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AsTrACT. We expose the foundations of simple theories in a straightforward
way including many improved proofs which can only be found scattered in the
specialized literature. We start with general model theory and finish with the
proof of the independence theorem.

Keywords and phrases. model theory, simple theories, forking, independence.

2000 Mathematics Subject Classification. Primary: 03C45.

RESUMEN. Exponemos los fundamentos de las teorias simples de manera muy
directa e incorporando muchas mejoras de demostraciones que estan dispersas
en la literatura especializada. Comenzamos con la teoria general de modelos y
llegamos hasta la prueba del teorema de la independencia.

1. Introduction

Simple theories are a natural and fruitful generalization of stable theories. They
were introduced by Shelah in [12] and rediscovered and fully developed by Kim
and Pillay in [7], [6] and [8]. See [9] for historical background. The book [13]
of Wagner is now the main reference. In the last years the foundations of
simple theories have been simplified after some new ideas from Shami, Shelah
and Buechler and Lessmann. Here we add further simplifications from [3] and
systematize all the basic results up to the Independence Theorem and type-
definability of equality of Lascar strong types. The references contain the
sources for all the results. We do not give credits for every single result but
we give complete proofs of everything without previous assumptions except the
usual ones in Model Theory.

We use the standard notation and conventions. Everywhere T is a complete
theory with infinite models in a first-order language and € is its monster model.
All sequences and sets considered here will be extracted from € and all relations
will live on €.

Indiscernible sequences can be usually obtained by Ramsey’s Theorem. How-
ever it is very convenient to have at our disposal the following lemma based on
Erdés-Rado Theorem. For a proof, the interested reader can consult [7].
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Lemma 1.1. If & > |T| is a cardinal number, A\ = s+, |A] < & and
(a; : i < A) is a sequence of sequences a; of fived length o < k™, then there
is an A-indiscernible sequence (b; : 1 < w) such that for each n < w there
are ig < ... < inp < X such that bo,...,bp =4 iy,...,a;,. In most of the
applications « is a natural number and therefore the cardinal number \ depends
only on |T| and |A|.

2. Lascar strong types

Definition 2.1. A relation R is bounded if for some cardinal k there is not
a sequence (a; : 1 < k) such that =R(a;,a;) for all i < j < k. The relation
is finite if this bound kK is in fact a natural number. Observe that for definable
relations finiteness is equivalent to boundedness.

Remark 2.1. For any cardinal number X\, any intersection of A bounded rela-
tions is a bounded relation.

Proof. Let (R; : I < A) be a sequence of bounded relations. For all [ < A let
k; be a bound for R; and let Kk = A + sup{x; : [ < A}. Assume that there are
(a;i -1 < (27)F) such that—R(a;,a;) for all i < j < (2%)%, where R =(,_, Ri.
By Erdés-Rado ((2%)* — (k1)2), for some [ < X there is a subset I C (2%)F
of cardinality x* such that —R;(a;,a;) for all ¢ < j in I. This contradicts the
choice of k;. o

Definition 2.2. An equivalence relation E is A-invariant if it is preserved un-
der automorphisms of the monster model fixing A pointwise, that is E(f(a), f(b))
whenever E(a,b) and f € Aut(€/A). Since every A-invariant equivalence re-
lation is definable by a disjunction (maybe infinite) of types over A, there is a
bounded number of them. Therefore the intersection of all A-invariant bounded
equivalence relations is again an A-invariant bounded equivalence relation. We
say that the sequences a,b have the same Lascar strong type over A and we
write
Lstp(a/A) = Lstp(b/A)

if a and b are equivalent in this least A-invariant bounded equivalence relation.

Definition 2.3. Let x,y be finite tuples of variables of the same length. We
say that the formula 6(x,y) is thick if it defines a finite symmetric relation.
Note that all thick formulas are reflexive. For any set A and for any sequences
of variables x,y of the same length, the set of all thick formulas over A in
(finite subtuples of) the variables x,y will be

IICA(x,y)-
For every natural number n, nc’y(x,y) is the type Iy1...yn—1(nca(z,y1) A
nca(y1,y2) A ... Anca(yYn—1,9))-

Remark 2.2. (1) Finite conjunctions and disjunctions of thick formulas
are thick formulas.
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(2) Any consequence of a thick formula is a finite formula.
(3) If o(z,y) is finite, then p(x,y) A p(y,x) is thick.

Lemma 2.1. For any a,b, E nca(a,b) if and only if a,b start an infinite
A-indiscernible sequence.

Proof. If a,b start an infinite A-indiscernible sequence, then = 6(a,b) for any
thick formula 6(z,y) over A. Now assume | nca(a,b) and let p(z,y) =
tp(ab/A). By Ramsey’s Theorem and compactness, to prove that a,b start
an infinite A-indiscernible sequence it is enough to check that there is an infi-
nite sequence (a; : @ < w) such that = p(a;,a;) for all § < j < w. For this we
have to prove for any ¢ € p, the consistency of

{p(xs,zj) i < j <w}.
If this set of formulas is inconsistent, then —(x,y) is finite and therefore
(mo(z,y) A —p(y, ) € nca(x,y). Hence = —¢(a,b), a contradiction. o

Proposition 2.4. Equality of Lascar strong types over A is the transitive clo-
sure of the relation of starting an A-indiscernible sequence. Hence it is defined
by the infinite disjunction \/, nc’s(z,y).

Proof. Let E be this transitive closure. It is an A-invariant equivalence relation.
Since the relation of starting an infinite indiscernible sequence is defined by a
set of finite formulas, it is bounded. Hence its transitive closure E is also
bounded. From this it follows that equality of Lascar strong types is contained
in E. For the other direction it suffices to show that if a,b start an infinite
A-indiscernible sequence then Lstp(a/A) = Lstp(b/A). Let  be a strict bound
for the number of classes in the relation of equality of Lascar strong types
over A. Choose an A-indiscernible sequence starting with a, b of length k. If
Lstp(a/A) # Lstp(b/A) then by A-invariance Lstp(a’/A) # Lstp(d' /A) for any
two different a’, b’ in the indiscernible sequence, which contradicts the choice
of k.

Lemma 2.2. (1) If nca(a,b), then there is a model M 2O A such that
tp(a/M) = tp(b/M).
(2) If for some model M 2 A tp(a/M) = tp(b/M), then nc?(a,b).

Proof. For 1 fix a model M D A and an infinite A-indiscernible sequence
I starting with a,b. By Ramsey’s Theorem and compactness we can ob-
tain another infinite A-indiscernible sequence (a; : ¢ < w) where tp(ab/A) =
tp(apai/A) and tp(a;/M) = tp(a;/M) for all i < j < w. This implies that
tp(a/M) = tp(b/M). For 2 we assume that a,b have the same type over
some model M O A and we show that for any thick formula 6(z,y) over A,
= 3z(0(a,z) A O(b, z)). Let n be the maximal length of a sequence ay,...,a,
such that = —6(a;,a;) for all i < j < n. We can find such ay,. .., a, in M. For
some i, j < n, = 60(a,a;) and = 0(b,a;). Since a,b have the same type over M
we may take ¢ = j.
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Proposition 2.5. Equality of Lascar strong types over A is the transitive clo-
sure of the relation of having the same type over a model containing A.

Proof. Clear by Proposition 2.4 and Lemma 2.2. o

Definition 2.6. The group Autf(€/A) of strong automorphisms over A of the
monster model € is the subgroup of Aut(€/A) generated by the automorphisms
fizing a small submodel containing A:

Autf(€/A) = ( | ] Aut(e/M))
MDA
Corollary 2.1. Lstp(a/A) = Lstp(b/A) if and only if f(a) = b for some
f € Autf(€/A).

Proof. Tt follows from Proposition 2.5. ™

Corollary 2.2. If Lstp(a/A) = Lstp(b/A) then for any c there is some d such
that Lstp(ac/A) = Lstp(bd/A)

Proof. Choose f € Autf(€/A) such that f(a) = b and put d = f(c). oif

3. Dividing and forking

Definition 3.1. The formula ¢(x,a) divides over the set A with respect to
k < w if there is an infinite sequence I = (a; : i < w) of realizations of tp(a/A)
such that {¢(x,a;) : i < w} is k-inconsistent, i.e, every subset of k elements is
inconsistent. We may always assume that I is A-indiscernible. We may also
assume that a = ag. Finally, in place of w we may choose any infinite linear
ordering. The formula ¢(x,a) divides over A if it divides over A with respect
to some k.

Remark 3.1. (1) If p(x,a) divides over A with respect to k and 1(x,b) -
o(z,a), then y(x,b) divides over A with respect to k too.
(2) If a € acl(A) and p(x,a) is consistent, then p(x,a) does not divide
over A.

Definition 3.2. The set of formulas 7(x,a) divides over the set A if it implies
a formula p(x,b) which divides over A. We may always assume that b = a and
that p(z,y) is a conjunction of formulas in w(x,y).

Remark 3.2. (1) If m(z,a) is inconsistent, it divides over A.
(2) w(x,a) divides over A iff for some infinite A-indiscernible sequence (a; :
i <w) with ag = a, the set of formulas J,_,, 7(x,a;) is inconsistent.
(3) @(z,a) divides over A iff the set {o(x,a)} divides over A.
(4) acl(A) = {a : tp(a/Aa) does not divide over A}

Definition 3.3. The set of formulas w(z,a) forks over A if for some n there are
formulas o1 (x,a1),...,pn(x,a,) such that w(z,a) b 1(z,a1) V... Vo (x,a,)
and every ¢;(x,a;) divides over A. The formula ¢(x,a) forks over A if the set
{o(x,a)} forks over A.
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The advantage of forking over dividing lies in that we can make sure that
nonforking types can be extended while it is not clear whether we can do it in
the case of dividing.

Remark 3.3. (1) If m(x,a) divides over A, then it forks over A.

(2) If w(x,a) is finitely satisfiable in A, then it does not fork over A.

(3) w(x,a) forks over A iff a conjunction of formulas in m(x,a) forks over
A.

(4) If w(x,a) does not fork over A, then it can be extended to a complete
type over a which does not fork over A. Any complete type over a
extending the partial type w(x,a) U {—~¢(x,a) : ¢(x,a) forks over A}
does the job.

Next lemma turns out to be very useful. From it we can prove a result on
pairs which anticipates some version of transitivity for nondividing (Proposi-
tion 3.4).

Lemma 3.1. Those following are equivalent.

(1) tp(a/Ab) does not divide over A.

(2) For every infinite A-indiscernible sequence I such that b € I, there is
a' =ap a such that I is Ad'-indiscernible.

(3) For every infinite A-indiscernible sequence I such that b € I, there is
J =ap I such that J is Aa-indiscernible.

Proof. The equivalence of 2 and & follows by conjugation. It is clear that &
implies 1. We prove that I implies 2. We may assume that A is empty, that
I = (b : i < w) and that b = bg. Let p(x,b) = tp(a/b) and let T'(x, (z; :
i < w)) be a set of formulas expressing that (z; : ¢ < w) is z-indiscernible.
It will be enough to prove that p(x,b) UT'(z,(b; : ¢ < w)) is consistent. By
1 q(x) = ;<. p(x,b;) is consistent. Let ¢ = ¢ and let Ty a finite subset of
I". By Ramsey’s Theorem, there is an order preserving f : w — w such that
= To(c, (b @ < w)). By indiscernibility (b; : i < w) = (byg;) : @ < w) and
therefore we can find ¢’ such that ¢'(b; : i < w) = c(bs(y) @ < w). Clearly
d = qx)UTg(x, (b : i <w)). oif
Proposition 3.4. If tp(a/B) does not divide over A C B and tp(b/Ba) does
not divide over Aa, then tp(ab/B) does not divide over A.

Proof. 1t is an easy application of Lemma 3.1. odf

Proposition 3.5. If p(z,a) divides over A with respect to k and tp(b/Aa)
does not divide over A, then p(z,a) divides over Ab with respect to k.

Proof. Let I = (a; : i < w) be an infinite A-indiscernible sequence such that
a = ag and {p(z,a;) : i < w} is k-inconsistent. By Lemma 3.1 there is J =4, I
which is Ab-indiscernible. Then J witnesses that ¢(z,a) divides over Ab with
respect to k. o
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4. The tree property and simplicity

This section can be skipped if one chooses to define simple theories as the
theories where every complete type does not fork over a subset of cardinality
at most |T| of its domain (Proposition 4.1). With this definition it is straight-
forward that a type does not fork over its domain. Here we present the proofs
of the equivalence of this definition with some others, like not having the tree

property, types not dividing over a small subset of its domain or finiteness of
rank D(p, o, k).

Definition 4.1. o(z,y) has the tree property with respect to k < w if there is
a tree (as : s € wSY) such that for all n € w®, the branch {p(x, aym) 1 n < w}
is consistent and for all s € w<¥ the set {p(x,a,~;) : i < w} is k-inconsistent.
By compactness it is easy to obtain a corresponding tree (as : s € /@<)‘) for any
cardinals K, A.

Lemma 4.1. Let a be an ordinal number, w(x,a) a partial type, (oi(z,y;) :
i < a) a sequence of formulas and (k; : i < «) a sequence of natural numbers.
The following are equivalent.

(1) There is a tree (as : s € w<%) such that for all n € w®, the branch
m(z,a) U{pi(x,anit1) 1 © < a} is consistent and for all i < o and
s € w', the set {p;(x,as~;): j <w} is k;-inconsistent.

(2) There is a sequence (a; : i < «) such that w(z,a) U {p;(x,a;) i < a}
is consistent and for every i < a, @;(x,a;) divides over aU{a; : j < i}
with respect to k;.

Moreover in 1 we can add that all the branches (an; : © < «) have the same
type over a.

Proof. Assume first that the tree is given. By compactness we may obtain
a corresponding tree (as : s € A<%) for a very big cardinal A\. By induction
on # < « we can show then that there is such a tree with the additional
property that for all i < S all 7 € X and all j,1 < A, tp(a,~j/alann + h <
i)) = tp(ay~;/alann : h < i)). Apply this with 3 = a. Any branch in the
resulting tree is a dividing sequence as required. For the other direction, fix the
dividing sequence (p;(x,a;) : ¢ < a) and construct the tree inductively with
the additional property that every branch is isomorphic over a to the initial
segment of the chain of the same level. It is enough to show how to extend a
given branch and it is clear how to do it using the fact that the formulas in
the sequence always divide. Observe that the parameters as in the tree play
no role at all if s € w® and i is either 0 or a limit ordinal. of

Definition 4.2. A dividing chain for ¢(x,y) is a sequence (a; : i < a) such
that {¢(z,a;) 1 i < a} is consistent and for every i < «, p(x,a;) divides over
{aj : j < i}. If it divides with respect to k;, we say that it is a dividing chain
with respect to (k; i < a). We say that p(x,y) divides « times (with respect
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to (k; 1 i < «)) if there is a dividing chain of length o for o(z,y) (with respect
to (ki:i<a)).

Remark 4.1. (1) ¢(x,y) divides w times with respect to k iff it has the
tree property with respect to k.
(2) If (z,y) divides n times with respect to k for every n < w, then it
divides « times with respect to k for every ordinal «.
(3) If o(x,y) divides wy times, then for some k < w, @(x,y) divides w
times with respect to k.

Definition 4.3. T is simple if in T there are no formulas with the tree property.
This is clearly equivalent to the non existence of formulas which divide w times
with respect to some k and also to the non existence of formulas which divide
w1y times.

Proposition 4.4. The following conditions are equivalent to the simplicity of
T.
(1) For every type p € S(A) in finitely many variables there is a B C A
such that |B| < |T| and p does not divide over B.
(2) There is some cardinal  such that for every type p € S(A) in finitely
many variables there is a B C A such that |B| < k and p does not
divide over B.
(3) There is no increasing chain (p;(z) : i < |T|T) of types p;(x) € S(A;)
in finitely many variables such that for every i < |T|%, piy1 divides
over A;.
(4) For some cardinal k there is no increasing chain (p;(x) : i < k) of types
pi(x) € S(A;) in finitely many variables such that for every i < K, piy1
divides over A;.

Proof. Simplicity implies 1, since if p € S(A) divides over every subset of A
of cardinality < |T|, then we can inductively construct a sequence of formulas
(pi(z,y;) : 4 < |T|") and a sequence (a; : i < |T|") of parameters a; € A such
that ¢;(x,a;) € p and ¢(z,q;) divides over {a; : j < i}. Clearly one formula
o(z,y) appears wy times in the sequence and this contradicts simplicity. It is
clear that 7 implies 2 and that & implies 4. To show that 7 implies 3, observe
that if the increasing chain (p;(z) : ¢ < |T|*) is given and we set A = |J 4;
and p = Upi, then p(z) € S(A) divides over every subset of A of cardinality
< |T'|. The same argument proves 4 from 2. It remains only to show simplicity
from 4. If T is not simple, then some formula ¢(z,y) divides x times. Let
(a; : 1 < k) be a witness of this. Let a be a realization of {¢(z,a;) : i < K},
let A; = {a; :j <i} and let p; = tp(a/A;). The chain (p; : i < k) contradicts
point 4. o

Definition 4.5. Let A = {¢;(z,y;) : i = 1,...,n} and let k < w. For any
partial type w(x,a) we define the rank D(w(z,a), A, k) as the supremum (an
ordinal or 00) of the ordinals « such that D(mw(x,a), A, k) > « according to the
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following recursive definition. If we want we can agree that inconsistent sets
have rank —1.
(1) D(w(x,a),A,k) >0 iff m(x,a) is consistent.
(2) D(w(z,a),Ak) > a+ 1 iff for some p(z,y) € A there is a sequence
(a; 11 < w) such that {p(x,a;) 1 i < w} is k-inconsistent and for every
i <w, D(m(x,a) U{po(z,a;)}, A k) > a.
(3) Forlimit 8, D(m(x,a), A k) > B iff D(w(z,a), A k) > a for all o < 5.

Remark 4.2. (1) Ifr(z,a) F 7' (x,a’), A C A, andk <K, then D(w(x,a),
Ak) < D(n'(x,a), A" K)
(2) If n(z,a), o(x,b) are equivalent partial types, then D(n(x,a), A k) =
D(o(z,b), A k).

Proof. 2 follows from ! and to prove I one shows by induction on « that
D(r(z,a),Ak) > a = D('(z,d'), A" k) > a.
of

Lemma 4.2. D(w(x,a),A,k) > n iff there is a sequence (@;(x,y;) 11 < n) of
formaulas in A and parameters (a; : ¢ < n) such that w(x,a)U{p;(x,a;) : i < n}
is consistent and for alli < n, @;(x,a;) dwides over aU{a; : j < i} with respect
to k.

Proof. By Lemma 4.1. o

Proposition 4.6. (1) If D(n(z,a),A k) > w, then D(n(x,a), A, k) = co.
(2) T is simple iff for all finite A and all k, D(x = z,Ak) < w.

Proof. 1. Assume D(w(z,a),A,k) > w. By compactness, Lemma 4.2, and
Lemma 4.1, for some ¢(z,y) € A, for every ordinal a there is a sequence
(a; : i < a) such that w(x,a) U {p(z,a;) : i < a} is consistent and for every
i < a, p(x,a;) divides over aU {a; : j < i} with respect to k. By induction on
« one easily sees that this implies D(7w(z,a), A k) > a.

2. By Lemma 4.2 it is clear that it holds if we state it for sets A consisting
in only one formula. The general case can be established by a standard coding
of A-types in ¢-types or by noticing that D(z = z,Ak) < Zq;eA D(z =
x, 0, k). v

Remark 4.3. For all w(x,a), A, k and (p(z,a;) : 1 <i<n),

D(n(z,a) U{\/ ¢(z,a:)}, A, k) = max D(n(z,a) U{p(,a:)}, A, k)
i=1 ==
Proof. Let a = D(mw(z,a) U{V:_; ¢(x,a;)},A k) and let a; = D(w(z,a) U
{¢p(z,a;)},A k). By Remark 4.2 @ > maxi<;<, ;. By Lemma 4.2 if & > m
then for some 7, o; > m. Hence maxi<j<n a; > . ]
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Lemma 4.3. Let A = {o1(z,91), - -, on(x,yn)}, D(n(z,a) | A, AVk) < w and
m(x,a) F p1(z,a1) V...V oz, a,) where every p(x,a;) divides over A with
respect to k. Then D(mw(x,a),Ak) < D(n(z,a) | A, Ak).

Proof. By Remark 4.3 and 4.2, for some ¢
D<7T(‘T7 a)7 Av k) S D(Tf(.’t, a’) F AU {@i(xa ai)}7 A7 k)

Let m = D(n(z,a) | AU{pi(x,a;)}, A, k). By Lemma 4.2 there is a sequence
(Yj(z,2;) : j < m) of formulas in A and a sequence (b; : j < m) such that
m(z,a) | AU{pi(z,a;)} U{Y;(z,b;) : j < m} is consistent and every 1;(z,b;)
divides over AU {a;} U {a; : | < j} with respect to k for all j < m. Again by
Lemma 4.2, the sequence ¢;(x, a;), ¥o(x,by), .., Ym—1(x,bym_1) witnesses that
D(m(xz,a) | A, A k) > m+ 1.

Proposition 4.7. Simplicity is also equivalent to the conditions in Proposi-
tion 4.4 if we replace forking for dividing.

Proof. Point 4 from Proposition 4.4 stated for forking implies its original ver-
sion with dividing. The arguments in the proof of Proposition 4.4 showing
that 7 implies 2 and 3 and that any of 2 and & implies 4 adapt to its ver-
sion with forking. Moreover it is pretty clear that & implies 1 in any ver-
sion. Hence it will be enough to prove that simple theories verify point &
in this new version for forking. Here is where we use D(w, A, k)-rank. As-
sume (p;(z) : i < |T|7) is a increasing chain of types p;(z) € S(A;) such
that p;41 forks over A; for all i@ < |T|". This means that for all i < |T|*
we can find some ¢f(z),..., ¢} () such that piii(z) b @i(z) V...V ¢l ()
and each gpé (x) divides over A; with respect to some k;; < w. Clearly we may
assume that there are n, k < w and some @1 (z,41), - .., ©n(x, yn) such that for
all i < |T|* there are tuples af,...,a, € Ay for which @;(z,d}) = ¢ (x)
and moreover k = kj,;. Let A = {¢1(x,y1),...,¢n(Z,yn)}. By Lemma 4.3
D(pi(x), A, k) > D(piy1(x), A, k) for all i < |T|*, which is a contradiction. &

Corollary 4.1. If T is simple and p(x) € S(A), then p does not fork over A.

Proof. By Proposition 4.7. o

5. Independence and Morley sequences

Definition 5.1. We say that A is independent of B over C (written A |, B)
if for every finite sequence a € A, tp(a/BC) does not fork over C.

Remark 5.1. (1) Al . BiffALl CB.
(2) IfaicbforallﬁnitGQGA,bEB, thenA\LcB.
(3) fALl . B and B'C B, then A |, B.
(4) IfAJ/CB, A" C A and B’ C B, thenA’\J/CB’.
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Definition 5.2. Let X be a linearly ordered set. The sequence (a; : i € X) is
A-independent if for every i € X, a; | ,{a;: j <i}. A Morley sequence over
A is a sequence (a; : i € X) which is A-independent and A-indiscernible. It is
said to be a Morley sequence in the type p if every a; realizes p.

Remark 5.2. Let (a; : i € X) be A-independent. If Y, Z are subsets of X
such that Y < Z, then tp((a; : i € Z)/A(a; : i € Y)) does not divide over A.

Proof. It can be assumed that Z is finite. An induction on |Z| using Lemma 3.4
gives easily the result.

Lemma 5.1. If p(x) € S(B) does not fork over A C B, there is a Morley
sequence (a; : i < w) in p over A which is moreover B-indiscernible.

Proof. Using the extension Lemma (item 4 in Remark 3.3) one can construct a
large sequence (b; : i < A) of realizations b; of p such that b; | , B{b; : j <i}.
Lemma 1.1 gives us a B-indiscernible sequence (a; : i < w) such that for each
n < w there are 49 < ... < 4, < A such that ag,...,a, =p bi,,...,b;,. It is
easy to check that it is a Morley sequence over A in p. of

Proposition 5.3. Let T be simple. The formula o(x,a) divides over A iff for
every infinite Morley sequence (a; : 1 < w) over A intp(a/A), {¢(z,a;) : i < w}
18 1nconsistent.

Proof. Without loss of generality A = (). Assume that ¢(z,a) divides over
() but for some infinite Morley sequence the inconsistency fails. Let X be a
linearly ordered set isomorphic to the reverse order of the cardinal |T'|*. By
compactness there is an infinite Morley sequence ax = (a; : i € X) in tp(a)
such that {¢(x,a;) : i € X} is consistent. Let ¢ realize this type. By simplicity
there is Y C X of cardinality at most |T| such that tp(c/ax) does not fork
over ay = (a; : i € Y). By choice of the order of X we can find ¢ € X such
that ¢« < Y. By Lemma 5.2 tp(ay /a;) does not divide over §). Since p(z,a;)
divides over (), by Proposition 3.5 it divides over ay. But tp(c/ax) contains
o(z,a;) and hence it divides (and forks) over ay, a contradiction.

Proposition 5.4. Let T be simple. A partial type w(x,a) divides over A iff it
forks over A.

Proof. Assume ¢(z,a) does not divide over A but it implies a disjunction
©1(x,a1)V...Von(z,a,) where every o(x,a;) divides over A. Let (a/d] ... aJ :
j < w) be an infinite Morley sequence over A in tp(aa;...a,/A). Then
(@ : j < w) is an A-indiscernible sequence of realizations of tp(a/A). By
definition of dividing, there exists a realization ¢ of {¢(z,a’) : j < w}. For
every j < w there is some i such that c realizes some ¢;(z, af). By the pigeon-
hole principle, there is some ¢ such that for an infinite subset X C w, c realizes
every ;(z, ag) with j € X. By indiscernibility, {¢;(z, a{) : J < w} is consistent
and then by Proposition 5.3 ¢;(, a;) does not divide over A since (al : j < w)
is an infinite Morley sequence over A in tp(a;/A).
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Proposition 5.5. In a simple theory independence is a symmetric relation,
i.e, A |, B implies B |, A.

Proof. Tt is enough to prove that if tp(a/Cb) does not fork over C, then
tp(b/Ca) does not divide over C. By Lemma 5.1 there is an infinite Mor-
ley sequence I = (a; : i < w) in tp(a/C) which is Cb-indiscernible and starts
with ag = a. Let ¢(z,y, z) be a formula and ¢ € C such that |= ¢(a,b,c). We
will show that ¢(a,y, ¢) does not divide over C. By indiscernibility of I over Cb
we know that = ¢(a;, b, ¢) for all i < w. Hence {¢(a;,y,¢) : i < w} is consis-
tent. Since (a;c: i < w) is a Morley sequence in tp(ac/C'), by Proposition 5.3
we conclude that ¢(a,y, c) does not divide over C. f

Proposition 5.6. In a simple theory independence is a transitive relation, i.e,
whenever BCCC D, A | ,Cand A | D, then A | ,D.

Proof. 1t is a direct consequence of Proposition 5.5, Lemma 3.4 and Proposi-
tion 5.4. o

Corollary 5.1. Let T be simple. If I is an ordered set and (a; : i € I) is an
A-independent sequence, then a; J/A{aj 2 j #i} foralliel.

Proof. By induction on n it is easy to show that for all different iy, ...,4,41 € I,
@i,y J/A Qiys - - -, G, . For the inductive case one uses symmetry and Lemma 3.4.
o

6. The independence theorem

Lemma 6.1. Let T be simple. If (a; : i < w+w) is an infinite A-indiscernible
sequence, then (a; : w <1i < w+w) is a Morley sequence over A{a; : i < w}.

Proof. Let I = (a; : i < w). Clearly (a; : w < i < w+ w) is Al-indiscernible.
It suffices to show that it is Al-independent. Let X be a finite subset of
{i:w<i<w+w}anleti<w+w be greater than every element in X. By
symmetry it will be enough to check that ax | ,, a;, where ax = (a; : j € X).
But this is clear since by A-indiscernibility tp(ax/Ala;) is finitely satisfiable

in 1. o

Proposition 6.1. Let T be simple. If p(x,a) does not divide over A and a,b
start an infinite A-indiscernible sequence, then o(x,a) A@(x,b) does not divide
over A.

Proof. Let us first assume that a, b start an infinite Morley sequence (a; : i < w)
over A. Since p(x,a) does not divide over A, {p(z,a;) : i < w} is consistent.
Let b; = ag;az;1+1. Then (b; : i < w) is an infinite Morley sequence in tp(ab/A)
over A. Since {¢p(x,az;) A(x,az4+1) : i < w} is consistent, by Proposition 5.3,
o(x,a) A @(x,b) does not divide over A.

Now let us consider the general case, where a,b start an A-indiscernible
sequence (a; : i < w). Choose J = (b; : i < w) such that (b; 17 < w)™(a; 14 <
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w) is A-indiscernible. By Lemma 6.1 (a; : ¢ < w) is a Morley sequence over
AU J. Let p(z,a) be a complete type over AJa which does not fork over A
and contains ¢(z,a). By the first case and compactness, p(x, a) U p(z,b) does
not divide over AJ. Let ¢ |= p(x,a) U p(z,b) be such that ¢ |, ab. Since
p(z,a) does not fork over 4, ¢ | , Ja. It follows that ¢ | , Jab and hence that
p(z,a) Up(x,b) does not fork over A. In particular ¢(x,a) A ¢(z,b) does not
divide over A.

Remark 6.1. The proof of Proposition 6.1 generalizes to show that in a simple
theory, if m(x,a) does not divide over A and I > a is an infinite A-indiscernible
sequence, then | J,c; m(x,b) does not divide over A.

Lemma 6.2. Let T be simple. If a,b start an infinite A-indiscernible sequence
and c \LAa b, then for some d, the extended sequences ac,bd start an infinite
A-indiscernible sequence also.

Proof. Assume A = (). Let ¢ L, band assume I = (¢; : i < w) is an infinite
indiscernible sequence with ¢ = a9 and b = ay. Since (a, : n > 1) is a-
indiscernible and ¢ J/a b, by Lemma 3.1 there is an ac-indiscernible sequence
(al, : n > 1) such that (a, : n > 1) =4 (al, : n > 1). Thus we may assume
that a, = a), for all n > 1. Let ¢y = ¢ and choose for n > 1 some ¢, such that

capay ... = CpQpln4i - - -

Since (a, : n > 1) is ac-indiscernible, cab = caa,,. Hence cab = ¢,ananim,
i.e., in the sequence (cpa, : n < w) all triangles ¢, a,an4m have the same type
p(z,y,z) = tp(cab). By Ramsey’s Theorem there is an indiscernible sequence
(dpbp : n < w) where all triangles d,,b,, by, satisfy p(z,y, z). Clearly we may
assume that ¢ = dy, a = by and b = by. Take d = d;.

Proposition 6.2. Let T be simple and assume that o(x,a) A p(x,b) does not
fork over A. If b,b" start an infinite A-indiscernible sequence and a | , V',
then @(x,a) A(x,b") does not fork over A.

Proof. Apply Lemma 6.2 finding ¢ such that ba, b’c start an infinite A-indiscernible
sequence. By Proposition 6.1, ¢(z,a) A (z,b) A p(z, c) Ap(z,b’) does not fork
over A. In particular ¢(x,a) A ¢(x,b’) does not fork over A.

Corollary 6.1. Let T be simple and assume that o(x,a) Ap(z,b) does not fork
over A. If Lstp(b/A) = Lstp(b'/A) and a | , bV, then o(z,a) A (V') does
not fork over A.

Proof. Assume A = (). Find by,...,b, such that b = by, V' = b, and b;, b;11
start an infinite indiscernible sequence. Let a’ be such that a’ = a and
a' \Lbb, b1,...b,. By Proposition 6.2 we see that ¢(x,a’) A ¢(z,b;) does not
fork over the empty set for all i < n. Hence ¢(x,a) A(x,b’) does not fork over
the empty set .
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Lemma 6.3. Let T be simple. Let & be a cardinal number bigger than |T|+|A|.
If (a; : i < K) is A-independent and the length of every a; is smaller than &,
then for any a of length smaller than k there is some i < k such that a \LA a;.

Proof. By choice of k, there is a proper subset B C {a; : i < k} such that
a | p{a;i <k} Takea; ¢ B. Thena | ,a; and, by Corollary 5.1, a; | , B.
By symmetry and transitivity, a | 4 @i- o

Lemma 6.4. Let T be simple. For any a, A and B D A there is a’ such that
Lstp(a’/A) = Lstp(a/A) and o' | , B.

Proof. Let k be a cardinal bigger than |T'| 4+ |B| and bigger than the length of
a. We may assume that tp(a/A) is not algebraic. Let (a; : i < k) be a Morley
sequence in tp(a/A). By Lemma 6.3 there is some i < x such that B | , a;.

Clearly, Lstp(a/A) = Lstp(a;/A). v

Lemma 6.5. Let T be simple and Lstp(a/A) = Lstp(b/A). For any ¢, B there
is some d such that Lstp(ac/A) = Lstp(bd/A) and d | ,, B.

Proof. By Corollary 2.2 there is some d’ such that Lstp(ac/A) = Lstp(bd’'/A)
and by Corollary 2.1, there is a strong automorphism f € Autf(€/A) such that
f(ac) = bd'. By Lemma 6.4 there is some d such that Lstp(d/Ab) = Lstp(d’'/Ab)
and d | ,, B. Again by Corollary 2.1 there is some g € Autf(€/Ab) such that
g(d') = d. Tt follows that g o f € Autf(€/A) and g o f(ac) = bd. Hence
Lstp(ac/A) = Lstp(bd/A). ™

Corollary 6.2 (Independence Theorem). Let T be simple and aLAb. If
there are ¢, d such that |= ¢(c,a), ¢ |, a, E¥(d,b), d | , b, and Lstp(c/A) =
Lstp(d/A), then ¢(z,a) A(z,b) does not fork over A.

Proof. By Lemma 6.5, choose b" | , ab such that Lstp(cb’/A) = Lstp(db/A).
Then = ¢(c,a) A¢(c,b') and ¢ |, ab’. Therefore p(z,a) A ¢(x,b’) does not
fork over A. Since a LA bt' by Corollary 6.1, p(z,a) A (x,b) does not fork
over A. o

Remark 6.2. (1) The wversion of the Independence Theorem for partial
types w(xz,a), o(x,b) in place of formulas p(x,a), ¥(x,b) follows in a
straightforward way. It can be also generalized easily to any ordered
sequence of types (m;(x,a;) : i € I) if the corresponding sequence (a; :
i € I) of parameters is independent over A and Lstp(c/A) = Lstp(d/A)
whenever ¢ |= m;(x,a;) and d |=7j(x, a ).

(2) The Independence Theorem for types over a model follows also easily
from the stated version.

Proposition 6.3. Let T' be simple. If Lstp(a/A) = Lstp(b/A) and a | , b,
then a,b start a Morley sequence over A.
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Proof. Let p = tp(ab/A). We prove first that for each cardinal k there is
an infinite A-independent sequence (a; : ¢ < &) such that = p(a,,a;) for all
i < j < k. Note that this implies Lstp(a;/A) = Lstp(a;/A). The sequence
is constructed inductively starting with ap = a and a; = b. To get a, we
need to prove that (J,; ., p(ai, z) does not fork over A. But this is clear by the
generalized version of the Independence Theorem (point (1) of Remark 6.2 )
since for all ¢ = p(a;,x) and d = p(aj,z) we have Lstp(c/A) = Lstp(d/A).
Now, once we have this A-independent sequence we still need to make it A-
indiscernible. But this can be done by Lemma 1.1. o

Proposition 6.4. If T is simple, then Lstp(a/A) = Lstp(b/A) if and only if
there is some ¢ such that a,c start an infinite A-indiscernible sequence and b, ¢
start an infinite indiscernible sequence.

Proof. Assume Lstp(a/A) = Lstp(b/A) and find with Lemma 6.4 some ¢ such
that Lstp(c/A) = Lstp(a/A) and ¢ |, ab. By Proposition 6.3 a,c start an

infinite Morley sequence and b, ¢ start an infinite Morley sequence. o

Corollary 6.3. If T is simple, then equality of Lascar strong types over A is
type definable over A by 3z(nca(x,z) Ancal(y,z)).

Proof. Clear, by Proposition 6.4. o
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