the boundary ϕ|∂Ω =
A(ξ, η), we find ϕ0 by means of the solution of the linear problem

4ϕ0 = 0,

(2.45)

ϕ0|Ω = A(ξ, η)−Θu∗|∂Ω.

Hence, in the first case we transformed the problem finding the ”solving” equa-
tion (2.43) and linear Dirichlet problem (2.45). We have the following result.

Theorem 2.2. Let ki = li, i = 1, . . . , N . Then the VM system (2.1)–(2.5)
with boundary condition (2.42) has a solution

fi = fi

(−αi|V |2 + V di + γi + liu
∗(ξ, η)

)
,

E =
m

2αq
(Θ(d, α)∇u∗(ξ, η) +∇ϕ0) , (2.46)

B =
d

d2

{
β +

∫ 1

0

(
d× J(τ r̂), r̂

)
dτ

}
− [

d× (∇(1−Θ(d, α))u∗(ξ, η)− ϕ0

)] mc

qd2
.

u∗(ξ, η) – function satisfying “solving” equation (2.43); γi, βi – const; r̂
4
=

(ξ, η) and ϕ0(ξ, η) is a harmonic function defined from the linear problem
(2.45).

Case 2. l2 = . . . = lN
4
= l, k2 = . . . = kN

4
= k, l 6= k. We notice that for

N = 2 cases 1 and 2 exhaust all possible connections between parameters li
and ki. We construct a solution ϕ,ψ of (2.40), (2.41) satisfying condition

ϕ + ψ = lϕ + kψ. (2.47)

Let fi
4
= fi(−αi|V |2 + V di + ϕi + ψi) be functions such that the following

condition holds.
(A). There are constants γi, i = 1, . . . , N such that

ΘqA1(γ1 + u) + τ

N∑

i=2

qiAi(γi + u) = 0

for

Θ = 4α2c2(1− l) + d2(k − 1), τ = 4α2c2(1− l) + d2(k − 1)
k

l
.

We remark that the corresponding distribution function satisfies the condition
of Lemma 2.3.
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Lemma 2.5. Let l2 = l3 = . . . = lN
4
= l, k2 = k3 = . . . = kN

4
= k, l 6= k. We

assume that condition (A) holds. Then (2.40), (2.41) has a solution

ϕ =
k − 1
k − l

u∗, ψ =
1− l

k − l
u∗,

where u∗ satisfies equation

4u = ε
h

a(α, l) + εb(d, k, l)
A1(γ1 + u), (2.48)

ε =
1
c2

, h =
d2(k − l)28παq2

mw(d)
, a = 4α2(1− l)l, b = d2(k − 1)k.

Proof. By changing ϕ = lu, ψ = ku system is reduced to (2.48) due to (A).
Since

ϕ =
k − 1
k − l

u, ψ =
1− l

k − l
u,

then Lemma is proved. ¤X

From Lemma 2.5 we obtain

Theorem 2.3. Let α2q2/m2 = . . . = αNqN/mN , k2 = . . . = kN
4
= k such

that k /∈
{

αN qN

mN
, 1

}
and condition (A) holds. Then the VM system (2.1)–(2.5)

with boundary condition (2.42) on the scalar potential ϕ has a solution

fi = fi

(−αi|V |2 + V di + γi + u∗
)
,

E =
m(k − 1)
2αq(k − l)

∇u∗,

B =
d

d2

{
β +

∫ 1

0

(
d× J(τ r̂), r̂

)
dτ

}
−[d×∇u∗]

cm(1− l)
qd2(k − l)

.

Here u∗ satisfies (2.48) with condition

u∗|∂Ω =
k − 1
k − l

m

2αq
A(ξ, η), (2.49)

β, γi – constants, r̂
4
= (ξ, η).

The problem (2.48), (2.49) at ε → 0 has a solution u∗ = u0 + O(ε) where u0

is a harmonic function satisfying condition (2.49). Existence of other solutions
of (2.48), (2.49) can be shown using a parameter continuation method, results
of branching theory (see [57]).
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3. Existence of solutions of boundary value problem
(2.40)–(2.42)

We present the form of the distribution function. Let

fi = exp
(−αi|V |2 + V di + γi + liϕ + kiψ

)
. (3.1)

Distributions of the form (3.1) have meaning in applications. Substituting (3.1)
into (2.40) and (2.41) and taking into account (2.13)–(2.15) and (2.39), we get
the system

4ϕ = µ

N∑

k=1

qi

(
π

ai

)3/2

exp
(

γi +
d2

i

4αi

)
exp(liϕ + kiψ),

(3.2)

4ψ =
d2ν

2α

N∑

i=1

qi

(
π

αi

)3/2

exp
(

γi +
d2

i

4αi

)
exp(liϕ + kiψ)

ki

li
.

Introducing the normalization condition∫

Ω

∫

R3
fidV dx = 1, (3.3)

i = 1, . . . , N ; Ω ⊆ R2; x
4
= (ξ, η),

we transform (3.2) into

4ϕ = µ

N∑

i=1

qiexp(liϕ + kiψ)
(∫

Ω

exp(liϕ + kiψ)dx

)−1

,

(3.4)

4ψ =
d2ν

2α

N∑

i=1

qi
ki

li
exp(liϕ + kiψ)

(∫

Ω

exp(liϕ + kiψ)dx

)−1

.

Consider the general case, when it is not possible to transform (3.4) into one

equation. Without loss of generality we can consider that l2 6= k2; q
4
= q1. Let

q1 < 0, qi > 0, i = 2, . . . , N . Introduce new variables

u1 = ϕ + ψ, ui = −(liϕ + kiψ), i = 2, . . . , N. (3.5)

Using (3.5) taking into account of boundary conditions (2.36)–(2.37), we obtain
the system

−4ui =
N∑

j=1

CijAj , i = 1, . . . , N, (3.6)

where

A1 = eu1

(∫

Ω

eu1dx

)−1

, Aj = e−uj

(∫

Ω

e−uj dx

)−1

, j = 2, . . . , N,
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Cij =
8π

w(d1)
· ai

mi
|qi|qj

(
1− 1

2d2
1c

2
ZiZj

)
, Zi =

(d1, di)
αi

,

ui = u0i, x ∈ ∂Ω, i = 1, . . . , N. (3.7)

It is easy to check that (3.4) and (3.6) are equivalent in the sense that solutions
of (3.6) completely define solutions of (3.4). In fact ϕ,ψ are defined via u1, u2,
because l2, k2 and ui are linearly dependent for i = 3, . . . , N . Here we assume
that u0i ∈ C2+α, ∂Ω ∈ C2+α, α ∈ (0, 1).

We give auxiliary results.

Lemma 3.1. Let
N∑

j=1

Cij > 0,

( N∑

j=1

Cij < 0
)

.

Then

Fi(u) =
N∑

j=1

CijAj(u) ≥ 0, ui ≥ min
∂Ω

u0i,

(
Fi(u) =

N∑

j=1

CijAj(u) ≤ 0, ui ≤ max
∂Ω

u0i

)
.

Proof. It is easy to see that
∫
Ω

Fi(u)dx =
∑N

j=1 Cij > 0. Moreover the set
Ω+ = {x ∈ Ω : Fi(u(x)) > 0} is nonempty. We denote with Ω− = {x ∈ Ω :
Fi

(
u(x)

)
< 0}, and we show that Ω− = Ø. Hence, on one hand, Fi

(
u(x)

)
= 0

where x ∈ ∂Ω, and on the other hand,

−4ui(x) = Fi

(
u(x)

)
< 0, x ∈ Ω.

Thus, ui is bounded in Ω and it attains its maximum on ∂Ω = Ω̄\Ω, i.e.
maxx∈Ω̄ u(x) = u(x0), x0 ∈ ∂Ω. However, since the function Fi(u) decreases
for fixed

(∫
Ω

e−uj dx
)−1, then we obtain Fi

(
u(x)

)
> Fi

(
u(x0)

)
= 0, so x ∈

Ω̄ contradicts definition of the set Ω−. Analogously case
∑N

j=1 Cij < 0 is
considered as well (see [41]). The lemma is now proved. ¤X

Lemma 3.2 (Gogny, Lions [29]). Let

max
Ω

(u− v)(x) = (u− v)(x0) > 0.

Then

eu(x0)

(∫

Ω

eu(x)dx

)−1

> ev(x0)

(∫

Ω

ev(x)dx

)−1

,

e−u(x0)

(∫

Ω

e−u(x)dx

)−1

< e−v(x0)

(∫

Ω

e−v(x)dx

)−1

.
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We define the vector-function v(x), w(x) ∈ C2(Ω)N ∩C1(Ω̄)N as a lower and
upper solutions of (3.6), (3.7) in the following sense

−4vi ≤
N∑

j=2

Cij
e−wj∫

Ω
e−vj dx

+ Ci1
ew1∫

Ω
ev1dx

≤ Fi(v), x ∈ Ω,

(3.8)

−4wi ≥
N∑

j=2

Cij
e−vj∫

Ω
e−wj dx

+ Ci1
ev1∫

Ω
ew1dx

≥ Fi(w), x ∈ Ω,

vi ≤ u0i, wi ≥ u0i, x ∈ ∂Ω (3.9)

with v = (v1, . . . , vN )′, w = (w1, . . . , wN )′.
It is easy to show that Aj(u) is invariant under a translation on the constant

vector, therefore (3.9) can be changed to

vi ≤ 0, wi ≥ 0, x ∈ ∂Ω. (3.10)

Theorem 3.1. Let there exists a lower vi(x) ∈ C2(Ω) ∩ C1(Ω̄) and an upper
wi(x) ∈ C2(Ω) ∩ C1(Ω̄) solution satisfying inequalities (3.8), (3.10), such that
vi(x) ≤ wi(x) in Ω̄. Let u0i ∈ C2+α(∂Ω). Then (3.6), (3.7) has a unique
classical solution ui(x) ∈ C2+α(Ω̄) and moreover vi(x) ≤ ui(x) ≤ wi(x) in Ω̄,
i = 1, . . . , N .

Proof. Let zi(x) ∈ C(Ω̄) be given functions, vi ≤ zi ≤ wi. We define the opera-
tor T : C(Ω̄)N → C(Ω̄)N by formulae u = Tz, z(x) ∈
∈ C(Ω̄)n, where u = (u1, . . . , uN )′ is a unique solution of the problem

−4ui =
N∑

j=1

CijAj(p(z)) + q(zi)
4
= F̂i(z), ui = u0i, x ∈ ∂Ω, (3.11)

where p(z) = max{v, min{z, w}},

q(zi) =





wi−zi

1+z2
i

, zi ≥ wi,

0, vi ≤ zi ≤ wi,

vi−zi

1+z2
i
, vi ≤ zi.

It is evident that the function F̂ (z) is continuous and bounded. Then due to
smoothness of ∂Ω and boundary conditions, (3.11) is only solvable in C1+α(Ω̄)N ,
i.e. u(x) ∈ C1+α(Ω̄)N . Here we used Theorem 8.34 from [24]. Due to com-
pactness of embedding C1+α(Ω̄) ⊂ C(Ω̄) and continuity of F̂ (z), it follows
that the operator T is a completely continuous (compact) operator. Then by
Schauder theorem (see [66]), the operator T has a fixed point u = Tu with
u ∈ C(Ω̄)N . On the other hand, since u ∈ C1+α(Ω̄)N , then F̂ (u) ∈ Cα(Ω̄)N

and from classical theory it follows that u ∈ C2+α(Ω̄)N .
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Now we will show that vi ≤ ui ≤ wi. We suppose that there exists a number
k ∈ {1, . . . , N} and a point x0 ∈ Ω̄ such that

(vk − uk)(x0) = max
Ω̄

(vk − uk) = ε > 0.

Evidently, x0, due to (3.9), can not belong to the boundary ∂Ω. Then, due to
the maximum principle, we have a contradiction

0 ≤ −4(vk − uk)(x0) ≤ Ck1
ew1(x0)∫
Ω

ev1dx
+

N∑

j=2

Ckj
e−wj(x0)∫
Ω

e−vj dx

−Ck1
ep(u1)(x0)∫
Ω

ep(u1)dx
−

N∑

j=2

Ckj
e−p(uj)(x0)

∫
Ω

e−p(uj)dx
+

(uk − vk)(x0)
1 + u2

k(x0)
< 0.

Thus, vi ≤ ui. Analogously, the proof of the inequality ui ≤ wi follows.
We assume that there exists a number l ∈ {1, 2, . . . , N} and a point y0 ∈ Ω̄

such that there are two solutions u1, u2 of (3.6), (3.7), u1
i ≡ u2

i , i 6= l, u1
l (y0) >

u2
l (y0). Using Lemma 3.2 a contradiction arises again to contradiction: 0 ≤
−4 (

u1
l − u2

l

)
(y0) < 0, which proves uniqueness. The Theorem is now proved.

¤X

We construct an upper and lower solutions of (3.6), (3.7). Let
∑N

j=1 Cij > 0,
i = 1, . . . , N . Then from Lemma 3.1 it follows ui ≥ 0. First, we construct an
upper solution of the form: vi ≡ 0,

−4wi =
N∑

j=2

Cij∫
Ω

e−wj dx
− |Ci1|∫

Ω
ew1dx

, (3.12)

wi|∂Ω = max
i,∂Ω

u0i ≡ w0 (3.13)

with x = (ξ, η) ∈ Ω ⊂ R2. From (3.8) it follows that wi must satisfy the
inequalities

N∑

j=2

Cije
−wj − |Ci1|ew1 ≥ 0, i = 1, . . . , N. (3.14)

Consider the auxiliary problem

−4g = 1, g|∂Ω = w0.

We assume that Ω(domain) is contained in a strip 0 < x1 < r and we intro-
duce the function q(x) = w0 + er − ex1 . It is easy to show that 4(q − g) =
= −ex1 + 1 < 0 on Ω, q − g = er − ex1 ≥ 0 on ∂Ω. Therefore, according to
maximum principle (see [24]) q − g ≥ 0, if x ∈ Ω̄ and

w0 ≤ g(x) ≤ w0 + er − 1
4
= M. (3.15)
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We denote with zi = const ≥ 0 in (3.12). Then from (3.12) and (3.15) we
obtain wi ≤ Mzi, wi = zig(x) and (3.12), (3.13) is equivalent to the following
finite-dimensional algebraic system

zi =
N∑

j=2

Cij∫
Ω

e−zjgdx
− |Ci1|∫

Ω
ez1gdx

4
= Li(z).

Let us introduce the norm |z| = max1≤i≤N |zi|. Then, due to (3.15) we obtain
the following chain of inequalities

|L(z)| ≤ max
1≤i≤n

∣∣∣∣∣∣

N∑

j=2

Cij∫
Ω

e−zjgdx
− |Ci1|∫

Ω
ez1gdx

∣∣∣∣∣∣
≤

≤ 1
|Ω| max

1≤i≤N





N∑

j=2

Cije
Mzj − |Ci1|e−Mz1



 ≤

≤ 1
|Ω| max

1≤i≤N





N∑

j=2

Cije
M |z| − |Ci1|e−M |z|



 , (3.16)

where |Ω| = mesΩ, Ω ⊂ R2.

Lemma 3.3. Let
∑N

j=1 Cij > 0. We introduce notations

N∑

j=2

Cij
4
= ai, |Ci1| = bi, min

1≤i≤N

ai

bi
= α2 > 1.

Let the inequalities

αai − 1
α

bi ≤ |Ω|
M

ln α, i = 1, . . . , N (3.17)

hold. Then the equation Lz = z has a solution with zi ≤ 1
M ln α and functions

vi ≡ 0, wi = zig(x) are a lower and upper solutions of the problems (3.6), (3.7).

Proof. Let |z| = R. From (3.14) it follows

aie
−MR − bie

MR ≥ 0

with R ≤ 1
M ln α. Substituting a maximum value R = 1

M ln α into (3.16), it is
easy to check that (3.17) gives an estimation |L(z)| ≤ |z| and the existence of
the fixed point Lz = z follows from Brayer theorem (see [66]). ¤X

Let now
∑N

j=1 Cij ≤ 0, i = 1, . . . , N . Analogously, the latter suggest the
following result.

Lemma 3.4. Let
∑N

j=1 Cij < 0, β2 = min1≤i≤N (bi/ai) > 1 and suppose that
inequalities

bi

β
− βai ≤ |Ω|

M
ln β, i = 1, . . . , N (3.18)
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hold. Then, the functions vi = −zig(x), wi ≡ 0 are a lower and an upper
solutions of (3.6), (3.7) with zi = −Li(−z).

It follows from Theorem 3.1 and from smoothness of the function Fi(u) under
the fixed functional coefficients

(∫
Ω

e−uj dx
)−1, that there exists a constant

M(v, w) > 0 such that ∂
∂uj

Fi ≥ −M with i, j = 1, . . . , N . Moreover the
mapping G : C(Ω̄)N → C(Ω̄)N defined by formulae Giu = Fi + Mui will be
monotonic increasing in ui because of the monotonicity of the coefficients. Let
T1 : z = T1z,be an operator with

−4zi + Mzi = Giu > 0, zi|∂Ω = u0i. (3.19)

Due to the maximum principle zi > 0 (u0i > 0), thus operator T1 is positive
and monotonic. Moreover, T1 is completely continuous and it can be proved
in the same way as we did for operator T . It is evident, that v ≤ T1v and
T1w ≤ w. We notice that a cone of nonnegative functions is normal in C(Ω̄).
Therefore due to uniqueness (Theorem 3.1), we can apply the classical theory of
monotonic operators (see. [40]) for problem (3.19) and we obtain the following
result.

Theorem 3.2. Operator T1 has a unique fixed point u = T1u, vi ≤ ui ≤ wi,
where for any y0 : vi ≤ y0i ≤ wi, successive approximations yn+1 = T1yn are
uniformly convergent to u.

Corollary 3.1. We define successive approximations in the following way

u0
i = 0,

−4un+1
i + Mun+1

i = Fi(un) + Mun
i ,

un+1
i |∂Ω=u0i , i = 1, 2, n = 0, 1, . . . ;

un
k =

qkαk

mk(z2 − z1)

[
m1

|q1|α1
(z2 − zk)un

1 +
m2

q2α2
(zk − z1)un

2

]
, k = 3, . . . , n.

Then {un
i }, i = 1, . . . , n are monotonic and uniformly convergent to the solution

of (3.6), (3.7).

Remark 3.1. In the case n = 1, boundary value problem (2.55), (2.56) was
considered in Gogny, Lions [29], Krzywicki, Nadzieja [41].

4. Existence of solution of nonlocal boundary value problem
(2.40), (2.41), (2.36), (2.37)

Consider plasma on domain Ω ⊂ R2 with a smooth boundary ∂Ω ∈ C1 consist-
ing of N kinds of charged particles. It is assumed that particles interact among
themselves only by means of their own charges q1, . . . , qN ∈ R\{0}. Every par-
ticle of i-th kind is described by the distribution function fi = fi(x, v, t) ≥ 0,
where t ≥ 0 – time, x ∈ Ω – position and v ∈ R3 – velocity. Plasma motion
is described by the classical VM system (2.1)–(2.5) with boundary conditions
(2.34). We impose the reflection condition (1.17) for distribution functions.



BOUNDARY VALUE PROBLEMS FOR THE VLASOV-MAXWELL. . . 171

In this section we studied stationary solutions (f1, . . . , fN , E,B) of the VM
system of special form

fi = f̂i

(−αiv
2 + c1i + liϕ(x), vdi + c2i + kiψ(x)

)
, (4.1)

E(x) =
m

2αq
∇ϕ, (4.2)

B(x) = − cm

qd2
(d×∇ψ), (4.3)

where functions f̂i : R2 → [0,∞[ and parameters d ∈ R3\{0}, αi > 0,
c1i, c2i, li, ki (see formulae of connection (2.13)–(2.15)) are given, and functions
ϕ,ψ have to be defined. In Section 3 by the lower-upper solutions method,
the existence theorem of classical solutions of boundary value problem (2.40)–
(2.42) is proved for the distribution function f̂i = exp(ϕ + ψ). In the proof of
the existence theorem 3.1, we essentially applied the monotonic property of the
right parts of (3.6). In the general case of distribution function (4.1) system
(2.40), (2.41) does not have good monotonic properties and therefore we can
not apply techniques of lower and upper solutions for nonlinear elliptic systems
in a cone developed by Amann [6]. Therefore we show existence of solutions
of the boundary value problem (2.40), (2.41), (2.36), (2.37) by the method of
lower-upper solutions without monotonic conditions. We notice that the ap-
proach (4.1)–(4.3) is connected with papers of P. Degond [20] and J. Batt, K.
Fabian [15]. In these papers they introduce integrals E, F (x, v) and P (x, v) of
the Vlasov equation and solutions of the VM system for the distribution func-
tion (i = 1 – particles of single kind) of the form f̂(E), f̂(E, F ) or f̂(E, F, P )
are considered. The case of the distribution function of f̂(E, P ) and particles
of various kinds (species i = 1, . . . , N) in these papers are not considered.

Thus we consider the boundary value problem (2.40), (2.41), (2.36), (2.37).
Let q < 0 (electrons), qi > 0 (positive ions), i = = 2, . . . , N . Then (2.40),
(2.41) takes the form

4ϕ =
8παq

mω(d)

(
qA1 −

N∑

i=2

|qi|Ai

)
= h1, (4.4)

−4ψ =
4πq

mc2w(d)
d2

2α

(
qA1 −

N∑

i=2

ki

li
|qi|Ai

)
= h2, (4.5)

where Ai =
∫
Ω

fidv, i = 1, . . . , N , and fi is ansatz (4.1).

Remark 4.1. In case ki = li system (4.4), (4.5) is transformed to one equation
and we may use Theorem 3.1.

Theorem (McKenna-Walter [43]). Let Ω ⊂ RN – bounded domain with bound-
ary ∂Ω ∈ C2,µ for some µ ∈]0, 1[. Let h : Ω̄ × RN → RN satisfy the following
smoothness conditions: ∀r > 0 there exists Cr > 0 such that ∀x, x1, x2 ∈ Ω̄ and
∀y, y1, y2 ≤ r:
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I. Inequalities

|h(x1, y)− h(x2, y)| ≤ Cr|x1 − x2|µ,

|h(x, y1)− h(x, y2)| ≤ Cr|y1 − y2| hold ;

II. There exists an ordered pair (v, w) of lower v and upper w solutions, i.e.
v, w ∈ C2(Ω)N

⋂
C1(Ω̄)N , v ≤ w in Ω̄, v ≤ 0 ≤ w on ∂Ω,

∀x ∈ Ω : ∀z ∈ RN , v(x) ≤ z ≤ w(x), zk = vk(x) : 4vk(x) ≥ hk(x, z)

and

∀x ∈ Ω : ∀z ∈ RN , v(x) ≤ z ≤ w(x) : zk = wk : 4wk(x) ≤ hk(x, z)

for all k ∈ {1, . . . , N} (Here the vector inequality v(x) ≤ z ≤ w(x) means a
component wise comparison).

Then there is a solution u ∈ C2,µ(Ω̄)N of the problem

4u = h
(·, u(·)) in Ω

u = 0 ∂Ω

such that v ≤ u ≤ w in Ω̄.
Because the right parts in (4.4), (4.5) are nonlocal, then we give sufficient

conditions on functions f̂i in order to make possible applying McKenna-Walter
theorem.

Lemma 4.1. Let α > 0 and f̂ : R2 → [0,∞[ satisfy the following conditions:
1. f̂ ∈ C1

(
R2

)
;

2. f̂ and f̂ ′ are bounded and there exists R0 ∈ R such that
supp

(
f̂
)
⊂ [R0,∞[×R.

Then the function hα,f̂ : R2 → R2, given via

hα,f̂ (u) =
4πq

mw(d)

∫

R3

(
2αq

− 1
c2

ki

li

)
f̂

(−αv2 + u1, vd + u2

)
dv

is continuously differentiable and there are R,C1, C2 such that
(

0

−C2(u1 + R)2+

)
≤ hα,f̂ (u) ≤


 C1(u1 + R)3/2

+

C2(u1 + R)2+




for any function u ∈ R2.

Proof. Transforming into spherical coordinates

v1 = ρ sinΘ cos ϕ, v2 = ρ sinΘ sin ϕ, v3 = ρ cos Θ,
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we obtain

h1
α,f̂

(u) =
8παq2

mc2w(d)

∫

R3
f̂

(−αv2 + u1, vd + u2

)
dv

= P (q, α, d, m)
∫ ∞

0

∫ π

0

∫ 2π

0

f̂
(−αϕ2 + u1, ϕk(ρ,Θ) + u2

)
sin(Θ)ϕ2dρdΘdϕ

=
P (q, α, d,m)

α2

∫ u1

−∞

∫ π

0

∫ 2π

0

f̂
(
s, α−1k(ρ,Θ)

√
(u1 − s) + u2

)

× sin(Θ)(u1 − s)
√

(u1 − s)dρdΘds

=
P (q, α, d,m)

α2

∫ u1

−∞
K1(s, u1 − s, u2)(u1 − s)

√
(u1 − s)ds,

where

k(ρ, Θ) = d1 cos(ρ) sin(Θ) + d2 sin(ρ) sin(Θ) + d3 cos(Θ)

and

K1(s, t, ϕ) =
∫ π

0

∫ 2π

0

f̂(s, α−1k(ρ,Θ)
√

t + ϕ) sin(Θ)dρdΘ.

Similar expressions are satisfied for h2
α,f̂

and K2(s, t, ϕ). Due to condition (2)
kernels K1,K2 are bounded, and applying Lebesgue dominated convergence
theorem, it is easy to prove that hα,f̂ ∈ C1

(
R2

)2. ¤X

Theorem 4.1. Let Ω ⊂ R2 – two-dimensional domain with boundary ∂Ω ∈
∈ C2,µ, µ ∈]0, 1[. Let f̂1, . . . , f̂N : R2 → [0,∞[ satisfy conditions (1), (2)
of Lemma 4.1. Then the problem (2.40), (2.41), (2.36), (2.37) has a smooth
solution ϕ ∈ C2

(
Ω̄

)
, ψ ∈ C2

(
Ω̄

)
. Moreover, the distribution function fN ∈

C1
(
Ω̄×R3

)
generates the classical stationary solution (f1, . . . , fN , E,B) of the

VM system of the form (4.1)–(4.3) in Ω.

Proof. Consider the system (4.4), (4.5). The right parts in it may change sign
depending on relations
A1. qA1 −

∑N
i=2 |qi|Ai = G(q, A) > 0 ⇒ qA1 >

∑N
i=2 |qi|Ai >

∑N
i=2 T−|qi|Ai.

A2. qA1−
∑N

i=2 |qi|Ai = G1(q, A) < 0 ⇒ qA1 <
∑N

i=2 |qi|Ai <
∑N

i=2 T+|qi|Ai.

Here

T− = min
{

ki

li

}
= min

{
(di, d)α
d2

i αi

}
,

T+ = max
{

ki

li

}
= max

{
(di, d)α
d2

i αi

}
.

It follows from Lemma 4.1 and conditions (A1), (A2) that right parts h1, h2

of (4.4), (4.5) satisfy smoothness conditions of McKenna-Walter theorem and
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that there is an R > 0 and matrix (2×N) with positive components such that


−∑

G1<0 c1i|G1|(liu1 + R)2+

−∑
G>0 c2i|G|(liu1 + R)2+


 ≤ h(u) ≤




∑
G>0 c1i|G|(liu1 + R)3/2

+

∑
G1<0 c2i|G1|(liu1 + R)2+




for all u ∈ R2. Now we continue with the construction of lower-upper solutions
(v, w) of (4.4), (4.5), (3.6), (3.7). Let us introduce the following notations

l+ = min{|li| | li > 0}, l− = min{|li| | li < 0} and l = min(l+, l−).

We define a lower and an upper solution in Ω

v =




−εl+

4−1
∑N

i=1 c2i|G|
(

1 + |li|
l

)2

R2




and

w =




εl−

−4−1
∑N

i=1 c2i|G|
(

1 + |li|
l

)2

R2




and on the boundary

vi ≤ u0i, wi ≥ u1
0i, x ∈ ∂Ω

with v = (v1, v2)′, w = (w1, w2)′. Assuming that the right parts h1(·), h2(·) of
(4.4), (4.5) are invariant under a constant vector translation, we can change
the last conditions to the following ones

vi ≤ 0, wi ≥ 0, x ∈ ∂Ω.

Moreover operator 4−1 is defined with respect to zero boundary conditions
and v ≤ 0 ≤ w in Ω̄.

Due to the previously given estimation for hf and conditions (A1), (A2), we
obtain

4v1 = 0 ≥ h1
f (v1, z2), z2 ∈ R,

4w1 = 0 ≤ h1
f (w1, z2), z2 ∈ R,

4v2 ≥
N∑

i=1

c2i|G|(liz1 + R)2+ ≥ h2
f (z1, v2), z1 ∈ [v1, w1]

and

4w2 ≤ −
N∑

i=1

c2i|G|(liz1 + R)2+ ≤ h2
f (z1, w2), z1 ∈ [v1, w1].

Thus existence of solutions U ∈ C2,µ(Ω̄), U = (ϕ,ψ)′ of (2.54), (2.55) (respec-
tively (2.40, (2.41)) (2.36), (2.37) follows from McKenna-Walter theorem and
it proves Theorem 4.1. ¤X
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Remark 4.2. Existence of stationary solutions for the relativistic VM system
has been proved in the dissertation of P.Braasch [16] using RSS [52] ansatz.

5. Nonstationary solutions of the Vlasov-Maxwell system

5.1. Reduction of the VM system to nonlinear wave equation. Let us
consider the nonstationary VM system (1.2)–(1.6) for an N -component distri-
bution function with the additional condition

N∑

i=1

q2
i

mi

∫

R3

{
E +

1
c
[V ×B]

}
·∇V fidV = 0. (5.1)

We shall look for distribution functions of the form

fi = fi

(−αi|V |2 + V di + Fi(r, t)
)
, di ∈ R3, αi ∈ [0,∞) (5.2)

and the corresponding fields E(r, t), B(r, t) satisfying equations (1.2)–(1.6),
(5.1). If functions Fi(r, t), vectors di and vector-functions E, B are connected
among themselves by relations

∂Fi

∂t
+

qi

mi
(E, di) = 0, (5.3)

∇Fi − 2αiqi

mi
E +

qi

mic
[B × di] = 0, i = 1, . . . , N, (5.4)

then functions (5.2) satisfy (1.2) and we have the following equations

∂Fi

∂t
+

1
2αi

(∇Fi, di) = 0, (5.5)

∂fi

∂t
+

1
2αi

(∇fi, di) = 0. (5.6)

Introducing auxiliary vectors Ki =
(
Kix(r, t), Kiy(r, t),Kiz(r, t)

)
, we transform

(5.4) to the system

∇Fi − 2αiqi

mi
E = Ki, (5.7)

qi

mic
[B × di] = −Ki. (5.8)

We notice that equation (5.8) is solvable with respect to vector B, iff

(Ki, di) = 0. (5.9)

We define functions Fi(r, t) and vectors Ki(r, t) as

Fi = λi + liU(r, t), (5.10)

Ki = kiK(r, t), (5.11)
where λi, ki, li – constants, l1 = k1 = 1. Then from (5.7) and (5.8) follows that

E(r, t) =
mi

2αiqi
(li∇U − kiK), (5.12)
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B(r, t) =
γ

d2
i

di +
[
K × di

]kimic

qid2
i

, (5.13)

where γi(r, t) = (B, di) are still arbitrary functions. Let

li = ki =
m1

α1q1

αiqi

mi
, (5.14)

αid1 = α1di, αiγ1 = α1γi, i = 1, . . . , N. (5.15)
Then

E(r, t) =
m

2αq
(∇U −K), (5.16)

B(r, t) =
γ

d2
d + [K × d]

mc

qd2
, (5.17)

where the following notations are introduced

m
4
= m1, α

4
= α1, d

4
= d1, γ

4
= γ1.

Moreover K ⊥ d. Due to (5.3), (5.9) the function U(r, t) satisfies the linear
equation

2α
∂U

∂t
+ (∇U, d) = 0. (5.18)

Having defined U,K such that the Maxwell equations (1.2)–(1.5) are satisfied
for the distribution function

fi = fi

(−αi|V |2 + V di + λi + liU(r, t)
)
, (5.19)

we can find unknown functions fi, E,B using (5.16), (5.17) and (5.19).

Lemma 5.1. Densities of charge ρ and current j defined by formulae

ρ(r, t) = 4π

∫

R3

N∑

i=1

qifidV, j(r, t) = 4π

∫

R3

N∑

i=1

qiV fidV,

are connected among themselves by the following relation

j =
1
2α

dρ + rotQ(r) +∇ϕ0(r), 4ϕ0(r) = 0. (5.20)

The equality (5.20) follows directly from the continuity equation
∂ρ

∂t
+∇× j = 0 (5.21)

and
∂ρ

∂t
+

1
2α

(d,∇ρ) = 0, (5.22)

which is a corollary of (5.6).
Substituting (5.16), (5.17) into (1.3), (1.5) we obtain

4U = divK +
8παq

m

N∑

i=1

qi

∫

R3
fidV, (5.23)

(d,∇γ) +
mc

q
(d, rotK) = 0. (5.24)
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Due to Lemma 5.1 and taking into account that rotQ(r) + ∇ϕ0 = 0 (it can
always be assured by calibrating)

∫

R3
V fidV =

d

2α

∫

R3
fidV. (5.25)

Thus after substitution (5.16), (5.17) into (1.2) we obtain the relation

∇γ × d =
md2

2αcq

∂

∂t
(∇U −K) +

2πd2

αc
d

N∑

i=1

qi

∫

R3
fidV − mc

q
rot[K × d]. (5.26)

Having used Fredholm’s alternative, we set the function U(r, t), and from the
condition that its solution ∇γ is a gradient of function γ(r, t), we find K(r, t)
as a function of U . Thus from the solvability condition of (5.26) with respect
to (3.18), we obtain

∂2U

∂t2
=

2πqd2

αm

N∑

i=1

qi

∫

R3
fidV + c2divK. (5.27)

Due to (5.23), (5.27) is transformed into

∂2U

∂t2
= c24U +

2πq

αm

(
d2 − 4α2c2

) N∑

i=1

qi

∫

R3
fidV. (5.28)

Now we apply (5.28) for solvability of (5.26). If a function U satisfies (5.28),
then (5.26) is satisfied and moreover

∇γ =
ν

d2
d +

[
d×

{
−mc

q
rot[K × d] +

md2

2αcq

∂

∂t
(∇U −K)

}]
1
d2

4
= F, (5.29)

where ν(r, t) = (∇γ, d) is arbitrary. It follows from (5.29) that the vector field
F(r, t) must be irrotational. Since U satisfies (5.18), we define K in a class of
vectors satisfying condition

2α
∂K

∂t
+ (d · ∇)K = 0. (5.30)

Then d× rot[K × d] = −2α[d× ∂K/∂t] and (5.29) is transformed into

∇γ =
ν

d2
d +

[
d×

{(
4α2c2 − d2

) ∂K

∂t
+ d2 ∂

∂t
∇U

}]
m

2αcqd2
. (5.31)

Up to an arbitrary function b(U) and arbitrary vector-function a(r), we can set

K(r, t) =
d2

d2 − 4α2c2

(∇U + b(U)d + a(r)
)
. (5.32)

Then
∇γ =

ν

d2
. (5.33)

If
b(U) = − 1

d2
(∇U, d), a(r) = ∇ϕ0(r),
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where ∇ϕ ⊥ d, then (5.32) satisfies (5.30). The proof is developed by direct
substitution (5.32) into (5.30) taking into account (5.18). Thus

K(r, t) =
d2

d2 − 4α2c2

{
∇U − 1

d2
(∇U, d)d +∇ϕ0(r)

}
, (5.34)

where ∇ϕ ⊥ d satisfies condition (5.30). Moreover it is evident that K ⊥ d. If

4ϕ0(r) = 0, (5.35)

then for any U(r, t) satisfying (5.28) the vector-function (5.34) satisfies (5.23)
which can be shown by substituting (5.34) into (5.23). We show that in (5.33)
ν ≡ 0. In fact (

d, rot(∇U, d)
)

=
(
d,∇(∇U, d)× d

) ≡ 0

for an arbitrary U , (d, rotK) = 0 and due to (5.24) d ⊥ ∇γ. Hence in (5.33),
ν ≡ 0, implying ∇γ = 0, thus γ is constant.

It remains to show that functions (5.16), (5.17) where U(r, t) satisfies (5.28)
and K(r, t) is expressed via U and ϕ0 by formula (5.34), satisfy (1.4). ¿From
substitution (5.16) and (5.17) in (1.4) we obtain the chain of equalities

m

q

{
1
d2

[
∂K

∂t
× d

]
− 1

2α
rotK

}
=

m

q(d2 − 4α2c2)

{
∂

∂t
[∇U × d] +

1
2α

rot((∇U, d)d)
}

=

m

q(d2 − 4α2c2)

[
∇

(
∂U

∂t
+

1
2α

rot(∇U, d)
)
×d

]
= 0.

Remark 5.1. If (5.20) holds, then the function γ 6= const, ∇γ = d× rotQ.

Hence it follows:

Theorem 5.1. Let fi(S) – the arbitrary differentiable functions, moreover
∫

R3
fi(−|V |2 +T )dV < ∞, T ∈ (−∞, +∞), αi ∈ [0,∞), di ∈ R3,

αid = αdi, α
4
= α1, d

4
= d1,

then every solution U(r, t) of the hyperbolic equation (5.28) with condition
(5.18) corresponds to a solution of the system (1.1)–(1.5) of the form

fi = fi

(−αi|V |2 + V di + λi + liU(r, t)
)
, (5.36)

B =
γ

d2
d +

mc

q(d2 − 4α2c2)
[∇(U + ϕ0(r))× d], (5.37)

E =
m

2αq(4α2c2 − d2)
{∇ (

4α2c2U + d2ϕ0(r)− (∇U, d)d
)}

, (5.38)

where ϕ0(r) – arbitrary function satisfying 4ϕ0 = 0, ∇ϕ0 ⊥ d.
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Corollary 5.1. In the stationary case, (5.28) is transformed to the form

4U(r) =
2πq

αmc2

(
4α2c2 − d2

) N∑

i=1

qi

∫

R3
fidV (5.39)

with condition
(∇U, d) = 0. (5.40)

Remark 5.2. If

fi = es, S = −αi|V |2 + V di + λi + liU, li =
αimqi

αmiq
,

then ∫

R3
fidV =

(
π

αi

)3/2

exp
{
d2

i /4αi + λi + liU
}

.

In that case, “solving” equation (5.28) can be expressed as

∂2U

∂t2
= c24U +

2πq

αm

(
d2 − 4α2c2

)
π3/2

N∑

i=1

qi(αi)−3/2exp
{
d2

i /4αi + λi + liU
}
.

(5.41)
Due to paper [53], for case N = 2 (two-component system), equation (5.41) is
transformed into

∂2U

∂t2
= c24U + λb

(
eU − elU

)
, l ∈ R−, λ ∈ R+, (5.42)

b =
2πq2

αm

(
π

α

)3/2(
d2 − 4α2c2

)
ed2/4α.

Due to l = −1, (5.42) is a wave sinh-Gordon equation

∂2U

∂t2
= c24U + 2λbsinhU. (5.43)

Remark 5.3. By the conditions of Theorem 5.1, a scalar Φ and a vector A

potentials are defined by formulae

Φ =
m

2αq
(
d2 − 4α2c2

){
4α2c2U(r, t) + d2ϕ0

}
, (5.44)

A =
mc

q
(
d2 − 4α2c2

)d{U(r, t) + ϕ0}+4Θ(r), (5.45)

where
4Θ(r) =

γ

d2
(d2z, d3x, d1y)′ +∇p(r), d

4
= (d1, d2, d3)

and p(r) is an arbitrary harmonic function. Since the function U(r, t) satis-
fies (5.18), then potentials Φ, A are connected among themselves by Lorentz
calibration.

1
c

∂Φ
∂t

+ divA = 0. (5.46)
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For analysis (5.43), we direct a constant vector d ∈ R3 along Z axis, i.e. we

assume that d
4
= d1(0, 0, dz). Moreover the solution U(x, y, z, t) for(5.18) has

the form

U = U

(
x, y, z − d

2α
t

)
. (5.47)

Solution (5.47) describes the wave spreading velocity running in the positive
direction along Z axis with a constant velocity d/2α, where d/2α < c. With
the substitution ξ = z − (d/2α)t we reduce (5.43) to

∂2U

∂x2
+

∂2U

∂y2
+

(
4α2c2 − d2

)

4α2c2

∂2U

∂ξ2
= 2λp sinhU, (5.48)

where

p
4
=

2πq2

αmc2

(
π

α

)3/2(
4α2c2 − d2

)
exp(d2/4α) > 0; λ ∈ R+.

Moreover introducing a new variable η =
(
4α2c2/

(
4α2c2 − d2

))1/2
ξ, we trans-

form (5.48) into

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂η2
= 2λp sinhU, U

4
= U(x, y, η). (5.49)

Using formulae (2.69), it is easy to reconstruct some solutions of (5.49) using
the Xirota method [67].

5.2. Existence of nonstationary solutions of the VM system on bounded
domains. Here we consider the classical solutions (f1, . . . , fN , E, B) of the VM
system of the special form of(5.36)–(5.38), which we write in the following form

fi(x, v, t) = f̂i

(−αiv
2 + vdi + liU(x, t)

)
, (5.50)

E(x, t) =
m

2αq(4α2c2 − d2)

(
4α2c2∇U(x, t) + ∂tU(x, t)d

)
, (5.51)

B(x, t) = − mc

q(4α2c2 − d2)
∇U(x, t)× d, (5.52)

where the functions f̂i : R → [0,∞[ and the vector d ∈ R3\{0} are given,
and the function U : [0,∞[×Ω̄ → R has to be defined. Assuming that ∂Ω ∈
∈ C1, we add the VM system with the boundary conditions for the electro-
magnetic field

E(x, t)× nΩ(x) = 0, B(x, t)nΩ(x) = 0, t ≥ 0, x ∈ ∂Ω, (5.53)

and a specular reflection condition for the distribution function on the boundary

fi(t, x, v) = fi

(
t, x, v − 2 (vnΩ(x))nΩ(x)

)
, t ≥ 0, x ∈ ∂Ω, v ∈ R3, (5.54)

where nΩ – normal unit vector to ∂Ω.
To prove existence of classical solutions of (1.2)–(1.6), (5.50)–(5.54) we apply

the method of lower-upper solutions developed for nonlinear elliptic systems. In
contrast to the stationary problem, nonstationary is more complicated because
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we need to add the equation of first order (5.18) to the nonlinear wave equation
(5.28). Hence the problem is not “strongly” elliptic and it demands a further
development of the method of lower-upper solutions.

Lemma 5.2. Let Ω ⊂ RN – bounded domain with boundary ∂Ω ∈
∈ C2,α, α ∈]0, 1[. Let u0 ∈ C2,α(Ω̄) and h ∈ C0,1

loc (Ω̄ × R) such that h(x, ·) –
monotonic increasing function for every x ∈ Ω. Then the boundary value prob-
lem

4u = h(·, u(·)) in Ω,

(5.55)

u = u0 on ∂Ω

has a unique solution u ∈ C2,α(Ω̄).

Proof. Due to monotonicity of h it is easy to check that there exist p1, p2 ∈
C0,α(Ω) such that p2(x) ≤ 0 ≤ p1(x) and

h(x, s)

{ ≤ p1(x) for s ≤ 0,

≥ p2(x) for s ≥ 0,

for all x ∈ Ω̄. Let u01 = min(u0, 0) and u02 = max(u0, 0). Let uk ∈
∈ C2,α

(
Ω̄

)
– solution of the linear boundary value problem for k ∈ (1, 2)

{ 4uk = pk in Ω,

uk = u0k on ∂Ω.

Due to the maximum principle, u1 ≤ 0 ≤ u2 in Ω̄. ¿From the latter it follows
that u1 is a lower solution and u2 is an upper solution for (5.55). Then from
theorem of existence (see Pao [47, Theorem 7.1]) it follows that (5.55) has a
unique solution u ∈ C2,α(Ω̄). ¤X

Remark 5.4. Lemma (5.2) is a well-known statement and does not require
additional comments. We remark only that the condition of monotonicity of
the function h(x, ·) for the VP system is applied first by Vedenyapin [58–60].

Introduce the following conditions to the function f̂ : R→ [0,∞[:
(f1) f̂ ∈ C1(R);
(f2) ∀u ∈ R : f ∈ L1(u,∞);
(f3) f is a measurable function and f(s) ≤ C exp(−s) for a.e. s ∈ R;
(f4) f is decreasing, f(0) = 0 and ∃µ ≥ 0 : ∀s ≤ 0 : f(s) ≤ C|s|µ.

Lemma 5.3 (Braasch [16]). Let f : R→ [0,∞[ be a given function and

hf (u) = c

∫

R3
f
(
v2 + vd + u

)
, u ∈ R.

Then the following claims hold.
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(1) Assume conditions (f2), (f3). Then hf : R → R is continuous and
nonnegative,

hf (u) =
c1

|d|
∫ ∞

1

∫ |d|s2

−|d|s2
sf(s + t + u)dtds

for all u ∈ R.
(2) Assume condition (f3). Let ψ : →[0,∞[ be a measurable function and

ψ ≤ f (a.e.). Then hψ ≤ hf .
(3) Assume (f4) and |d| < 1. Then the following conditions (f2), (f3), hf –

continuously differentiable and hf (u) ≤ C exp(−u) for all u ∈ R are
satisfied.

(4) Assume (f4) and |d| < 1. Then from (f4) it follows that hf is a de-
creasing function and

|hf (u)| ≤ C|u|µ
for all u ∈ R, where C = C(µ, |d|).

Lemma 5.4. Let Ω ⊆ R2 have a smooth boundary ∂Ω ∈ C1. Let f̂1, . . . , f̂N :
R → [0,∞[ be functions satisfying conditions (f1)–(f3) and |d| < 1. Let hf :
Ω̄× R→ R be given by

hf (x,U) = −2πq

αm

(
4α2c2 − d2

) N∑

i=1

qi

∫

R3
f̂i

(−αv2 + vdi + liU(x, t)
)
dv,

and we assume U ∈ C2(Ω̄) – solution of the boundary problem




LU
4
= ∂2U

∂t2 − c24U = hf (·, U) in Ω,

U = 0 on ∂Ω.

(5.56)

We define
U(x, t) = Ũ(x + td), t ≥ 0, x ∈ Ω̄,

K(x, t)
4
= − d2

4α2c2 − d2

(
∇U(x, t)− |d|−2∂tU(x, t)d

)
, t ≥ 0, x ∈ Ω̄,

K ∈ C1
(
[0,∞[×Ω

)3 and E, B by means of (5.51), (5.52). Then (f1, . . . , fN , E,B, )
is a classical solution of the VM system in Ω and it satisfies boundary conditions
(5.53), (5.54).

Proof. Due to Lemma 5.3, hf is a continuously differentiable function. The
function U satisfies equation (5.18). Therefore it follows from Theorem 5.1
that f1 . . . , fN is a solution of the Vlasov equation, and E,B is a solution of
the Maxwell system. Since U vanishes on ∂Ω, then from the definition of U
and the translation invariance Ω in d we obtain that U and ∂tU vanish on
[0,∞[×∂Ω. Hence ∇U × nΩ = K × nΩ = 0 on [0,∞[×∂Ω. From the latter we
obtain

E(x, t)× nΩ(x) = (K(x, t)−∇U(x, t))× nΩ(x) = 0
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and
B(x, t)× nΩ(x) = |d|−2

(
nΩ(x)×K(x, t)

)
d = 0

at t ≥ 0 and x ∈ ∂Ω. Therefore the boundary conditions (5.53) are satisfied.
¤X

Theorem 5.2. Let Ω ⊂ R3. Let f1, . . . , fN : R → [0,∞[ be functions sat-
isfying condition (f1) and (pointwise) smaller than corresponding functions
ψ1, . . . , ψN : R → [0,∞[ satisfying condition (f4) with µ > 0. We suppose
that |d| < 1 and that there exists a function Ũ ∈ C2

C(Ω) such that

U(x, t) = Ũ(x + td), t ≥ 0, x ∈ Ω.

Then (5.56) in Lemma 5.4 has a smooth solution and f1, . . . , fN generates the
classical solution (f1, . . . , fN , E, B) of the VM system in Ω of the form (5.50)–
(5.52).

Proof. Since the elliptic operator L in (5.56) has constant coefficients, then
by a linear change of coordinates, it is possible to transform it to the Laplace
operator L = 4. Introducing notations F

4
= (f1, . . . , fN ) we write the right

part hF of (5.56) as

hF (x,U) = −c1(c2 − d2)
N∑

i=1

qihfi(liU(x)),

where functions hf1 , . . . , hfN
are defined in Lemma 5.4. From Lemmas 5.3 and

5.4 we obtain

hF (x,U)




≥ −c1(c2 − d2)

∑
qi>0 Ci|qi|hψi

(|li|Ũ(x)
) 4

= h1(x,U),

≤ c1(c2 − d2)
∑

qi<0 Ci|qi|
(−|li|Ũ(x)

) 4
= h2(x,U),

where hψ1 . . . , hψN
: R → R are continuously differentiable, decreasing, non-

negative functions. Moreover functions h1, h2 are continuously differentiable
and increasing functions in U and h1 ≤ 0 ≤ h2. ¤X
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