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Abstract. In this paper we present a hybrid path-following algorithm that
generates inexact Newton steps suited for solving large scale and/or degenerate
nonlinear programs. The algorithm uses as a central region a relaxed notion of
the central path, called quasicentral path, a generalized augmented Lagrangian
function, weighted proximity measures, and a linesearch within a trust region
strategy. We apply a semi-iterative method for obtaining inexact Newton steps
by using the conjugate gradient algorithm as an iterative procedure. We present
a numerical comparison, and some promising results are reported.
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Resumen. En este articulo nosotros presentamos un algoritmo h́ıbrido de
seguimiento de camino que genera pasos inexactos de Newton para resolver
problemas de gran escala o degenerados para programación no lineal. El al-
goritmo usa como una region de centralidad una noción mas débil que el bien
conocido camino central, llamada camino quasi-central, una generalización de
la función aumentada de Lagrange, medidas de aproximación pesadas, y una
dirección de búsqueda dentro de una region de verdad. Nosotros aplicamos un
método semi-iterativo para obtener direcciones inexactas del método de Newton
usando el algoritmo del gradiente conjugado y presentamos una comparación
numérica con resultados prometedores.
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1. Introduction

The effective development of interior-point methodology for solving linear pro-
grams has stirred the study of such methods to the difficult area of non-convex
nonlinear programming. In this paper, we implement an inexact Newton hy-
brid path-following algorithm for solving nonlinear programs. This research
has been significantly influenced by the path-following strategy introduced by
Argáez [2] and Argáez and Tapia [4]. The algorithm employs the three key
elements of this path-following strategy: the quasicentral path, a generalized
augmented Lagrangian function, and weighted proximity measures. Moreover,
we add a hybrid globalization strategy, and also an inexact Newton step.

The selection of the quasicentral path as a central region, which omits the
dual condition from the well known central path, provides some definite ad-
vantages. The use of the quasicentral path increases the probability that the
central region exists far away from the solution for certain values of the per-
turbation parameter, when the central path may fail to exist. Furthermore,
the central path does not guarantee convergence to an optimal solution of the
problem (See Tseng and Ye [19]). It is worth mentioning that the quasicentral
path is a variety and not a path. However, we choose to retain the already
established terminology originally introduced by Argáez and Tapia.

The use of interior-point methodology for solving large scale problems re-
quires the solution of large, non-symmetric, and highly indefinite linear systems.
In this work, the linear systems are decomposed into two smaller subproblems.
We apply a trust region strategy for obtaining the solutions of the subproblems.
The first subproblem is solved by using a direct dogleg strategy, and the second
one by a conjugate gradient algorithm with two extra stopping criteria. One
advantage of this procedure is that relaxes the standard Newton assumptions
associated with the problem, and increases the likelihood of achieving con-
vergence of degenerate problems. Another advantage is that the two smaller
systems can be solved more efficiently in terms of computational time.

After finding an inexact Newton step, and before we test if this is an ac-
ceptable direction, we correct the step using a linesearch strategy. This is
allowed since we demonstrate that the inexact Newton step is a descent direc-
tion for the penalty term of the generalized augmented Lagrangian function.
Due to this property, we can select a steplength that generates iterates closer
to the quasicentral path, and therefore far away from no-solution boundaries.
By incorporating this linesearch strategy, we have increased the likelihood of
accepting the corrected inexact Newton step.

Finally, we present a numerical experimentation on a set of problems from
the CUTE collection. We perform a numerical comparison of the proposed in-
exact Newton hybrid path-following algorithm versus the exact Newton hybrid
path-following algorithm and the inexact Newton trust region algorithm (i.e.
we do not consider the linesearch in the trust region strategy). The numerical
results illustrate the viability of the proposed algorithm.
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2. Problem formulation

We study the general nonlinear program in the following form:

minimize f(x) (2.1)
subject to h(x) = 0

x ≥ 0,

where h(x) = (h1(x), . . . , hm(x))T and f, hi : Rn → R, i = 1, . . . , m (m ≤ n)
are twice continuously differentiable functions.

The feasible set associated to problem (2.1) is defined as the collection
of points that satisfy the equality and inequality constraints; that is, Ω =
{x ∈ Rn : h(x) = 0, x ≥ 0}. The corresponding strictly feasible set is denoted
by Ω◦ = {x ∈ Ω and x > 0}.
Definition 2.1. A solution of problem (2.1) is a vector x∗ ∈ Ω such that there
is a neighborhood U of x∗ with f(x∗) ≤ f(x) for x ∈ U ∩ Ω.

The Lagrangian function associated with problem (2.1) is defined as:

`(x, y, z) = f(x) + h(x)T y − xT z,

where y ∈ Rm, and z ≥ 0 ∈ Rn are the Lagrange multipliers associated with
the equality and inequality constraints, respectively.

The first-order necessary conditions of problem (2.1), which are also known
as the Karush-Kuhn-Tucker (KKT) conditions, describe a square nonlinear
function given by:

F : Rn+m+n → Rn+m+n

F (x, y, z)



∇f(x) +∇h(x)y − z

h(x)
XZe


 =




0
0
0


 (2.2)

(x, z) ≥ 0,

where ∇h(x) = [∇h1(x), . . . ,∇hm(x)] ∈ Rn×m, X = diag(x), Z = diag(z),
and e = (1, . . . , 1)T ∈ Rn. The first and second conditions are the partial
derivatives of the Lagrangian function with respect to the variables x and y,
respectively. The third equation is the complementarity condition that states
xizi = 0 for i = 1, . . . , n. To find a solution of F (x, y, z), we apply Newton’s
method due to its fast rate of convergence.

For a feasible point x, we let B(x) = {j : xj = 0} denote the set of indices
of active constraints. The set of active constraint gradients is {ej ∈ Rn :
j ∈ B(x)}. Further, the point (x, y, z) is an interior point if x > 0 and z > 0,
which is denoted by (x, z) > 0. In particular, interior-point methods keep the
iterates strictly positive except possibly at a solution.
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2.1. Standard assumptions. In the study of Newton’s method, the standard
assumptions for problem (2.1) are:

A.1: (Existence) There exists a solution x∗ to problem (2.1).
A.2: (Smoothness) The Hessian operators ∇2f, ∇2hi, i = 1, . . . , m are Lip-

schitz continuous in a neighborhood of x∗.
A.3: (Regularity) The set {∇h1(x∗), . . . ,∇hm(x∗)} ∪ {ej ∈ Rn : j ∈ B(x∗)}

is linearly independent.
A.4: (Second-order sufficiency) For all η 6= 0 satisfying ∇hi(x∗)T η = 0,

i = 1, . . . , m; eT
j η = 0, j ∈ B(x∗), we have:

ηT∇2
x`(x∗, y∗, z∗)η > 0.

A.5: (Strict complementarity) For all j, x∗j + z∗j > 0.
The following relationship between Assumptions A.3-A.5 and the invertibility
of the Jacobian matrix of (2.2) can be found in Section 4 of El-Bakry et. al
[11].

Proposition 2.2. Let conditions A.1-A.2 hold. Then the following statements
are equivalent:

(1) Conditions A.3-A.5 hold.
(2) The Jacobian matrix F

′
(x∗, y∗, z∗) is nonsingular.

Proof. See El-Bakry et. al [11]. ¤X

We say that problem (2.1) is degenerate if Assumptions A.3-A.5 do not hold.
This means that at a solution, the Jacobian of F is a singular matrix.

2.2. Perturbed KKT conditions. In this section we motivate the use of
the perturbed KKT conditions instead of the KKT conditions (2.2) . The
complementarity conditions for problem (2.1) are:

XZe = 0.

By using Newton methodology, we deal with the linearization of the comple-
mentarity conditions, given by:

Z∆x + X∆z = −XZe. (2.3)

The linearized form of the complementarity condition has a serious flaw. If
there is a j such that xj = 0 and zj 6= 0, then from (2.3):

∆xj = 0.

After the update, the subsequent iterate is:

(xj)+ = xj + α∆xj = 0, for any α ∈ R.

This implies that if a component xj becomes zero, with its corresponding La-
grange multiplier zj 6= 0, then this component will remain zero for all the
subsequent iterations. The analogous situation is also true for the z variable.
Such a flaw clearly precludes the global convergence of the algorithm.
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We can overcome this difficulty by perturbing the complementarity condition
with µe to obtain:

XZe = µe, µ > 0.

In the same situation, it can be shown that ∆xj 6= 0. Hence, this modification
tends to keep the iterates away from the no-solution boundaries.

Then for µ ≥ 0, the perturbed KKT conditions of problem (2.1) are given
by:

Fµ(x, y, z) =



∇f(x) +∇h(x)y − z

h(x)
XZe− µe


 =




0
0
0


 (2.4)

(x, z) ≥ 0,

where the first, second, and third blocks of equations are called the dual, primal,
and perturbed complementarity conditions, respectively.

Now the Newton step (∆x, ∆y, ∆z) associated to the perturbed KKT con-
ditions is calculated as the exact solution of the following linear system:



∇2

x`(x, y, z) ∇h(x) −I
∇h(x)T 0 0

Z 0 X







∆x
∆y
∆z


 = −




ed

ep

ec


 , (2.5)

where
∇2

x`(x, y, z) = ∇2f(x) +
∑m

j=1∇2hj(x)yj ,

ed ≡ ∇f(x) +∇h(x)y − z,
ep ≡ h(x), and
ec ≡ XZe− µe.

The coefficient matrix of linear system (2.5) is non-symmetric and usually
highly indefinite.

Now for a fixed µ > 0, we apply an interior-point Newton method for finding
a solution of (2.4). Consequently, we apply a homotophy method for obtaining
an optimal solution of (2.1) that must satisfy the KKT conditions (2.2) when
µ = 0. In the next section, we present the relevant factors involved in the
proposed homotophy method called path-following strategy.

3. Path-following strategy

An important research activity is the development of path-following strategies
and its efficient implementations, especially for solving large scale and/or de-
generate problems. We follow a path-following strategy introduced by Argáez
and Tapia [2, 4] due the promising numerical results obtained in Argáez, Tapia,
and Velázquez [5]. In this work, we adapt the strategy using a hybrid linesearch
and trust region techniques.

Now we introduce a definition of a path-following strategy presented by
Argáez, Tapia, and Velázquez [5].
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Definition 3.1. (Path-Following strategy) For µ > 0, and working from
the interior (x, z) > 0, apply a globalized Newton’s method to the perturbed
KKT conditions until the iterate satisfies a specified proximity to the central
region. Then decrease µ, specify a new proximity, and repeat the process. Under
appropriate conditions, an optimal solution will be obtained as µ approaches
zero.

We now address the three relevant factors involved with an effective path-
following strategy: the choices of a central region to follow, a merit function
used to make progress towards an optimal solution, and a proximity measure
to determine nearness to the central region.

3.1. Central path and quasicentral path. The central path associated to
problem (2.1) is defined as the set of interior points (x, y, z) that satisfy the
perturbed KKT conditions parameterized by µ > 0.

Some researchers have used this notion to promote the global convergence
of the interior-point Newton method with partial success [11, 8, 18]. This is
because the central path may not exist for some values of the perturbation
parameter µ (See [18]). Moreover, even if the central path exists, it is not
guaranteed to promote convergence to an optimal solution [19]. To overcome
these disadvantages, we use a relaxed notion of the central path known as the
quasicentral path introduced by Argáez and Tapia [2, 4]. The quasicentral path
excludes the dual condition from the well known central path.

Definition 3.2. The quasicentral path is defined as the set of points (x, z) ∈
Rn+n satisfying: [

h(x)
XZe− µe

]
=

[
0
0

]
(3.1)

(x, z) > 0,

parameterized by µ > 0.

It is important to mention that the quasicentral path, which describes condi-
tions for 2n variables in 2n + m dimensional space, is really a surface.

Far from a solution, it may be the case that the point on the central path
corresponding to a parameter µ does not exist. Since the quasicentral path is
a relaxation of the central path, the likelihood that there is a point for this µ
is dramatically improved. It is important to realize that the quasicentral path
is equivalent to the strictly feasible set of problem (2.1). Indeed for µ > 0, a
point (x, z) is on the quasicentral path, i.e.

(x, z) ∈ S = {(x, z) ∈ Rn+n : h(x) = 0, XZe− µe = 0, x, z > 0},
if and only if x is strictly feasible for problem (2.1); that is,

x ∈ Ω◦ = {x ∈ Rn : h(x) = 0, x > 0}.
Therefore, if Ω◦ 6= ∅, then the quasicentral path will always exist for any µ > 0.
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3.2. Merit function. The merit function plays a fundamental role in any
globalization strategy. To ensure that the Newton method converges from far
away initial points, a merit function is used to control the size of the steps
using a linesearch strategy or to decide whether a step is acceptable in a trust
region strategy.

In this paper, we use the generalized augmented Lagrangian function intro-
duced by Argáez and Tapia [2, 4] as a merit function, that is a generalization of
the augmented Lagragian function for equality constrained problems presented
by Hestenes [13].

This merit function is denoted by Mµ and is defined for any µ > 0 as follows:

Mµ : Rn+m+n → R

Mµ(x, z; y, ρ) = `(x, y, z) + ρΦµ(x, z),

where `(x, y, z) is the Lagrangian function associated with problem (2.1), i.e.

`(x, y, z) = f(x) + h(x)T y − xT z,

ρ is a nonnegative penalty parameter, and the penalty term Φµ(x, z) is given
by:

Φµ(x, z) =
1
2

h(x)T h(x) + xT z − µ

n∑

i=1

ln (xizi).

As shown by Argáez and Tapia [2, 4], the generalized augmented Lagrangian
function has the following properties.

Property 3.1. For µ > 0, if (x∗µ, y∗µ, z∗µ) > 0 satisfies the perturbed KKT
conditions (2.4), then there is a ρ̃ > 0 such that for ρ > ρ̃:

x∗µ = arg min Mµ(x, z∗µ; y∗µ, ρ).

Therefore, the merit function retains the stationarity of x∗µ and adds positive
curvature to a solution of (2.4), for appropriately values of the penalty param-
eter ρ.

It is important to observe that the variable y does not enter into any of the
constraints of problem (2.1), and also in the notion of the quasicentral path.
Therefore in the merit function the variable y is considered as a parameter,
and it is excluded from any descent considerations. However, the dual variable
y will still be computed and updated.

The primary role of the penalty term Φµ(x, z) is to guide the iterates towards
the quasicentral path for a given µ > 0. As shown by Argáez and Tapia [2, 4],
this progress is facilitated by the following properties:

Property 3.2. For µ > 0, Φµ(x, z) is bounded below by its global minimum
nµ(1 − log(µ)), in the class of all interior points. Furthermore, Φµ(x, z) as-
sumes this value when (x, z) is on the quasicentral path for a given µ.
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Indeed for µ > 0, the iterates can move towards the quasicentral path, i.e.
towards feasibility for problem (2.1), by reducing Φµ(x, z) . It follows that
the remaining issue is to determine when the penalty term can be decreased.
From a theoretical standpoint, it would be easier to obtain this decrease if the
Newton step (∆x, ∆z) was a descent direction for Φµ(x, z).

Property 3.3. For µ > 0 and if (x, z) > 0 is not on the quasicentral path,
then the Newton step (∆x, ∆z) is a descent direction for Φµ, i.e.,

∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z = −‖h(x)‖2 + ‖W (XZe− µe)‖2 < 0,

where W = (XZ)−1/2.

Proof. See Argáez and Tapia [2, 4]. ¤X

From the two previous properties, when (x, z) is not on the quasicentral
path, it is always possible to make progress towards the quasicentral path.

Now the merit function has the following property.

Property 3.4. For µ > 0 and if (x, z) is not on the quasicentral, then there
is a ρ̃ > 0 such that for any ρ > ρ̃ any Newton step (∆x, ∆z) is a descent
direction for the function Mµ, i.e.

∇xMµ(x, z; y, ρ)T ∆x +∇zMµ(x, z; y, ρ)T ∆z < 0.

Proof. See Argáez and Tapia [2, 4]. ¤X

Now, it is important to observe that Properties 1 and 4 of the merit function
Mµ are dependent upon the selection of the penalty parameter ρ. In section 5,
we present our procedure for determining ρ.

3.3. Weighted proximity measure. In the implementation of a path-following
strategy, the choice of a proximity measure to the central region can affect the
performance of any interior-point algorithm. This is an important issue since
working to satisfy strict proximity measures to the quasicentral path can make
the procedure computationally expensive. On the contrary, if we work towards
more lenient proximity measures, then the global convergence can be threat-
ened by the no-solution boundaries. To measure nearness to the quasicentral
path for a fixed µ, we use the following neighborhood denoted by Nw, presented
by Argáez and Tapia [2, 4]:

NW (γµ) = {(x, y, z) ∈ Rn+m+n : ‖h(x)‖2 + ‖W (XZe− µe)‖2 ≤ γµ},
where W = (XZ)−

1
2 and γ ∈ (0, 1].

Therefore for a µ > 0, we consider an interior point (x, y, z) ∈ NW (γµ) to
be close to the quasicentral path. Notice that the first and second terms of the
inequality measure infeasibility of the equality constraints, and the perturbed
complementarity condition weighted with the positive definite matrix W , re-
spectively. A brief theoretical comparison between weighted and nonweighted
proximity measures is given in Argáez, Mendez, and Velázquez [7].
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4. Inexact Newton steps

In the path-following strategy described before, standard Newton assumptions
are considered. However, for some real scientific applications these assumptions
are not met and/or the size of the problem makes it difficult for computing
Newton steps. To overcome these disadvantages, one of the goals of this paper
is to present a new strategy for obtaining inexact Newton steps that fits with
the path-following strategy and allows to obtain an optimal solution by relaxing
the standard conditions and efficiently from computational point of view.

4.1. Reduced system. To take advantage of the structure of the problem,
we decouple the perturbed KKT system. From the third block of equations of
(2.5) we have:

∆z = −X−1(ec + Z∆x). (4.1)
By substituting (4.1) into system (2.5), we obtain a reduced system of equa-
tions, which is known as the augmented system:

[
Q AT

A 0

] [
∆x
∆y

]
= −

[
c
ep

]
(4.2)

where
Q ≡ ∇2

x`(x, y, z) + X−1Z,
A ≡ ∇h(x)T , and
c ≡ ed + X−1ec.

The augmented system (4.2) can be considered as the necessary condition
for ∆x to be a solution of the following quadratic problem:

minimize 1
2∆xT Q∆x + cT ∆x (4.3)

subject to A∆x + ep = 0,

with Q, A, and c defined in (4.2). It is well known that if Q is positive definite
on the null space of A, denoted as Q > 0 on N (A), and A is a full-rank matrix,
then the quadratic problem (4.3) has a unique global solution ∆x. This solution
can be obtained by solving the augmented system (4.2) where ∆x is the solution
of the problem and ∆y is the Lagrange multiplier associated with the equality
constraint.

For our purpose, this reduced system improves the likelihood that Q is pos-
itive definite on N (A) because of the addition of the positive definite diagonal
matrix X−1Z to the second order information associated to the problem. This
strategy allows us to relax the standard Assumption A.4.

Next, we describe a general formulation for obtaining a (approximate) solu-
tion of problem (4.3) with a low computational cost.

Since A is a linear operator from Rn to Rm, then ∆x can be expressed as a
direct sum of one element in the row space of A, ∆xp ∈ R(AT ), and another
in the null space of A, ∆xh ∈ N (A); that is,

∆x = ∆xp + ∆xh,
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where ∆xp and ∆xh are orthogonal. We call ∆xp and ∆xh the particular and
homogeneous solutions, respectively.

If ep ∈ R(A), as a consequence of the fundamental theorem of linear algebra,
there exists a unique particular solution ∆xp ∈ R(AT ) that is the minimum
norm solution of the under-determined linear constraint A∆x + ep = 0. This
particular solution is given by

∆xp = −A†ep,

where A† is the Moore-Penrose pseudoinverse of A. By the standard Newton
Assumption A.3, A is a full-rank matrix, and therefore the pseudoinverse is
given by

A† = AT (AAT )−1.

In the case the Assumption A.3 is not met, then the particular solution is also
characterized in terms of the Moore-Penrose pseudoinverse. This particular
solution is known as the solution of the following least squares minimum norm
problem:

minimize ‖∆x‖ (4.4)
subject to A∆x + ep = 0.

Once ∆xp ∈ R(AT ) is found, and since no further progress can be made to-
wards satisfying the equality constraint of (4.3), we concentrate on minimizing
the objective function of problem (4.3) with respect to the homogeneous solu-
tion ∆xh. By doing so, we obtain ∆xh as a solution of the following constrained
quadratic minimization problem:

minimize 1
2∆xT Q∆x + (Q∆xp + c)T ∆x (4.5)

subject to ∆x ∈ N (A).

This problem can be modeled as an unconstrained minimization quadratic
problem by substituting ∆xh for Pw, where P is an orthogonal projector onto
N (A), and w ∈ Rn. That is:

minimize 1
2wT (PQP )w + (P (Q∆xp + c))T w. (4.6)

In the case A is full rank, the projection is given by P = I −AT (AAT )−1A.
Now we obtain ∆xp and ∆xh by adding a trust region constraint to their as-

sociated subproblems (4.4) and (4.6). The addition of this constraint improves
the likelihood of finding good approximate solutions to the two subproblems,
and increases the numerical stability and robustness of the linear algebra rou-
tines involved. Most importantly, this strategy calculates an approximate so-
lution of problem (4.3), and equivalently system (4.2), even when the standard
assumptions associated to (2.1) do not hold. Now, we present the techniques
for obtaining ∆xp and ∆xh that fit with the path-following strategy.
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4.2. Particular solution. The particular solution ∆xp is obtained as the so-
lution of the following constrained least squares problem:

minimize 1
2‖A∆xp + ep‖2 (4.7)

subject to ∆xp ∈ R(AT )
‖∆xp‖ ≤ δ∆,

where δ ∈ (0, 1) and ∆ > 0 is known as the trust region radius. Upon the
expansion of the objective function, we obtain the following quadratic problem:

minimize 1
2∆xT AT A∆x + (AT ep)T ∆x (4.8)

subject to ∆x ∈ R(AT )
‖∆x‖ ≤ δ∆.

We find ∆xp of (4.8) by modifying the single dogleg algorithm [9, 16]. The
two principal components of dogleg algorithm are the Cauchy point and Newton
step given by the following definitions.

Definition 4.1. The Cauchy point is defined as:

∆xCP
p = − ‖AT ep‖2

‖AAT ep‖2 AT ep.

Definition 4.2. The Newton step is defined as:

∆xN
p = −A†ep = −AT (AAT )−1ep,

where A† is Moore-Penrose pseudoinverse of A.

By using these definitions, we present an algorithm for obtaining the partic-
ular solution ∆xp:

Algorithm 4.1. (Modified dogleg algorithm)
Given ∆ > 0 and δ ∈ (0, 1), do the following:

Step 1: Compute ∆xCP
p and ∆xN

p using Definitions 4.1 and 4.2.
Step 2: If (‖∆xCP

p ‖ > δ∆ and ‖∆xN
p ‖ > δ∆), then:

2a: Compute the scaled versions of ∆xCP
p and ∆xN

p :

∆xCP
p = − δ∆

‖AT ep‖AT ep and ∆xN
p = − δ∆

‖A†ep‖A†ep.

2b: Choose ∆xp to minimize the residual: ‖A∆xp + ep‖. That is,
choose ∆xp such that:

‖A∆xp + ep‖ = min{‖A∆xCP
p + ep‖, ‖A∆xN

p + ep‖}.
Step 3: If (‖∆xCP

p ‖ > δ∆ and ‖∆xN
p ‖ ≤ δ∆), then ∆xp = ∆xN

p .
Step 4: If (‖∆xCP

p ‖ ≤ δ∆ and ‖∆xN
p ‖ > δ∆), then:

4a: Find α ≥ 0 such that ∆xDOG
p = ∆xCP

p + α(∆xN
p −∆xCP

p )
satisfies ‖∆xDOG

p ‖ = δ∆.
4b: Compute the scaled version of ∆xN

p , as in 2a.
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4c: Choose ∆xp to minimize the residual between ∆xDOG
p and ∆xN

p ,
as in 2b.

Step 5: If (‖∆xCP
p ‖ ≤ δ∆ and ‖∆xN

p ‖ ≤ δ∆), then choose ∆xp to be the
largest step in norm, that is, choose ‖∆xp‖ = max{‖∆xCP

p ‖, ‖∆xN
p ‖}.

Upon the completion of Algorithm 4.1, we compute the error of the particular
solution rps as follows: rps ≡ A∆xp + ep.

It is well known that the primary advantage of the traditional single dogleg
algorithm is its ability to produce fairly accurate solutions of problem (4.8),
while incurring relatively low computational costs. Most importantly, there are
cases when the single dogleg algorithm avoids the computationally expensive
formation of A† = AT (AAT )−1.

Regardless of whether or not A† was used in the computation of ∆xp, it will
be needed for obtaining the homogeneous solution ∆xh by using the projection
operator P = I − A†A. As a result, any savings in computational costs from
using the single dogleg algorithm will be squandered by the computation of
∆xh. Then, we incorporate the computation of A† into the traditional single
dogleg algorithm to form Algorithm 4.1.

Within Algorithm 4.1, due to the constraint, it was often necessary to scale
∆xCP

p and ∆xN
p to satisfy the trust region bound. In this direction, we define

the Cauchy and Newton steps associated to (4.8): the two vital components of
the modified dogleg algorithm.

Definition 4.3. The constrained Cauchy step is defined as:

∆xCP
p =




− δ∆
‖AT ep‖A

T ep, if (AT ep)T AT A(AT ep) ≤ 0 or
‖AT ep‖3
‖AAT ep‖2 > δ∆,

− ‖AT ep‖2
‖AAT ep‖2 AT ep, otherwise.

Definition 4.4. The constrained Newton step is defined as:

∆xN
p =

{ − δ∆
‖A†ep‖A

†ep, if ‖A†ep‖ > δ∆,

−A†ep, otherwise.

4.3. Homogeneous solution. The homogeneous solution ∆xh = Pw is ob-
tained from the solution of the following constrained minimization problem:

minimize 1
2wT PQPw + (P (Q∆xp + c))T w (4.9)

subject to ‖Pw‖ ≤ ∆

where ∆ =
√

∆2 − ‖∆xp‖2.
Finding a solution of the objective function of problem (4.9) is equivalent to
solving the following constrained linear system:

PQPw = −P (Q∆xp + c). (4.10)

Equation (4.10) is a consistent equation since the operator P appears in both
left sides. Since P is a singular matrix, therefore this system of equations has
infinite solutions. Now a solution of (4.10) such that PQP is at least positive
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semidefinite in the N (A) is a solution for the objective function of problem
(4.9).

Equation (4.10) is well suited to be solved by applying the conjugate gradi-
ent algorithm, and using as an initial approximation any value in the N (A).
In particular, we use the initial approximation vector w = 0. Under these
conditions, the algorithm generates sequences of approximate solutions, resid-
uals and directions in the N (A). Moreover, by choosing the initial value of
w = 0, then the norm of the sequences of approximate solutions are increasing.
Therefore, this procedure allows to find a solution of problem (4.9) by applying
the conjugate gradient algorithm to problem (4.10). In this way, the ellipsoidal
constraint (‖Pw‖ ≤ ∆) of problem (4.9) is deactivated and converted into a
spherical constraint (‖w‖ ≤ ∆).

For solving problem (4.10), we need to consider two extra stopping termina-
tion tests. The first test consists when the norm of the approximate solution
violates the trust region radius for problem (4.9), and the second one is when
Q is not positive definite on N (A) (See [2]). Furthermore, since the number
of eigenvalues are at most n−m, then the conjugate gradient converges in no
more than n−m iterations in infinite arithmetic.

Algorithm 4.2. (Conjugate Gradient Algorithm)
Given ε1 > 0, Icg > 0, w0 = 0, r0 = P (Q∆xp + c), and d0 = −r0.
For k = 0, 1, 2, . . . , Icg > 0, do the following:

Step 1: Compute qk = PQdk.
Step 2: If dT

k qk ≤ 0, find an α ≥ 0 such that w = wk + αdk minimizes
(4.9) and satisfies ‖w‖ = ∆. STOP.

Step 3: Compute αk = rT
k rk

dT
k Qdk

and wk+1 = wk + αkdk.

Step 4: If ‖wk+1‖ > ∆, find an α ≥ 0 such that w = wk + αdk satisfies
‖w‖ = ∆. STOP.

Step 5: Compute rk+1 = rk + αkqk.
Step 6: If ‖rk+1‖ ≤ ε, w = wk+1. STOP.

Step 7: Compute βk+1 = rT
k+1rk+1

rT
k rk

, dk+1 = rk+1 + βk+1dk, update k =
k + 1, and go to Step 1.

Upon the completion of Algorithm 4.2, we compute the error of the homoge-
neous solution rcg as follows rcg ≡ P (Q(w + ∆xp) + c).

4.4. Inexact Newton step. We form ∆x after computing ∆xp and ∆xh from
Algorithms 4.1 and 4.2, respectively. Then, we obtain ∆y and ∆z.

Definition 4.5. An inexact Newton step (∆x, ∆y, ∆z) for system (2.5) is
given by

∆x = ∆xp + ∆xh

∆y = (AAT )−1A(Q∆x + c)
∆z = −X−1(ec + Z∆x),

where ∆xp and ∆xh are obtained using Algorithms 4.1 and 4.2, respectively.
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Notice that we are relaxing the standard Assumptions A.3-A.5., i.e., the inexact
Newton step is calculated independent of the invertibility of the coefficient
matrix in (2.5). In addition, since we are solving two smaller subproblems,
then the computation of the inexact step is less costly when compared to the
exact step.

Since the inexact Newton step is an approximate solution of (2.5), we can
determine the resulting deviation from its exact counterpart. In the following
proposition, we show that the error between the inexact and exact Newton
steps depends only on the errors of the particular and homogeneous solutions,
rps and rcg, respectively.

Proposition 4.6. The inexact Newton step (∆x, ∆y, ∆z) given by Definition
4.5 satisfies


∇2

x`(x, y, z) ∇h(x) −I
∇h(x)T 0 0

Z 0 X







∆x
∆y
∆z


 = −




ed

ep

ec


 +




rcg

rps

0


 . (4.11)

Proof. Using the projector P = I −A†A, we obtain

rcg = P (Q∆x + c) = (Q∆x + c)−A†A(Q∆x + c) = (Q∆x + c) + AT ∆y.

From (4.2) and the third block of equations of linear system (2.5), then

∇2
x`(x, y, z)∆x +∇h(x)∆y −∆z = −ed + rcg.

Now, since ∆x = ∆xp + w, we have that

∇h(x)T ∆x = ∇h(x)T (∆xp + w) = ∇h(x)T ∆xp = −ep + rps.

¤X

Therefore, by controlling the errors associated with the particular and ho-
mogeneous solutions, we control the deviation between the inexact and exact
Newton steps. When the iterates of the procedure move closer to a solution,
the error due to the particular solution usually vanishes and the total error
of the inexact Newton step depends upon the error of the conjugate gradient
algorithm. In particular, if rps = 0 and rcg = 0, then the inexact and exact
Newton steps will be equivalent.

In the last section, we discussed the descent properties of Φµ(x, z) when using
the exact Newton step. Now we show that the descent properties of Φµ(x, z)
are maintained when using the inexact Newton step proposed by Definition
4.5.

When computing the directional derivative of Φµ(x, z), with respect to the
inexact Newton step, we can no longer make the assumption that A∆xp = −ep,
as was the case in Property 3.3. We will have to determine the effect that rps

has on the computation of the derivative. Since rps is dependent of ∆xp, we
need to consider the five possible outcomes for ∆xp when using Algorithm
4.1 listed in Table 1. In the following proposition, as the other cases generalize
from ∆xDOG

p , we explicitly compute the directional derivative of Φµ(x, z) when
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Table 1. Possible Options for ∆xp.

1 ∆xp = − δ∆
‖AT ep‖A

T ep

2 ∆xp = − δ∆
‖A†ep‖A

†ep

3 ∆xp = −A†ep

4 ∆xp = − ‖AT ep‖2
‖AAT ep‖2 AT ep

5 ∆xp = ∆xDOG
p

∆xp = ∆xDOG
p , in the direction of the inexact step (∆x, ∆z). The other cases

will follow similarly.

Proposition 4.7. For µ > 0 and if (x, z) > 0 is not quasicentral, then the
inexact Newton step (∆x,∆z) is a descent direction for Φµ, i.e.

∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z < 0.

Proof. The gradients of Φµ(x, z) with respect to x and z are:

∇xΦµ(x, z) = ∇h(x)h(x) + z − µX−1e
∇zΦµ(x, z) = x− µZ−1e.

By using the inexact step, the directional derivative of Φµ(x, z) is computed
as:

∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z = (eT
p A + zT − µeT X−1)∆x + (xT − µeT Z−1)∆z.

If we set W = (XZ)−
1
2 , after some algebraic operations, we obtain the follow-

ing expression:

∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z = eT
p A∆x + ‖W (XZe− µe)‖2.

Since A∆x = A∆xp = rps − ep, this equation becomes:

∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z = eT
p (rps − ep) + ‖W (XZe− µe)‖2.

By working under the assumption that ∆xp = ∆xDOG
p , computed as in Step

4a of Algorithm 4.1, we compute rps as follows:

rps = (1− α)(I(m×m) −
‖AT ep‖2
‖AAT ep‖2 AAT )ep.

By substituting this instance of the error due to the particular solution into
the directional derivative, we obtain:

−(α‖h(x)‖2 + (1− α)
‖AT ep‖4
‖AAT ep‖2 + ‖W (XZe− µe)‖2) < 0,

because α ∈ (0, 1). ¤X
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Table 2. Directional Derivatives of Φµ(x, z) for varying ∆xp

1 −( δ∆
‖AT h(x)‖‖AT h(x)‖2 + ‖W (XZe− µe)‖2) < 0

2 −( δ∆
‖A†h(x)‖‖h(x)‖2 + ‖W (XZe− µe)‖2) < 0

3 −(‖h(x)‖2 + ‖W (XZe− µe)‖2) < 0

4 −( ‖AT h(x)‖4
‖AAT h(x)‖2 + ‖W (XZe− µe)‖2) < 0

Remark 4.1. To complete the proof of Proposition 4.7, we present the four
remaining directional derivatives of Φµ in Table 2.

As a result, we can always decrease Φµ which allows to make progress to-
wards the quasicentral path. Due to Proposition 4.7, the inexact Newton step
also is a descent direction for the merit function Mµ for sufficiently large ρ.

Proposition 4.8. For µ > 0 and if (x, z) > 0 is not on the quasicentral path,
then there is a ρ̃ such that for any ρ > ρ̃, the inexact Newton step (∆x, ∆z) is
a descent direction for Mµ, i.e.

∇xMµ(x, z; y, ρ)T ∆x +∇zMµ(x, z; y, ρ)T ∆z < 0.

Proof. Analogous to Proposition 4.7, we compute the gradients of Mµ(x, z; y, ρ)
with respect to x and z to obtain:

∇xMµ(x, z; y, ρ) = ∇x`(x, y, z) + ρ∇xΦµ(x, z)
∇zMµ(x, z; y, ρ) = ∇z`(x, y, z) + ρ∇zΦµ(x, z).

The directional derivative of Mµ(x, z; y, ρ) in the direction of the inexact step
(∆x, ∆z) is computed as:

∇xMµ(x, z; y, ρ)T ∆x +∇zMµ(x, z; y, ρ)T ∆z = ∇x`(x, y, z)T ∆x

+∇z`(x, y, z)T ∆z + ρ(∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z).

Then

∇xMµ(x, z; y, ρ)T ∆x +∇zMµ(x, z; y, ρ)T ∆z < 0,

for any

ρ >
∇x`(x, y, z)T ∆x +∇z`(x, y, z)T ∆z

|∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z|
because

∇xΦµ(x, z)T ∆x +∇zΦµ(x, z)T ∆z < 0.

¤X
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4.5. Trust region model. In a trust region globalization strategy, we accept
the inexact Newton step (∆xk, ∆zk) if the ratio between the merit function
and an approximation model, usually denoted by σk, is greater than or equal to
some η where η ∈ [ 14 , 1]. As in the thesis of El-Alem [10], our model is comprised
of the second and first-order Taylor expansions of `(x, y, z) and Φµ(x, z) with
respect to x and z, respectively. Let us denote xk+1 = xk + αk∆xk and
zk+1 = zk + αk∆zk.

Then, we predict the behavior of the merit function at the k − th iteration
with the following model

M̂µ(xk+1, zk+1; yk, ρ) ≡ ˆ̀(xk+1, yk, zk+1) + ρΦµ(xk+1, zk+1) (4.12)

where
ˆ̀(xk+1, yk, zk+1) ≡ `(xk, yk, zk) + αk∇f(xk)T ∆xk + αyT

k ∇h(xk)T ∆xk−

αkzT
k ∆xk − αkxT

k ∆zk − α2
k∆xk

T ∆zk +
α2

k

2
∆xk

T∇2
x`(xk, yk, zk)∆xk

and

Φ̂µ(xk+1, zk+1) ≡ Φµ(xk, zk)− α | ∇xΦµ(xk, zk)T ∆x +∇zΦµ(xk, zk)T ∆z | .
From (4.12), we compute σk as follows [9, 16]:

σk =
∆Mµ

∆M̂µ

=
Mµ(xk+1, zk+1; yk, ρ)−Mµ(xk, zk; yk, ρ)
M̂µ(xk+1, zk+1; yk, ρ)− M̂µ(xk, zk; yk, ρ)

. (4.13)

We accept (∆xk, ∆zk) as an update if σk ≥ η; otherwise, we reduce the trust
region radius ∆, compute a new inexact Newton step, and repeat the process
(See [9, 16]).

5. Algorithm

In this section, we present an inexact Newton path-following interior-point
algorithm for nonlinear programming. First, we describe the development of a
hybrid component that combines a linesearch within a trust region globalization
strategy. Second, we present our selection of the penalty parameter ρ in the
algorithm. Finally, we present the algorithm, a numerical experimentation that
validates the proposed algorithm.

5.1. Hybrid globalization strategy. By using a trust region strategy, we
form an inexact Newton step (∆xk, ∆yk, ∆zk) as an approximate solution of
linear system (2.5). As discussed previously, the purposes of the trust region
ratio σk (4.13) are to determine whether or not to accept the inexact step,
modify the trust region radius, and update the current iterate.

Furthermore, we may correct the inexact Newton step to guarantee that the
next iterate is also an interior point. Working from an interior point (xk, yk, zk),
we perform this correction by choosing a steplength α+

k ∈ (0, 1] such that:

(xk+1, zk+1) = (xk + α+
k ∆xk, zk + α+

k ∆zk) > 0. (5.1)
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We choose α+
k as follows

α+
k = min(1, τ α̂), (5.2)

where

α̂ = min
( −1

min(X−1
k ∆xk,−1)

,
−1

min(Z−1
k ∆zk,−1)

)

for some τ ∈ (0, 1).
In the last section, we showed that the inexact Newton step is a descent

direction for Φµ when (x, z) is not on the quasicentral path. To take advantage
of this property, we implement a linesearch strategy, described in the next
algorithm, to compute a steplength αk that satisfies Armijo’s sufficient decrease
condition for Φµ.

Algorithm 5.1. (Linesearch strategy)
Given α+

k in equation (5.2), s = 1/2, and β ∈ (0, 1), for j = 1, . . ., do the
following:

Step 1: Calculate αk = sjα+
k .

Step 2: Compute (xk+1, zk+1) = (xk + αk∆xk, z + αk∆zk).
Step 3: If Φµ(xk+1, zk+1) ≤ Φµ(xk, zk)− 10−4αk | ∇xΦµ(xk, zk)T ∆xk +
∇zΦµ(xk, zk)T ∆zk |,
Stop; else j = j + 1.

By incorporating Algorithm 5.1 into the trust region framework, we have cre-
ated a hybrid algorithm. The procedure uses trust region globalization to
compute the inexact Newton step and a linesearch backtracking strategy to
compute the steplength.
Such a modification assists in obtaining a strictly feasible iterate that is closer
to the quasicentral path, and keeps iterates away from no-solution boundaries.

5.2. Update of the penalty parameter. Since the acceptance of the inexact
Newton step depends on the behavior of the model M̂µ, then we choose ρ to
guarantee a decrease of the model, i.e.,

∇M̂µ
T
vk =∇`(vk)T ∆ṽk + αk∆xT

k

(
1
2
∇2

x`(vk)∆xk −∆zk

)

− ρ | ∇Φµ(ṽk)T ∆ṽk |< 0

where vk = (xk, yk, zk), ṽk = (xk, zk) and ∆ṽk = (∆xk, ∆zk).
In the above equation, we treat the variable y essentially as a parameter,

i.e., we do not differentiate the model M̂µ with respect to y and it is excluded
from our descent consideration.

To force a descent direction for the approximated model, i.e., to satisfy the
previous inequality, we propose the following algorithm:

Algorithm 5.2. (Selection of penalty parameter)
Given a constant c, do the following:
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Step 1: Compute ρ̃ = ρ1 + ρ2

where ρ1 = ∇`(vk)T ∆ṽk

|∇Φµ(ṽk)T ∆ṽk| and ρ2 = 1/2∆xT
k (∇2

x`(vk)∆xk−∆zk)
|∇Φµ(ṽk)T ∆ṽk| .

Step 2: Compute ρ = max{0, ρ̃ + c}.
While it seems that this selection of ρ only produces a decrease of the model,
the use of Algorithm 5.2 also converts the inexact Newton step into a descent
direction for Mµ.

As shown by Argáez and Tapia [4], for any ρ ≥ ρ1, then the inexact direction
(xk, zk) is a descent direction for Mµ. If ρ2 ≥ 0, it follows that ρ > ρ1 and the
inexact Newton direction is also a descent direction for Mµ.

In the case that α+
k in equation (5.2) does not allow a reduction of Mµ

with the updated iterate and ρ ≥ ρ1, then the use of the modified αk given
by Algorithm 5.1 improves the chances of decreasing Mµ and accepting the
inexact Newton step.

5.3. Algorithm. We now present our inexact Newton hybrid path-following
algorithm for nonlinear programming.

Algorithm 5.3. (Inexact Newton hybrid path-following algorithm)
Given ε > 0, kmax > 0, an initial interior point (x0, y0, z0), ∆0 > 0, η ∈ [ 14 , 1],
and τ, β, γ ∈ (0, 1], for k = 0, 1, 2, . . . , kmax, do the following:

Step 1: Compute µk.
Step 2: (Inner Loop) Repeat.

2a: Compute the inexact Newton step (∆xk, ∆yk, ∆zk) with Defini-
tion 4.5.
2b: (Enforce Positivity) Compute α+

k via (5.2).
2c: (Armijo’s Sufficient Decrease of Φµ) Compute αk with Algorithm
5.1.
2d: Compute ρk with Algorithm 5.2.
2e: If σk(αk) ≥ η, update ∆k and accept the inexact Newton step:

(xk+1, yk+1, zk+1) = (xk + αk∆xk, yk + αk∆yk, zk + αk∆zk).

Else, update ∆k, k = k + 1, and go to Step 2.
Step 3.: Proximity to the Quasicentral Path.

If (xk+1, zk+1) 6∈ NW (γµk), update k = k + 1 and go to Step 2.
Else if ‖F (xk+1, yk+1, zk+1)‖ ≤ ε, STOP.
Else, update k = k + 1 and go to Step 1.

5.4. Numerical experimentation. Algorithm 5.3 was implemented on a
SPARC Station 5 running the SunOS operating system, release 4.1, with 64
megabytes of memory and was written in MATLAB version 6.5. The numerical
experimentation was performed on a set of test problems taken from the CUTE
test problems.

The initial point x0 is obtained from the CUTE collection. If there is a
j-th component of x0 such that xj

0 ≤ 0, we redefine xj
0 = 2. From x0, we
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compute z0 = be where b = max{0.1, ‖∇f(x0)‖}, and y0 = ‖∇f(x0)‖em with
em = (1, . . . , 1)T ∈ Rm. We set the initial perturbation parameter to be
µ0 = xT

0 z0
n . If the updated iterate (xk+1, zk+1) ∈ NW (γµk), with γ = 0.8, we

calculate µk+1 = NW

100 .
When computing ∆xp and ∆xh, we let δ = 0.9, Icg = min{n−m, 20}, and

ε1 = 10−6. We use a sparse Cholesky package to compute (AAT )−1, developed
by Ng and Peyton, and obtained from LIPSOL [20]. In the computation of α+

k ,
we let τ = 0.99995, and to compute αk, we set s = [1 0.8 0.6 0.5 0.2] and
β = 10−4. In Algorithm 5.2, we let c = 2 as in [2, 4].

The trust region radius is modified in the usual way (See [16]) where the
initial and maximum trust region radii are ∆0 = 5 and ∆max = 20, respectively.
If we have not accepted an inexact step after a maximum number of steps
allowed maxtr = 5 with η = 1

4 , we force the acceptance of the last step and set
∆ = 2.5. We set the algorithm’s total number of iterations to kmax = 300 with
a tolerance of ε = 10−7.

In Tables 3 and 4, we report the number of inexact or exact Newton steps
computed for each of the 50 problems to converge. A dash in a column indicates
that convergence was not achieved within kmax iterations. The last row in Table
4 states the total number of problems that converge for each algorithm.

The first three columns state the problem name, the dimension of x, and
the number of equality constraints, respectively. The fourth column reports
the results obtained by using Algorithm 5.3, that implements the proposed
inexact Newton hybrid path-following algorithm. The next column shows the
results obtained by using an exact Newton hybrid path-following algorithm, i.e.
Algorithm 5.3 with a modified Step 2a in order to calculate exact Newton steps,
and the following column modifies Algorithm 5.3 by omitting the linesearch
technique within the trust region globalization strategy. Both of these results
are reported in columns five and six, respectively.

In the previous section, we pointed out that the formation of the inexact
Newton step is independent of the invertibility of the coefficient matrix in
(2.5). As evidence, we refer the reader to the following problems of Tables 3
and 4: hs9, hs68, lsnnodoc, hs54, hs55, and robot. In these cases, Algorithm
5.3 achieves convergence and by using the exact Newton step, the algorithm
fails to converge in less than maxiter iterations.

By examining Tables 3 and 4, there are cases where the exact Newton algo-
rithm outperforms Algorithm 5.3. It may be the case that the inexact Newton
step is not as good of an approximation to a solution of (2.5). From Proposi-
tion 4.6, we may calculate more accurate inexact steps by increasing maxtr in
Algorithm 4.1.

In order to determine the effect of the linesearch within the trust region
method on the Algorithm 5.3, we compare two implementations: Algorithm
5.3 with and without linesearch (excluding Step 2c).
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Table 3. Numerical Results

Problem n m Algorithm 5.3 Alg. 5.3 with Exact Alg. 5.3 without
Newton Steps linesearch

alsotame 2 1 14 22 17
extrasim 2 1 5 5 5

hs6 2 1 42 112 19
hs7 2 1 10 10 10
hs8 2 2 10 9 10
hs9 2 1 5 - 8

supersim 2 2 3 3 3
tame 2 1 3 3 3
tryb 2 1 12 14 11

aljazzaf 3 1 46 27 29
hs26 3 1 54 26 41
hs27 3 1 14 14 19
hs28 3 1 15 15 -
hs60 3 1 12 12 12
hs61 3 2 19 13 19
hs62 3 1 7 7 13
hs63 3 2 23 11 17
hong 4 1 8 8 13
hs39 4 2 11 23 12
hs40 4 3 5 5 5
hs42 4 2 12 11 12
hs68 4 2 89 - 47
hs69 4 2 15 15 21
lin 4 2 13 31 20

bt13 5 1 229 72 -
hs46 5 2 18 17 18
hs47 5 3 27 12 59
hs48 5 2 6 6 6
hs49 5 2 19 16 -
hs50 5 3 - 17 -
hs51 5 3 5 5 5
hs52 5 3 34 22 -
hs53 5 3 23 23 -
hs77 5 2 119 11 42
hs79 5 3 14 24 14

From Tables 3 and 4, the numerical results show that Algorithm 5.3 performs
better than the version that omits the linesearch techniques. We conclude
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Table 4. Numerical Results (Cont.)

Problem n m Algorithm 5.3 Alg. 5.3 with Exact Alg. 5.3 without
Newton Steps linesearch

lsnnodoc 5 4 12 - 12
hs54 6 1 10 - 10
hs55 6 6 25 - 43
hs56 7 4 16 10 17
hs99 7 2 64 8 56

trigger 7 6 21 19 21
hs112 10 3 39 19 32
odfits 10 6 55 13 55
robot 14 2 7 - 8
hs119 16 8 86 49 -
fccu 19 8 46 22 35

degenlpa 20 15 74 61 -
degenlpb 20 15 55 56 -
himmelbk 24 14 107 45 -
optcntrl 32 20 20 140 143

TOTAL 49 44 40

that Algorithm 5.3 is more robust: 49 problems converge with it, and only 40
converge without.

6. Conclusions

We introduced an inexact Newton hybrid path-following algorithm for solving
nonlinear programming problems. We make use of inexact Newton steps that
allows us to relax the Newton assumptions associated to this problem, and
obtain these steps more efficiently from a computational point of view. The
hybrid path-following strategy incorporates a linesearch into the trust region
method.

The algorithm was tested on a set of CUTE test problems obtaining promis-
ing results. We perform a numerical comparison of our proposed inexact
Newton hybrid path-following algorithm versus the exact Newton hybrid path-
following algorithm and inexact Newton trust region algorithm. The numer-
ical results obtained show that our algorithm is more robust than the other
two algorithms. Furthermore, our algorithm is able to solve degenerate prob-
lems. These preliminary results motivate a further research of the hybrid path-
following strategy. Future work involves the addition of preconditioners within
the conjugate gradient algorithm for solving large scale problems efficiently,
and to prove global convergence theory.
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Velázquez.

References
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[7] M. Argáez, O. Mendez & L. Velázquez, 2005. The notion of the quasicentral
path for linear programming, Technical Report, Department of Mathematical
Sciences, The University of Texas at El Paso, El Paso, Texas, 2006.

[8] R. Byrd, J.C. Gilbert & J. Nocedal, A trust region method based on interior
point techniques for nonlinear programming, Math. Program. A, 89 (2000), 149–
185.

[9] J.E. Dennis, Jr., & R.B. Schnabel, Numerical methods for unconstrained
optimization and nonlinear equations, 2nd ed., Society for Industrial and Applied
Mathematics, Philadelphia PA, 1996.

[10] M. El-Alem, A global convergence theory for a class of trust region algorithms
for constrained optimization, Ph.D Thesis, Rice University, Houston, Texas,
(1998).

[11] A.S. El-Bakry, R.A. Tapia, T. Tsuchiya & Y. Zhang, On the formulation
of the primal-dual interior-point method for nonlinear programming, J. Optim.
Theory Appl., 89 (1996), 507–541.

[12] N.I.M. Gould, M. E. Hribar, & J. Nocedal, On the solution of equality
constrained quadratic programming problems arising in optimization, SIAM J.
Sci. Comput., 23 (2001), 1375–1394.
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