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ABsTrACT. Using the duality between the category whose objects are the re-
presentations of Hausdorff quotients of Cantor spaces and the category whose
objects are the Cantor ring endowed with a link relation (this duality is a
particular case of an extension of the Stone duality obtained in [3]), we obtain
algebraic representations of the following continua: the unit interval I = [0, 1],
the unit circle S*, the Sierpifiski triangular curve and the simple triod.

Keywords and phrases. Stone duality, quotients of Stone spaces, continua, Cantor
space.

2000 Mathematics Subject Classification. Primary: 54H10, 54B15. Secondary:
16W99, 13A99.

ResuMEN. Usando la dualidad entre la categoria cuyos objetos son las repre-
sentaciones de cocientes Hausdorff de espacios de Cantor y la categoria cuyos
objetos son el anillo de Cantor dotado con una relacién de ligazén (esta dualidad
es un caso particular de una extensién de la dualidad de Stone obtenida en [3]),
obtenemos representaciones algebraicas de los siguientes continuos: el intervalo
unidad T = [0, 1], el circulo unitario S*, la curva triangular de Sierpiniski y el
triodo simple.

1. Introduction

In 1920 Moore [2], proved essentially that if K is a metric continuum with
exactly two noncut points, then K is homeomorphic to the unit interval I,
and that if K is a metric continuum such that for any two points a and b,
K ~{a, b} is not connected, then K is homeomorphic to the unit circle. In 1916
W. Sierpiniski [5], presented his triangular curve and in 1990 W. Debski and J.
Mioduszewski [1] studied some topological properties of this curve, they proved
that the Sierpiriski triangular curve is non-sewable (they call a compactum
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sewable if it can be mapped by a simple map onto a plane subset having non-
empty interior). These results about continua are obtained from a topological
point of view.

In [3] we established a duality between two categories, extending the well-
known Stone duality between totally disconnected compact Hausorff spaces
(Stone spaces) and boolean rings with a unit ([6], [7]). Furthermore in [3],
we studied connectedness from an algebraic point of view, in the context of
the proposed generalized Stone duality, and we established an algebraic char-
acterization of continua in general. In this work, by means of that extension
of the Stone duality, we present algebraic characterizations of some continua.
This type of characterizations are relevant because they establish a direct con-
nexion between two large fields of mathematics, namely, Algebra and Topol-
ogy. In this case in particular, a meticulous correlation is obtained between
the topological properties of continua and the algebraic properties of certain
boolean ring equipped with a relation. For instance, by using the algebraic
representations introduced in Section 3 and by means of Proposition 3.3 of [3],
the connectivity of the represented topological spaces is obtained.

In this paper, continua are the compact, connected metric spaces. If A is a
boolean ring, then Spec(A) denotes the set of ultrafilters in A, endowed with
the topology whose basic open sets are D(a) =: {U € Spec(A) |a € U}, a € A,
and if X is a Stone space then A(X) denotes the boolean ring of the clopen
subsets of X.

On the other hand, it is known that the Cantor space is a Stone space and
that the boolean ring that corresponds to the Cantor space is the unique (up
to isomorphism) boolean ring with unit, denumerable and without atoms. We
call this ring the Cantor’s ring and we denote it by K.

The main definitions and results required in this paper were presented in
[3] and they are summarized in Section 2. In Section 3, as another application
of the main result of [3], we present an algebraic representations of the unit
interval I = [0, 1], the unit circle S*, the Sierpiriski triangular curve and the
simple triod.

2. Preliminaries

In [3] we defined the following concepts:
() Let X be a set and « be a relation on X. The relations R, and R* in
any subfamily of PX are defined as follows: If C' and D are subsets of X,

CR,D <= (Fz)(Fy)(x € C, y € D, A zay)
CR*D < (Vz)(Vy)(z € C, y € D = zay).

(i) The category BRLR (boolean rings with unit and with a link relation)
as the category of pairs (A, a) where A is a boolean ring with unit and « is a
relation on A — {0}, that satisfies:

(L1) « is reflexive;
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(L2) « is symmetric;

(L3) (Ve,d € A) (cad, ¢ < a, d < b= aab);

(L4) (Va,b,c€ A) (caaVb = caa or cab);

(L5) R* is transitive in Spec(A).
Such relation « is called a link relation. The morphisms f : (4, o) — (4’ )
are the morphisms of boolean ring with 1, such that f(c)a/f(d) implies cad,
Ve,d € A.

(i41) The category RHQS (Representations of Hausdorff quotients of Stone
spaces) is the category of pairs (X,v), where X is a Stone space, v is an
equivalence relation on X, and + is closed (that is, v is a closed subset of
X x X). The morphisms: f: (X,v) — (X',%') are continuous functions such
that vy implies f(z)y' f(y), Yo,y € X.

(%v) The contravariant functors S : BRLR — RHQS and A : RHQS — BRLR
are defined as follows. If (4, @) is an object in BRLR and (X, ~) is an object
of RHQS, then S(A, a) =: (Spec(A), R®), A(X,v) =: (A(X),R,), S(f) =: f,
A(f) =: f', where if f: A — A’ then f' : Spec(A’) — Spec(A) is defined
by: f(U) = f~Y(U) and, similarly, if f : X — X’ then f': A (X') — A(X)
is defined by f'(C) = f~1(C).

In [3] it was shown that the contravariant functors S and A establish a
duality between the categories BRLR and RHQS, and that this duality re-
duces to Stone’s duality when restricted to certain subcategories isomorphic
to the classical categories boolean rings with unit-boolean ring morphisms and
Stone spaces-continuous functions. Furthermore, if CRLR ( Cantor’s ring with
a link relation) denotes the full subcategory of BRLR whose objects are the
pairs (K, a), and if RHQC (representations of Hausdorff quotients of the Can-
tor space) denotes the full subcategory of RHQS whose objects are the pairs
(X,~), where X is the Cantor space, then it is immediate that CRLR and
RHQC are equivalent categories.

(v) Let A be a boolean ring, t € A, t #0 and n € ZT, we will call C C A
a n-partition of t if: (a) |C| =n; (b) (Vee C)(c<t); (¢) Veecc=1 (d)
0¢C; (e) (Ve,deC)c#d= cd=0).

(vi) Let A be boolean ring; E C A is called a n-ary tree of top t if E =
UsZ o N(n) where (a) N(0) = {t}; (b) (vm € N)(N(m+1) = U{Q(v) | v €
N(m)}), being Q(v) some n-partition of v. N(m) is called the m level of E. If
n = 2 then F is called a dichotomic tree.

In [4], Proposition 2.6.5 we proved that for the Cantor’s ring K, and for
all n € N there exists a n-ary tree P of top 1, such that the subring of K
generated by P, is K. The elements of the tree P can be labeled with “words”
on the alphabet ¥ = {aj,a9, -+ ,a,}, in this case we will denote: P =<
ai,as, -+ ,a, >. Hence P can be identified with 3*, the set of finite words
on the alphabet ¥, including the empty word. If w € ¥* them [w) denotes the
set of words that begin with w.
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3. Algebraic representations of some continua

Since X is a continuum if and only if it is homeomorphic to a Hausdorff con-
nected quotient of the Cantor space, from the equivalence of categories CRLR
and RHQQC, arises the idea of establishing algebraic representations of parti-
cular continua. In this section we consider the unit interval I, the circle S', the
Sierpinski triangular curve and the simple triod. In the following proposition
(N(m), ) denotes the N (m) level of the tree PP with the relation « restricted
to N(m).

Proposition 3.1. Let (K, o) and (K, a') be objects of CRLR. Let
P= (a1, - ,a,) and P = {(by, -+, by)

be n-ary trees which generate K. If for every m € N there exists
fm : (N(m), ) — (N'(m)mzf)
such that,

(i) fm is bijective and preserves the relations in two senses, that is: pap’
iff fm (D) frn ()5
(ii) pr € N(m) then fm+1(pal) VeV fm+1(pan) = fm(p),

then (K, «) and (K, ') are isomorph.

Proof. Tt is sufficient to consider the case n = 2, (the general case is totally
similar). Let P =< a,b > and P’ =< a/,b’ > be dichotomic trees. For each
m € N, let < N(m) > be the finite boolean ring generated by the N(m) level,
< N(m) > is (isomorphic to) the ring P2™. Let

™ < N(m) > — < N'(m) >

be the function defined by f™(p1V---Vpr) =t fm(P1) V-V f(pk). Then f™
is an isomorphism of boolean rings with a unit, which preserves the relations
in the two senses.

Now, if p € N(m) then p = pa V pb and pa,pb € N(m + 1), hence for
each m € N, < N(m) >C< N(m + 1) >. Furthermore f™ C f™*+! (that is

f@({w = f™). Since U,,en < N(m) > =K, then f =: Upenf™: (K, o) —
(K, ') is an isomorphism of CRLR. o

3.1. The unit interval I.

Definition 3.2. Let X be a set and o be a relation in X. For every a € X
the set a is defined by & =: {x € X — {a} | (aax) V (xaa)} .

Definition 3.3. Let X be a set and a be a relation in X . If the following two

conditions are satisfied:

(i) there exist a,b € X, a # b, such that |a| = |b| =1;
(ii) for every x € X — {a,b}, 2| = 2,
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then « is called a linear relation with extremes a and b, or (X, «) is called
linear with extremes a and b.

Definition 3.4. Let (K,a) be an object of CRLR and P =< a,b > a di-
chotomic tree of top 1,
1. (P, «|p) is called linear if it satisfies the following two conditions:
(i) (Vp,p' €P)(pap’ = ap a ap’ and bp « bp');
(i) Vn € N, (N(n),q|) is linear with extremes a™ and b"™ (a™ denotes
the n letters word aa---a);
2. (K, ) is called a linear object if it admits a linear dichotomic tree that
generates it.

Proposition 3.5. If (K, a) and (K, ') are linear objects of CRLR, then they
are 1somorphic.

Proof. Let P = (a,b) and P’ = (a/, ') be linear trees that generate (K, a) and
(K, ') respectively and such that Vm € N, (N(m),q|) and (N’(m),af) are
linear with extremes a™, b™ and o', b’ respectively. It suffices to define
fm : N(m) — N’(m) by fn(p) = p’ =: the word that is obtained from p
when each a is replaced by a’ and each b is replaced by & and then apply
Proposition 3.1.

Proposition 3.6. The unit interval I = [0,1] is a Hausdorff quotient of the
Cantor space which admits a linear algebraic representation in the category
CRLR.

Proof. Let ¥ = {0,1} be an alphabet with two symbols. In {0, 1} we define
the ~ relation by:

z~y <= (z=y)V (2,y € {wll, wl0}, wex").

Then ~ is a closed equivalence relation on the Cantor space N and XN/ ~
~ I. The dichotomic tree of Figure 1 generates the ring A(XY), and then
(A(XN), R.) is a linear object of CRLR.

As an immediate consequence of propositions 3.5, 3.6 and the equivalence
between the categories CRLR and RHQC, we have:

Corollary 3.1. I is the unique (up isomorphism) topological space that admits
a linear algebraic representation in CRLR.

Similarly an algebraic representation of the circle S', the Sierpiriski trian-
gular curve and the simple triod can be obtained.

The circle St.

Definition 3.7. Let X be a set and o be a relation in X. If for every x € X,
|Z] = 2 then « is called a circular relation, or (X, «) is called circular.
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FIGURE 1

Definition 3.8. Let (K,«a) be an object of CRLR and P =< a,b > a di-
chotomic tree of top 1,
1. (P, alp) is called circular if it satisfies the following three conditions:

(i) aabd;
(ii) (Vp,p’' € P)( pap’ = ap a ap’ and bp « bp');

(iii) Vn > 2, (N(n),«) is circular.
2. (K, @) is called a circular object if it admits a dichotomic circular

tree which generates it.

It follows:

Proposition 3.9. If (K,«) and (K,a') are circular objects of CRLR,, then
they are isomorphic.

Proposition 3.10. S! is a Hausdorff quotient of the Cantor space which ad-
mits a circular algebraic representation in the category CRLR.

Proof. In {0, 1} the relation ~ is defined by:
z~y <= (z=y)V (2,y € {w0l, wl0}, we L")V (z,y € {0,1}).

The quotient space obtained is the circle S*.
In the dichotomic tree of Figure 2, which generates the ring A(XV), we have
that (A(XV), R.) is a circular object of CRLR. vf

Corollary 3.2. S! is the unique (up to homeomorphism) topological space
which admits a circular algebraic representation in CRLR.
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FIGURE 2

The Sierpinski triangular curve. Let K be an equilateral triangle on the
plane. Divide K into four congruent triangles and remove the interior of the
middle one. The remaining triangles have diameters equal to half of that of K
and the union K of them is connected. Apply the same dividing procedure to
the remaining triangles, and then to the triangles obtained recursively in this
way. We get at the n — th stage of the procedure 3" congruent triangles of
diameters equal to the (2% — th) of the diameter of K. The union K, of the
triangles obtained at the n —th stage is connected and thus a plane continuum.
The intersection
S=KNKiNnKyN---

is the Sierpiriski triangular curve that was described by Sierpiriski in [5]. S can
be obtained as follows: in {0, 1,2} the relation ~ is defined by:

z~y <= (z=y)V (z,y € {w0l, wl0}, we T*)
V (z,y € {w02, w20}, we X¥)
V (z,y € {wl2, w21} , w e ¥¥).
The quotient space obtained is the Sierpinski triangular curve.

Definition 3.11. Let X be a set and « be a relation in X. If the following
two conditions are satisfied:
(i) there exist a,b,c, three different elements of X, such that |a| = |b| =
lé] = 2;
(ii) for every x € X —{a,b,c}, || = 3,
then « is called o Sierpinski relation with extremes a, b and ¢, or (X, «)
is called of Sierpinski with extremes a, b and c.
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Figure 3 shows some graphs of Sierpinski relations.

FIGURE 3

Definition 3.12. Let (K, «) be an object of CRLR and P =< a,b,¢c > a
ternary tree of top 1,
1. (P, «a|p) is called Sierpinski if it satisfies the following two conditions:
(i) (Vp,p' €P)( pap’ = ap a ap’, bp a bp’ and cp a cp');
(i) Vn > 2, (N(n),o) is Sierpirski.
2. (K, ) is called o Sierpinski object if it admits a Sierpiriski tree that
generates it.
Then we have:

Proposition 3.13. If (K, «) and (K, o') are Sierpiriski objects of CRLR, then
they are isomorphic.

Using the quotient relation ~ defined above and a ternary tree which generates
the ring A (3V), we have that (A(S"), R.) is a Sierpifiski object of CRLR.
That is,

Proposition 3.14. The Sierpinski triangular curve is a Hausdorff quotient

of the Cantor space which admits a Sierpinski algebraic representation in the
category CRLR..

Corollary 3.3. The Sierpinski triangular curve is the unique (up to homeo-
morphism) topological space which admits a Sierpiriski algebraic representation

i CRLR.

The simple triod. A simple triod 7 is the continuum that is homeomorphic
to the symbol T
In {0,1}" the ~ relation is defined by:

z~y < (z=y)V (z,y € {001, 10, 010})
V (z,y € {w00I, w010}, w € £¥)
V (z,y € {wl0l,wll0}, w e X*).
The quotient space obtained is the simple triod 7.
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Definition 3.15. Let X be a finite set and a be a linear relation in X. We
call length of « the cardinal of X .

Definition 3.16. Let X be a set and o be a relation in X. If the following
two conditions are satisfied:
(i) IX| =2, n e N;
(ii) there exist a,b,c three different elements of X, such that « restricted
to {a,b,c} is circular;
(iii) a,b,c are extremes of three linear relations mutually disjoint, two of
them of length 272 and the third of length 271,

then «v is called a triodal relation, or (X, «) is called triodal.

Figure 4 shows some graphs of triodal relations.

FIGURE 4

Definition 3.17. Let (K,«) be an object of CRLR and P =< a,b > a di-
chotomic tree of top 1,

1. (P, a|p) is called triodal if it satisfies the following three conditions:
(i) aab
(ii) (Vp,p’' € P)( pap’ = ap a ap’, and bp « bp');
(iii) Vn > 2, (N(n),«)) is triodal.
2. (K, ) is called a triodal object if it admits a dichotomic triodal tree
that generates it.

Hence we have:
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Proposition 3.18. If (K,«a) and (K, ') are triodal objects of CRLR, then
they are isomorphic.

Using the quotient relation ~ defined above and a dichotomic tree which
generates the ring A (ZN), we have that (A (EN) ,RN) is a triodal object of
CRLR. That is,

Proposition 3.19. The simple triod is a Hausdorff quotient of the Cantor
space which admits a triodal algebraic representation in the category CRLR.

And finally,

Corollary 3.4. The simple triod is the unique (up to homeomorphism) topological
space which admits a triodal algebraic representation in CRLR.
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