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ABsTrRACT. I propose an alternative method for computing effectively the solu-
tion of the control inventory problem under non-convex polynomial cost func-
tions. I apply the method of moments in global optimization to transform the
corresponding, non-convex dynamic programming problem into an equivalent
optimal control problem with linear and convex structure. I device computa-
tional tools based on convex optimization, to solve the convex formulation of
the original problem.
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RESUMEN. Propongo un método alternativo para calcular de manera efectiva
la solucién del problema de control de inventarios bajo funciones de costo poli-
nomiales no convexas. Aplico el método de momentos en optimizaciéon global
para transformar el correspondiente problema de programacion dindmica no
convexo en un problema de control éptimo equivalente con estructura lineal y
convexa. Disefio herramientas computacionales basada en optimizacién convexa
para resolver la formulacién convexa del problema original.

1. Introduction

This work proposes an alternative method for computing effectively the so-
lution of the control inventory problem of the firm. The problem analyzed
here is a version of the control inventory problem explored in [29], where the
firm chooses inventories and production plannings to minimize the discounted
present value of its costs. The essential difference between this and previous
models is the presence of nonconvexities in the cost function of the technolo-
gy facing firms; particular characteristics of internal labor markets as well as
the capital utilization decisions of firms may alter the relationship between the
level of output and costs, leading to non-convex k-time cost function, instead
221
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of the classical convex cost function with increasing marginal costs. Our aim in
this work is to overcome this particular non convex situation from the point of
view of optimization theory and convex analysis. We will focus on non convex
expressions described by polynomials. We remark that non convex situations in
optimization problems are difficult to understand. There is no general method
for analyzing and solving problems with this feature [2, 19, 4, 20].

The economic literature has focused on the estimation of the effects of out-
put, inventories and sales in the costs of the firm, using statistical and econo-
metric techniques. However, in the case of the nonconvex cost function, it
cannot be guaranteed that the calculated elasticities lie over the optimal so-
lution, because sufficient conditions are not available [29]. To our knowledge,
none of the existing works in the current economic research have focused on the
computation of the level of inventories and production that minimize the costs
of the firm, under non-convex costs of production. We accomplish this task by
using the method of moments which allows us to find the optimal solution, in
spite of the non convexities present in the dynamic programming model. This
method has been recently proposed as a theoretical and practical tool for solv-
ing non convex optimization problems in control theory, global optimization
and calculus of variations [27, 23, 24, 22, 25, 17, 32, 18, 28, 3].

In this work we deal with non-convex dynamic programming problems given
in the form:

N
min In? + Z BrEC
k=0
s.t. Iy —I_1 =Y, — Sk, k=0,---,N (1.1)
.[71 :0
I >0, Yy >0, k=0,---,N (1.2)

where the cost function C} can be expressed as a polynomial, namely
Cr = 73Yk3 + ’}/QY]CQ + ’71(Yk - Yk71)2 + Oq([k - a25k+1)2 k=0,---,N

where Y} is the production during the period k, Iy is the stock of finished goods
inventories at the end of the period k, and Sy represents period k + 1 sales;
~'s and o’s are theoretical parameters. We remark that the leading coefficient
of the Hamiltonian function -3 is positive and v, coefficient can be negative
owed to negative marginal costs on the overall economy.

The non-linear, non-convex form of the control variable, prevents us to use
either the Hamiltonian equations of the minimum principle for discrete-time
problems or mathematical programming techniques, because we cannot guar-
antee that the theoretical sufficient conditions for optimality hold on them.
We propose to convexify the control variable Yy by using the method of mo-
ments. By using the classical solution of the Stieltjes Moment Problem, we can
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formulate a linear, convex relaxation of (1.1) in the following form:

N
min Iy? + Z grey!

k=0
s.t. Ik_Ik—lzmlk—Sk, k:()’...7N
Qy1 =m1g, k=0,--- N (1.3)
I 1=0
I >0, myp>0 k=0,--- N (1.4)

where
Cy = smak + (11 + 72)mak — 2n1qemar + N4y
+ay (I — agSk11)? k=1, N

and the new control variable is the vector my, in REt!, whose i-entry is defined
as

Ry

That is, the entries of my, are the moments of some measure p with respect
to the basis functions {1, Uk, u%, e ,uﬁ} , supported on the semiaxis [0, 00) of
the control variable Y.

What is new in this approach is the convexification of the control variable
by using moment variables, which allows us to obtain an equivalent, convex
formulation more appropriated to be solved by high performance numerical
computing. We should warn the reader about the difficulties of numerical
algorithms to overcome non-convex situations in optimization problems [21,
14, 9, 19]. We will apply the Method of Moments to the control inventory
problem under polynomial cost functions, using theoretical parameters.

The present paper is organized as follows. In section 2 we describe the
control inventory problem explaining with some detail the theoretical source
of the non-convexities in the cost function. In section 3 we outline the basics
of the Method of Moments when the k-time objective function is a polynomial
on the control variable. We also explain the essentials of the transformation of
dynamic programming of problems like (1.1) into its equivalent linear, convex
relaxation (1.3). In section 4 we motivate the application of the Method of
Moments by calculating the convex envelope of a simpler k-time cost function
and we solve the control inventory problem by using this method. We finish
with a conclusion in Section 5.

2. The control inventory problem

2.1. A background on the problem. The problem analyzed is a simple
version of the control inventory problem explored in [29], where the firm chooses
inventories and production to minimize the discounted present value of its
costs. The difference between this and previous models is the nonconvexities
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in the technology facing firms. The standard production smoothing model of
inventory investment states that a convex short-run cost function or a cost of
changing the level of production induces firms to hold finished goods inventories
in order to smooth production; this implies that production should not respond
fully to a change in sales. However, certain overwhelming facts evidence that
firms do not in fact smooth production; instead, production is actually more
variable than sales and the covariance between sales and inventory change is
not negative.

One possible explanation for the failure of the production smoothing model
to explain the behavior of inventories is the presence of nonconvexities in the
technology facing firms. The standard neoclassical theory states that it is
optimal for firms to produce only over ranges of output where marginal costs
are increasing, hence, over ranges where total costs are convex. References
[33, 29, 6] mention that the cost function may be convex at low output levels
and concave at high levels. Then small shifts in demand could cause production
to jump substantially. So it may be allowed to have declining marginal costs.

According to [29] characteristics of internal labor markets as well as the
capital utilization decisions of firms alter the relationship between the level of
output and costs. For example, the firm can treat high-skilled workers as fixed
factors of production: during a downturn, it uses them for less productive tasks
and when demand rises again, the firm can increase production by using the
same labor inputs more efficiently; thus the enterprise is not forced to pay over-
time work. Furthermore, processing firms may have incentives to build plants
with large capacities, since the expanding of plants may increases production
more than it rises costs.

Reference [29] is one of the leading papers taking into account non-convexities
in the cost function of the inventory problem. In recent years several authors
have been studying this kind of costs, and proposing different objective func-
tion forms. In [7] the authors study how plants in the U.S. automobile industry
adjust production. They show that the lumpiness of the production in this in-
dustry is caused by exploitation of nonconvex operating margins; the main
margins are adding or dropping a shift, varying regular hours by shutting the
plant down for a week and, less important, overtime hours. These margins lead
to nonconvexities in the cost function, which is the sum of several terms, one
of them being non-convex and the rest being discontinuous in their arguments.

In [10] the authors investigate the aggregate implications of a nonconvex-
ity in technology: the firm’s choice of technique. In particular, they study a
machine replacement problem in which a firm must decide whether or not to
install a new machine or continue to produce with an older, depreciated ma-
chine. The empirical analysis focus on the U.S. automobile manufacturers and
shows that the dramatic seasonal fluctuations of plants are induced by machine
replacement, hence due to non-convexities in technology.
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In [15] is presented econometric evidence of the incidence of non-convex
costs in the relative variation of production to sales, in the automobile assem-
bly plants. Following [7], the labor contract provisions and the non-convex
margins produce large discontinuous jumps in the plant’s cost curve. The au-
thor concludes that when desired production is above the plant’s minimum
efficient scale, non-convexities induce production bunching; the plant uses less
than full capital utilization on average and production is more volatile than
sales. When desired production is below the plant’s minimum efficient scale,
the plan operates in a convex region of the cost curve. In this case, it uses high
levels of capital utilization and production is less volatile than sales.

In [30] the authors try to explain the decline in volatility of U.S. GDP growth
beginning in 1984. In order to shed light into the discussion, they study the
behavior of the U.S. automobile industry, where the changes in volatility have
mirrored those of the aggregate data. They conclude that an inventory model
involving non-convex costs predicts that a decline in the persistence of sales
shocks leads to a decline in the variance of production relative to the variance
of sales and to a decline in the covariance of inventory investment and sales.

From the preceding review it is clear that the recent literature has been
looking for non-convexities in the U.S. automobile industry. According to [7]
this is due to its substantial cyclical volatility and the quality of the data;
but they note that the automobile industry is not representative to the entire
economy and it is not the only industry where non-convex costs can be found. In
fact, chapter 4.1 describes the evidence of non-convexities in the food industry
presented in [29].

2.2. The model. The model presented in [29] proposes a current-period cost
function which takes the form of a three-degree polynomial on the control
variable

Cr = 73Yk3+’72yk2+’71(yk —Yk,1)2+a1(Ik —OAQSkH)Q k=1,--- N. (2.1)

where Y} is the production during period k, Ij is the stock of finished goods
inventories at the end of the period k, and Sk is period k + 1 sales; v's y s
are parameters.

The second term allows for the cost of producing Y;, a convex cost in the
short term; the third term represents the cost of changing the level of produc-
tion (i.e. the cost of adjusting the labor force and reassigning tasks); the fourth
term is a cost of deviating from target inventory, which is a linear function of
sales; finally, the first term allows for a cubic cost function, which in the pres-
ence of the quadratic term (the cost of producing Y;) with negative coefficient
may lead to a k—time non-convex cost function. Since the firm has not started
the process of production at the beginning of the first period, the cost of chang-
ing the level of production at k = 0 is null. Hence, the current-period cost at
k=01is

Co =Yy +72Y0” + ar(lp — a2 51)?
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Given sales S, the firm chooses inventories and production to minimize the ex-

pected discounted present value of its costs, subject to the equation of inventory
motion

N
min In? + Z grCy,

k=0
s.t. I, — I =Y, — Sk, k=0,---,N (2.2)
I =0

Ik207 Y, >0 k:OaaN

where k is the time index, 0 < 8 < 1 is a time discount factor and C} is
the current-period cost function during period k. The equation of inventory
motion states that sales must be covered with output and inventories. We set
the initial condition I_; = 0 in order to impose a zero level of inventories at the
beginning of the production process and we give to the the firm a punishment
for holding high inventories at the end of its decision period - we assume this
additional cost term is quadratic in the level of final inventories. Production
Y}, is the control variable, inventories I represent the state variable and the
sales Sj can be seen as an exogenous variable.

This problem is a simpler version of the one presented in [29]. The first
difference lies in the omission of the price shock terms (relating wages, materials
prices and energy prices) and the error terms; hence, our objective function is
not the expected discounted value of costs but the effective discounted value
of costs. The exclusion implies there is no uncertainty between agents. This
assumption may be very restrictive, but its inclusion involves the analysis of
stochastic optimization problems, which is beyond the scope of this paper.
The second difference refers to the period length: we truncated the infinite
period problem suggested in [29], in order to apply the minimum principle.
The inclusion of the uncertainty terms and the infinite period treatment of the
problem constitute items for future research.

3. Nonlinear dynamic programming problems to the light of
the method of moments

We develop here the discrete-time form of the Method of Moments, whose con-
tinuous version for optimal control problems is presented in [27]. The Method
of Moments applies to dynamic programming problems given in the form:

N
min J(ug, -+ yun) = fyi(@nin) + ) frln, wr)
k=0
st 11 = gr(ak, ug), k=0,---,N (3.1)
up €URCRy, k=0,---,N

To = Xo
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where (ug, uq,- -+ ,un) is the control sequence, (xg, 1, - -- ,TN+1) is the
corresponding state sequence, the Uy are the control constraint sets which in
this case all lie in the positive semiaxis on the real line! and the functions fy
and g can be expressed as polynomials in the control variable uy; in general
we have:

Iy
fr(xr, k,ur) = Zai(mk, k)uj, (3.2a)
i=0
Iy )
gk (xk, kyug) = Zci(xk, k)ug,. (3.2b)
i=0

We assume that f and gy functions are continuously differentiable with re-
spect to xx. The nonconvex form of the control variable is an obstacle to use the
Hamiltonian function of the minimum principle? and non-linear mathematical
programming techniques. An alternative approach for dealing with this kind of
problems is to convexify the control variable by using the method of moments
in the polynomial expressions (3.2).

Given the polynomial form of fj and g, the Hamiltonian Hj, of the dynamic
programming problem is a polynomial in the control variable:

L
Hk:z:ozi(xlwpk,k)u?c k=0,---,N (3.3)
i=0
where L = max{ly,lo}. We are interested here in finding the global minimiza-
tion of Hy in ug, namely

L
min Hy(uy) = Z Q. (3.4)
i=0

Notice that we use positive controls as this is the common setting in inven-
tory models.

3.1. The general theory of the method of moments. One approach for
solving problem (3.4) comes from convex analysis, because we can use the
convex envelope of the function Hj, in order to locate its global minima[23].
The following theorem characterizes the convex envelope of the Hamiltonian
function by using measure theory.

Theorem 3.1. The convex envelope of Epi(Hy) can be expressed as

co(Epi(Hy)) = { Hy (g )dp(ur) = p € P(R+)}

Ry

LThe Method of Moments deals with constraint sets lying not only in the semiaxis [0, c0),
but in the entire real space. Given the characteristics of the control inventory problem,
however, it is necessary to study this more restrictive problem.

2For a description of the minimum principle for discrete-time problems see [5] and [8].
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where P(Ry) is the family of all probability Borel measures supported in the
semiazis [0, 00).

Once we have characterized the convex hull of Hy, we can obtain the set
of all global minima of Hj using a recent result for global optimization of
polynomials.

Theorem 3.2. [17, 22| Let P(Ry) be the set of all reqular Borel probability
measures supported in the semiazis [0,00). If Hy is an algebraic polynomial
whose leader coefficient oy, is positive , then

min Hi(ug)dp(ug) = min Hi(ug).
pneP(Ry) Ry k( k) /14( k) up €ER4 k( k)
From the previous theorem, it follows that we should use the generalized
optimization problem in measures

i H, d 3.5

BB Ju, K (wn ) dp(u) (3.5)

as an alternative formulation of the global optimization problem (3.4). The

following theorem states that the solution of problem (3.5) is the family of all

probability measures supported in the set of all global minima of the Hamil-
tonian function Hy.

Theorem 3.3. [17, 23, 24] Let G be the set of all global minima of the Hamil-
tonian function Hy in Ry then,

Hy(ug)dp*(ug) = min Hy (ug)dp(ug)
Ry nePRy) Jr,
if and only if the support of u* is contained in G. Briefly, the set P(G) is the
solution set for the generalized problem (3.5).

The preceding two theorems show that there exists a theoretical equivalence
between the minimization problem (3.4) and the relaxed problem (3.5). The
following section make such equivalence explicit and useful.

3.2. Convexification of polynomial expressions. The relaxed problem (3.5)
contains information about all the global minima of the function Hy, in R, . This
kind of problems cannot be solved easily in practice, due to the difficulty for
describing all possible convex combinations of points in R. However, the poly-
nomial form of the Hamiltonian function Hy(ug) = ZiL:O a;u} make it more
manageable.

Every integral in problem (3.5) can be expressed as an elementary dot prod-
uct in REH!

L
Hy(ug)dp(ug) = Zaimik =a-my
Ry i=0
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where « is the coefficients vector of the Hamiltonian polynomial at time k£ and
the moment vector my, in RE*H1 is defined as:

Mg = / uhdp(uy,) i=0,--- ,L (3.6)
Ry

which are the moments of some measure p with respect to the functional basis
{Lukau%a T 7u£}

at time k.
The optimization problem (3.5) transforms into the following convex prob-

lem:
L

min E a;m; 3.7
i eM 4 ez ( )
=0
where M is the convex cone of all vectors in R*T! whose entries are the algebraic

moments of a probability measure supported in R, namely

M = {m c REFL . m; :/ u'dp(u) i=0,---,L, pec PRy}
R4

Although this formulation seems attractive due to the linear form of the
objective function and the convex structure of the feasible set, it is still a the-
oretical formulation not very useful if we do not properly characterize the fea-
sible set M, see [27]. The characterization of the values mog, mig, -, mpg, as
the moments of some measure p, is an open question in contemporary math-
ematics. This difficult task is called The Problem of Moments. Given the
standard algebraic basis in Ry and values mog, mig, - ,mpk, the Problem
of Moments consists in determining a positive measure p such that equation
(3.6) holds; it also includes the search for requirements in order to characterize
Mok, M1k, -+ ,Mrr as a set of moments. Depending on the functional basis
and the domain set the Problem of Moments can take different forms. For
the standard algebraic basis and the domain Ry the Problem of Moments is
referred as Stieltjes Moment Problem.

The solution of the Stieltjes Moment problem is summarized in the following
result:

Lemma 3.1. [16] Let L = 2n+1 and consider the matrices Ay = (Mijk)7 j—o
and B = (mi+j+1,k);ﬂ,j:0' If matrices Ay and By are both positive definite
then the vector (mog,--- ,mry) s in M. Conversely, if mog, - ,mpy are
the algebraic moments of some positive measure supported in [0,00), then the
matrices Ay and By are positive semidefinite.

From the preceding lemma we conclude that the closure of M is composed of
all vectors in RE+! whose entries form two positive semidefinite (p.s.d) Hankel
matrices [27]:

M = {(ml)fga'l S RLJrl : (mH_]’)Zj:O, (mi+j+1)?7j20 are p.S.d with mo = 1}
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This result allows us to transform the relaxed problem (3.7) into the semidefi-
nite program:
2n+1
I}}llkn ; oMk (3.8)
s.t. (mi+]~7k)§fj:0 Z 0, (mi+j+17k)zj:0 Z O, with mgo = 1.

So far, we have presented the existing links between the non-linear, non-
convex problem (3.4) and the convex program (3.8). Now we want to guarantee
we can obtain some information about the global minima of the later by solving
the former. This task is accomplished in [23].

Theorem 3.4. [23] Let pj be one probability measure supported in [0,00),
whose supporting points are global minima of the Hamiltonian function Hy(uy)
in [0,00). Then, the algebraic moments mg,,--- ,mj;, of the measure p solve
the optimization problem (3.8). At the converse, if values mf,,,--- ,mj, solve
problem (3.8), there exists a unique probability measure . supported in [0, 00),
with algebraic moments mg,,--- ,m},, whose supporting points are global min-
ima for Hy(ug) in [0,00).

Moreover, we can relate the minimizers of problem (3.8) with the number
of global minima present in the objective function of the problem (3.4), as the
following corollaries states.

Corollary 3.1. [27] Since the set of global minima of Hy, is finite, any solution
mj, of problem (8.8) can be expressed as

my, = AT (uig) + - + AT (usk)

where Uik, -+ ,usk are global minima of Hy, s < L, A; > 0 with 25:1 Aj =
1, where T is the nonlinear transformation T : Ry — RILTL defined by the
expression T'(ug) = (L, u?, - ,ukb).

Therefore, if Hj, has a unique global minimum wuj, the optimal control can
be expressed as u; = mj,. According to the preceding corollary, we can also
state that any solution u} of problem (3.5) can be expressed as pf = A10yz, +
-+ Agdyx, . When uj is the unique global minimum we have uj = dyx, where
d; represent a dirac measure.

3.3. Analysis of the problem. In the previous section we outlined the basics
of the Method of Moments. These results suggest to reformulate the global
minimization of the Hamiltonian H} in problem (3.4) as:

2n+1
min Hy (2, k, pe, mx) = > ai(@, b, pi)mix (3.9)
Mk i=0
s.t. (mi+j,k)2j:0 Z 0, (mi-t,-j-‘,-l,k)?’j:o Z 07 with mok = 1 k= Oa o 7N'
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Then, we can solve the non-linear, non-convex problem (3.1) by dealing with
its convex relaxation:
N L

fflnin Inii(znyr) + Z Z a;i(T, k)mi
k k=0 i=0
l2

s.t. Tpa1 = Zci(xk, k)Ymig
i=0
(miﬂ-,k)f’j:o Z O, (mi+j+17k)2j:0 Z 0, with mog — 1 (310)
for k=0,---,N
To = Zo
where L = max{ly,lo} = 2n + 1.
Notice that the semidefinite program (3.9) corresponds to the optimization
of the Hamiltonian of the convex formulation (3.10)

Iy l2
Hy, = Hy(wy, ko promi) = Y ai(ar, k)ymag +py, - > cilar, k)ma
i=0 i=0

L
- Z ai(xk:a kapk)mik~

=0

The analytical aspects of the formulation (3.10) and its relation with problem
(3.1) are a consequence of the results presented in the previous section. The
following theorem and its corollary provide a practical method to certify if
problem (3.1) lacks of minimizers.

Theorem 3.5. Let us assume that uj, is a minimizer of the optimal control
problem (3.1), then the control vector mj, given as

m;(k: = (u;;)l fOT’i:O7"' aL- (311)
is a minimizer of the formulation (3.10).

Proof. This proof follows the one outlined in [27] for optimal control problems.
Since uj, is an optimal control for problem (3.1), according to [8] the minimum
principle claims that uj, satisfies the global minimization problem:

Hk(x27kapltvu2) = min Hk(x27kapl>:7uk) (312)
up ERT

where x}, comes from the solution of the differential equation:
xhyq = gr(zg,up) for k=0,---,N
x5 = To
and the function pj comes from the solution of the finite differences equation:

aHk+1(xz+17 uz+1apz+1a k + 1)
8$Ic+1

i = for k=0,---,N—-1
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and the boundary condition

Pl = di+1(x7\/+1)
N denyr

On the other hand, the Hamiltonian function Hy has the polynomial form (3.3)
and uj, solves the global minimization problem (3.12), therefore we can use the
theory of global optimization of polynomials of Section 3.1 to show that the
vector mj € RET! defined as:

satisfies the semidefinite program

min ﬁk(xz, k,pr,my) (3.13)
mpEM
where
N L
Hy(n, by promi) = > iy, b, pi)mi
i=0

and the functions x}, p} in problem (3.13) come from the solution of the finite
differences equations:

Thy1 = gr(ah,up)  for k=0, N (3.14)
OHk 1 (T 41, Uy 15 P b+ 1
py = 2l e Pt Py D o k=0 N1
Thk41
with the boundary conditions zf; = Zo and p}, = 7%;;1&’? =) Since g; and %Ij:

in system (3.14) have polynomial form in the variable u}, and every appearance
of the i-th power of u; can be replaced by mJ,, then we can see that functions
xy, and pj satisfy the differential equations:

1 = gr(Tg, my) for k=0,--,N

aHk+1(xZ+1v m]t+1vp]t+1v k + 1)
O0Tp41

Dy = for k=0,---,N—1

where gi(xg, my) = 222:0 ci(zg, k)my, and %f: is the formal partial derivative

of I;Tk with respect to variable zj. Since m} solves the program (3.13), we have:

* * * . * *
Hk(zkakapkamk) = miy Hk(xkvkapkamk)
mrpEM

and we conclude that m} satisfies the minimum principle’s necessary conditions
for the minimizers of the convex formulation (3.10). Thus, mj must be a
minimizer of (3.10). vf

Note that if m} is a minimizer of problem (3.10) satisfying (3.11), then
(m3,)" = mj, and mj, is a minimizer of problem (3.1). This situation is par-
ticularly convenient in order to calculate minimizers of problem (3.1), because



CONTROL OF INVENTORIES UNDER NON-CONVEX POLYNOMIAL COST ... 233

we only have to solve the convex formulation (3.10) which is more appropriated
to be handled by high performance, non-linear programming techniques [27].

Corollary 3.2. [27] If all the minimizers of the formulation (3.10) fail in
satisfying the expression (3.11), the problem (3.1) lacks of minimizers.

Therefore we can determine the lack or existence of minimizers in problem (3.1)
by checking all the minimizers of formulation (3.10) satisfying (m},)" = mJ,
i=1,--- L.

4. Solving the control inventory problem with the method of
moments

In this section we solve the control inventory problem (2.2) by using the Method
of Moments. In order to justify the application of this method, we will describe
where do the non-convexities arise and we mention its effects on the decision
problem of the firm. Then, we calculate the optimal production and inventories
for each period k.

First we transform slightly problem (2.2). Note that the k-time cost function
(2.1) depends not only on the current control Y, but also on the lagged control
Y _1; however, the minimum principle admits only current values of controls
and states. Following [5] this situation can be handled by introducing a new
state variable. Thus, we introduce g = Y;_1 and add the equation giy1 = Y%
to the system of inventory motion. After some algebraic manipulation, the
optimization problem (2.2) yields,

N
min 7> —i—ZﬁkC’]’C
k=0
s.t. Ik—]k_lek_Sk7 k:O,,N

Q1 =Yy, k=0,---,N (4.1)

I_1=0

>0, V>0 k=0 N
where

Cr =YY + (n + 7)Y — 2maYe + 114i (4.2)

+Ck1(]k—a25k+1)2 k:]., ,N
Ch =Y + Y] + ai(Ip — aeSh)?

Note that the constraint sets for each control variable Y are simply RY
for k = 0,..,N 3; they are indeed convex as is required by the discrete-time
minimum principle [5]. Also note that the cost function (4.2) is not convex on
the control variable Yj. Since we cannot use the sufficient conditions of the

3This is due to the natural assumption of positive production.
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minimum principle, we cannot apply it to problem (4.1) as we are not certain
about the optimality condition.

4.1. The non-convex cost function. Now we outline some theoretical and
empirical facts in order to understand where do the non-convexities of the cost
function arise. Reference [29] states that in the presence of certain technologies
it is possible to have both declining and increasing marginal costs over some
ranges of production. A cubic term on the production Y was included in
the k-time cost function (4.2) -besides the quadratic term- which can entail
nonconvexities in the cost function. A negative ;1 + 72, which is the coefficient
of the quadratic term on the cost function (4.2), would evidence the presence
of declining marginal costs; if in addition the coefficient of the cubic term ~3 is
positive, we can state that the cost function is nonconvex in the positive real
line.

5000
4000
3000
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1000

-1000

-2000

-3000

-4000

_5000 1 | ‘L‘ 1 1 ]
0 10 20 30 40 50

Figure 1: F(Y)=0.1Y3,G(Y) = —6Y2,C(Y) = 0.1Y? — 6Y?

To illustrate this situation, Figure 1 presents the k-time cost function (4.2)
including only the cubic and quadratic terms?, with a positive coefficient for the
former v3 = 0.1, and a negative coefficient for the later v; +v2 = —6. The sum

4The omitted terms would translate the curve or change slightly its slope, but the con-
cavity of the function would not be changed.
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of the convex function F(Y) = 0.1Y3 and the concave function G(Y) = —6Y>
is the non-convex function C(Y) = 0.1Y? — 6Y2.

Table 1 presents all the parameters of the cost function calculated in [29]
using statistical and econometric techniques; the industries studied in [29] are
food, tobacco, apparel, chemicals, petroleum, rubber and automobile. In all
seven industries v; + 2 was estimated to be negative, indicating declining
marginal costs. In all industries but food, -3 was not significantly different
from zero. We remark these estimations imply that the non-convexities in the
cost function arise only in the food industry. The other six industries present
concave cost functions, where the cost minimization problem makes no sense;
because its leader coefficient v, + o is negative, the k-time polynomial cost
function is unbounded from below®.

71 V2 3 a1 Qo
Food 1.100000 -7.780000 0.000307 1.000000  0.857000
Tobacco 0.133000 -0.740000 0.000000 1.000000 0.407000
Apparel 0.094800 -0.531000 0.000000 1.000000 0.314000

Chemical 0.014400 -0.566000 0.000000 1.000000 0.389000
Petroleum | 0.075800 -0.354000 0.000000 1.000000 -0.040000
Rubber -0.009500 -0.218000 0.000000 1.000000  0.436000
Autos 0.477000 -1.780000 0.000000 1.000000 0.415000
Theoretical | 1.000000 -7.000000 0.100000 1.000000 1.000000

Table 1: Parameters of the cost function

Then, we should only study those minimization problems where the parame-
ters of the polynomial cost function exhibit non-convex (non-concave) behavior
through their cost function. For the food industry, the difference in the order
of magnitude between 3 and the other coefficients makes it difficult to calcu-
late the solution of the optimization problem with the available computational
tools -see Table 1. Thus, in order to make the problem manageable, we use
theoretical parameters for the polynomial cost function, presented in Table 1,
as a qualitative model of this situation. Note that the selected parameters are
quite similar from those of the food industry, except for 3 which is higher to
avoid problems with its order of magnitude.

4.2. The convex envelope of the cost function. In this section we de-
scribe the effects of the non-convexities of the cost function in the decision
problem of the firm and we outline the role of its convex envelope when cal-
culating the optimal solution. In the previous subsection we explained how

5Note that this results contradict the standard neoclassical theory, which states that the
firm always faces increasing marginal costs.
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this non-convexities arise. The analysis of the effects of the non-convexities
in this simpler case, may help us to understand better its effects in the more
complicated inventory control problem.

Suppose the firm faces a non-convex cost function given by

C=0.1Y3 - 6Y? (4.3)

like the one illustrated in figure 1. In order to minimize its costs, it is not
optimal for the firm to choose those ranges of production where the curve is
non-convex; instead, it should choose only those ranges of output where the
cost function is convex. That is, in the minimization process the firm should
use not the non-convex cost function, but its convex envelope.

4.2.1. Analytical frame for the conver envelope. Given any function
f:]0,00) — R, its convex envelope is characterized as a convex function f, :
[0,00) — R which makes true the following expression: Epi(f.) = co(Epi(f)).
By using Caratheodory’s theorem of convex analysis, we conclude that every
point (a, f.(a)) on the graph of the convex envelope of f, can be expressed as
a convex combination of points located on the graph of f with two terms at
most. Then, we can express (a, f.(a)) as

(a, fe(a)) = Ai(ar, f(a1)) + Az(az, f(az)) (4.4)
where A\; + X2 = 1, A1, A2 > 0 and a; € R for 4 = 1,2. Following [26], if we
interpret the points a1, as and the coefficients A\i, Ao as the components of a
discrete probability distribution, that is

W= A1da, + p2da, (4.5)

where ¢, represents a Dirac measure, then we can express (4.4) as a particular
integration process

(@) = | " (b () (1)

where p* is supported in [0, 00) -because a1, as € [0, 00).
We can estimate the values a1, a2 and A1, A2 of (4.4), by solving the following
optimization problem

fela) = min | " F(t)d(t) (4.6)

where p represents the family of probability distributions in [0, c0) with mean
a [31]. If we use the fact that f can be described as a polynomial of odd degree

given in the general form
2n+1

f(t) = Z et
i=0
we can transform the optimization problem (4.6) into the optimization problem
2n+1

fela) = H}qiln Z Cim; (4.7
i=0
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where the variables m must belong to the convex set M of all the vector m €
R2"*2 whose entries are the first 2n + 2 algebraic moments of one positive
measure supported in [0, 00) with mean equal to a [1, 11, 16]. By using the
solution of the Stieltjes Moment Problem -see section 3.2- the optimization
problem (4.7) is equivalent to the following semidefinite program:

2n+1
min E cim;
m
i=0

st (Mivg)ij=0 >0, (Mivjr1)ij—0 >0
with mg =1 and m; = a.
Since p* is supported in two points at most, we can construct p* in (4.5) by

using its moments 1, a, m3, m3 obtained after solving the semidefinite program
(4.7). This task can be carried out by elementary algebra [1, 11, 16].

— Polynomial
—— Envelope

-500 1

-1000 |

-1500F

-2000F

-2500F
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-3500 p

Figure 2: C'=0.1Y? — 6Y? and its convex envelope C..

4.2.2. The simpler cost function and its conver envelope. By using the method
described previously, we graph the convex envelope C. of the simpler cost
function (4.3) in Figure 2. For a given point in the domain, for example a =
15, we obtain the coefficients Ay = 0.4966, Ao = 0.5034 and the points a; =
0.0219, az = 29.7785. That is, the point (15,C.(15)) in the convex envelope
of C' can be expressed as the convex combination of two points located in the
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graph of C
(15,C.(15)) = 0.4966 - (0.0219, C(0.0219)) + 0.5034 - (29.7785, C'(29.7785))
whose associated discrete probability distribution is
w* = 0.4966 - 09.0219 + 0.5034 - Ja9.7785

As we noted earlier, it is not optimal for the firm to choose levels of pro-
duction were the convex envelope C. differs from the cost function (4.3). In
this simpler static problem, it is clear which levels of output should the firm
choose: those which minimize the convex envelope of the cost function. The
same notion applies for our original optimization problem (4.1), however, it
will not be that clear which level of production must the firm choose, due to
the dynamic nature of our problem. The optimal solution can be obtained
by using the Method of Moments described in section 3, which minimizes the
convex envelope of the k-time cost function, but in a dynamic frame.

4.3. The solution of the control inventory problem. Now we solve the
control inventory problem (4.1) by using the Method of Moments. Since the
control variable must lay in RT, all moment vectors of positive measures are
supported in the semiaxis [0, 00), then we use the solution of the odd case of
the Stieltjes Problem®. Doing so, the convex relaxation of problem (4.1) yields

N
. I 2 kcl/
min Iy +Zﬁ k

k=0

s.t. Ik_-[k—lzmlk_sk; k:()v»N

dk+1 = Mik, k= 07 T 7N (48)
I,1 =
IkZO, mlkZO kZO,,N
(mi+j7k)}7j:0 >0, (mi+j+1,k)%’j:0 > 07 mo = 1 k= 0; t 7N
where

Cyl = ysmsi + (1 + v2)mak — 27v1qk™mak + NG (4.9)

+a1(1k*a25k+1)2, k:17 7]\]
C{ = v3mso + yamao + o (I — a251)2

The optimization problem (4.8) is a non-linear mathematical program. Fol-
lowing [27], in order to represent the matrix inequality conditions as a set of
non-linear inequalities, we use the fact that all subdeterminants of a positive

6Note that the assumption of convext constraint sets is not an obstacle for applying the
Method of Moments in this particular problem.
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semidefinite matrix are nonnegative [12]. Then, the matrix inequality condi-
tions (miﬂ-’k)%’jzo >0, (Mitjt1,0)s > 0 given as

i,j=0 =
m m m m
0k 1k > O7 1k 2k > 0
mik M2k Mmak M3k
are expressed as a set of non-linear inequality constraints:
mor > 0 mig >0
mog > 0 mg, > 0
2 2
MorMag — M7, =0 migpmag — my, > 0

Hence, we have transformed the optimal control problem (2.2) into a non-
linear, convex, mathematical program in 5 x (N + 1) variables and 9 x (N +
1) constraints. Notice that the independent coefficient of the cost function
depends on I and qx. In order to solve this kind of high dimensional, non-
linear mathematical programs, we use standard professional software based on
Sequential Quadratic Programming [21, 14, 9, 19].

The parameters of the polynomial cost function are presented in Table 1,
which are quite similar from those of the food industry, as noted earlier. Fol-
lowing [29], the discount factor 5 was preset at 0.99. We choose monthly sales,
which is the exogenous variable, in four different scenarios. The first scenario
assumes stable sales; the second scenario, ascending sales; the third, descend-
ing sales; and the fourth, variable sales. Their order of magnitude was chosen
according to the level of production which minimizes the simpler cost function
(4.3) -according to Figure 2, this optimal output is approximately 40.

We checked the uniqueness of the minimizers by evaluating expression (3.11);
when the order of magnitude of expressions

(mag)® — mak, (mag)® —ma, k=0, N (4.10)

was small we concluded that the minimizers were unique.

We solved the optimization problem along 12 months. We tried to solve the
problem for 24 months, but we found that in this case the problem lacks of
minimizers in the four scenarios. A possible explanation for this finding is that
production and inventories decisions are only made in the short run, because
firms cannot forecast sales with precision beyond 12 months.

We remark that it is possible to calculate generalized solutions when the
problem lacks of minimizers; that is, the solution of problem (3.5) may be
described as a convex combination of Dirac measures supported in the global
minima of the cost function. However, this issue is out of the scope of this

paper and it can be accomplished in future research. For future references see
[27, 23, 24].

4.3.1. Optimal solution with stable sales. We constructed the vector of stable
sales using observed shipments growth between 1998 and 2000 for the food
industry in the United States. We obtained unique optimal solution when sales
are stable; the order of magnitude of expression (4.10) is small -see Appendix
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A. Figure 3 presents optimal production and inventories. The optimal decision
consists in producing more than the demanded output in the first periods,
resulting in an accumulation of inventories. In the subsequent periods, the
firm must decrease its production below demanded output; then, it must satisfy
sales with accumulated inventories. The stock of inventories diminishes on the
last months in order to avoid the higher costs this holding implies.
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Figure 3: Optimal solution with stable sales

4.3.2. Optimal solution with ascending sales. When sales increase, we obtained
unique optimal solutions; the order of magnitude of expression (4.10) is small -
see Appendix A. Figure 4 presents optimal production and inventories for this
scenario. The former increases with sales and its level is above demand in the
first periods, resulting in an accumulation of inventories. After month 10, the
firm must decrease its output, satisfying sales with its holding of inventories.
We remark that the accumulation of inventories is higher than in the previous
scenario, in order to satisfy ascending sales; however, as in the stable sales
scenario, the firm decreases its holding of inventories in the final periods in
order to avoid the higher costs it implies.
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Figure 4: Optimal solution with ascending sales

4.3.3. Optimal solution with descending sales. When sales decrease, we found
no minimizers; the order of magnitude of expression (4.10) is huge -see Appen-
dix A. A possible explanation for this finding is that when demand diminishes
with a constant rate along 12 months, it is hard for the firm to avoid the costs
of decreasing sharply production or increasing rapidly its holding of invento-
ries. These results seems coherent, since it may be unsustainable for any firm
to face persistent decreasing sales.

4.3.4. Optimal solution with variable sales. We found unique minimizers when
sales are variable -see Appendix A. Figure 5 presents optimal production and
inventories. In this case, the higher variance of the demand is absorbed by in-
ventories, which vary more than optimal output. This supports the production
smoothing model, which states that when firms hold inventories, production
may not respond fully to changes in sales. As we mentioned in Section 2,
the introduction of non-convexities in the cost function where motivated by
the failure of this model; that is, the empirical facts evidence that firms do
not smooth production, contradicting our findings. This may be due to the
huge variance of our theoretical sales, which is higher than the variance of real
sales; in fact, the rate of growth of real sales were used to construct the stable
sales vector in the first scenario. This finding constitutes a contribution to the
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production smoothing model: it is fully functional only when sales are highly

variable.
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Figure 5: Optimal solution with variable sales

The optimal decision consists in producing more when sales are low, allowing
the accumulation of inventories. When demand rises sharply, the firm satisfies
it not by increasing production but by using its accumulated inventories. In
the last month the firm must decrease its holding of inventories in order to
avoid higher costs.

5. Concluding remarks

In this work we have proposed a new method for solving explicitly the control
inventory problem, where the firm chooses the level of production and inven-
tories which minimizes the discounted present value of its costs. Our problem
is a simple version of the one studied in [29], where the instantaneous cost
function is a non-convex odd-degree polynomial in the control variable (produc-
tion). Since the k-time objective function is non-convex, the minimum principle
for discrete-time problems cannot provide sufficient conditions for optimality.
Hence, following [27], we apply the Method of Moments to our problem and
provide necessary and sufficient conditions for the existence of minimizers of
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the original problem, by using particular features of the minimizers of its re-
laxed, convex formulation. We apply the computational tools for solving the
relaxed problem in four different scenarios: stable, descending, ascending and
highly variable sales.

The calculations outline the existence of minimizers when the number of
periods is 12 months, but not when it is 24. A possible explanation for this
finding is that production and inventories decisions are only made in the short
run, because firms cannot forecast sales with precision beyond 12 months. Also
we found that the problem lacks of minimizers when it faces descending sales
along the 12 months; a possible explanation is that it is hard for the firm
to avoid the costs of decreasing sharply production or increasing rapidly its
holding of inventories.

The optimal decision with stable and ascending sales consists in producing
above the effective demand, allowing for accumulation of inventories; in the
subsequent periods the firm diminishes its production and sales are satisfied
with accumulated inventories. Thus, the firm diminishes its holding of inven-
tories in the last period in order to avoid the higher costs this implies. We
found that when sales are highly variable the production smoothing model is
functional: when the demand of output is low firms produce above it, allowing
the accumulation of inventories; when demand rises sharply, the firm satisfies it
not by increasing production but by using its accumulated inventories, that is,
firms do smooth production. This constitutes a contribution to the production
smoothing model, in the sense it explains why it appear to failure when it is
confronted with the data: real sales are not as variable as our theoretical sales.

For future research, this work can be extended calculating the generalized
solutions when the inventory control problem lacks of minimizers. Also, price
shocks and error terms can be included in the cost function, eliminated from the
original objective function proposed in [29]; we suppressed those terms because
its inclusion entail the analysis of stochastic optimization problems, which is
beyond the scope of this paper. The reincorporation of those terms prevents us
to assume any uncertainty between agents. Besides, in this work we truncated
the original problem presented in [29] in order to apply the minimum princi-
ple for discrete-time problems; it would be interesting to analyze the control
of inventories under non-convex polynomial cost functions as an infinite time
horizon problem, using the dynamic programming algorithm and the Method
of Moments.
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ApPENDIX A. Dirac measure moments testing

Month Stable sales Ascending sales
k (mip)? —m3,  (my,)° —mgy | (my,)? —m3,  (my,)° —mg,
1 0.0000 0.0009 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 -0.0000 0.0000
4 0.0000 0.0000 -0.0000 0.0000
5 0.0000 0.0000 -0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 -0.0000 -0.0000
9 0.0000 0.0000 -0.0000 -0.0000
10 0.0000 0.0000 0.0000 0.0000
11 0.0000 0.0000 0.0000 -0.0000
12 0.0000 0.0000 0.0000 -0.0000

Table 2: Dirac measure moments testing for Scenarios 1 and 2

Month Descending sales Variable sales
k (mip)? —m3y | (mi,)° —mgy | (my,)? —m3,  (my,)° —ms,
1 0.1298 17.9 0.0000 0.0000
2 2.1283 277.1 0.0000 0.0003
3 0.8835 108.8 0.0000 0.0003
4 0.2598 30.5 0.0000 0.0000
5 0.0017 0.1 0.0000 0.0001
6 0.2569 27.1 0.0000 0.0002
7 0.4981 49.0 0.0000 0.0007
8 0.6760 62.0 0.0000 0.0000
9 0.6356 55.0 0.0000 0.0001
10 0.3694 30.9 0.0000 0.0000
11 0.0579 4.8 0.0000 0.0011
12 0.3866 33.4 0.0000 0.0001

Table 3: Dirac measure moments testing for Scenarios 3 and 4
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