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Algebraic closure in continuous logic

C. Ward Henson
Hernando Tellez

University of Illinois, Urbana-Champaign, USA

Abstract. We study the algebraic closure construction for metric structures
in the setting of continuous first order logic. We give several characterizations
of algebraicity, and we prove basic properties analogous to ones that algebraic
closure satisfies in classical first order logic.
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Resumen. Estudiamos la construcción de la clausura algebraica para estructuras
métricas en el contexto de la lógica continua de primer orden. Damos varias
caracterizaciones de algebricidad y probamos propiedades básicas análogas a
aquellas que satisface la clausura algebraica en lógica clásica de primer orden.

1. Definition and characterizations

We use the [0, 1]-valued version of continuous logic presented by Ben Yaacov,
Berenstein, Henson, and Usvyatsov in [1], [3]. Throughout this paper we fix a
metric signature L. For simplicity we assume that L is 1-sorted.

Recall [1] that, given an L-structure M and A ⊂ M , a set S ⊂ Mn is A-
definable if and only if dist(x, S) is an A-definable predicate. In turn, this means
that dist(x, S) is the uniform limit on Mn of a sequence of the interpretations
in M of L(A)-formulas (ϕn(x) | n ∈ N).

Definition 1.1. [Algebraic closure] Let M be an L-structure and A ⊂ M .
The algebraic closure of A in M, denoted aclM(A), is the union of all compact
subsets of M that are A-definable in M. An element a ∈ aclM(A) is said to
be algebraic over A in M (or simply algebraic in M in the case A = ∅).

For many proofs in this section we will take A = ∅, for simplicity of notation.
This is done without loss of generality, since aclM(A) = aclM(A)(∅), where
M(A) is the L(A)-structure (M, a)a∈A. In continuous logic, structures are
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taken to be complete for their metrics. We will denote by Ā the closure of a
set A in the metric topology.

The following result about compact 0-definable sets will prove useful. It is
suggested by the analogy between compact sets in continuous logic and finite
sets in classical first order logic.

Lemma 1.2. Let M be a metric structure, and let K be a compact subset of
M , 0-definable in M. Let M′ < M and let Q : M ′ → [0, 1] be a predicate such
that (M′, Q(x)) < (M,dist(x,K)). Then the zero set of Q in M′ is K.

Proof. Let n ≥ 1 be arbitrary. Since K is compact, it has a finite 1
n -dense set

for each n, say of size kn. Extend the language with a set of new constants
(c(n)

j |1 ≤ j ≤ kn) for each n ≥ 1, to be interpreted in M by a 1
n -dense subset

of K. Then, in M it is true that for all x ∈ M , 0 = dist(x,K) implies that
there exists 1 ≤ j ≤ kn such that d(x, c

(n)
j ) ≤ 1

n . By the triangle inequality,
this implies that for every x ∈ M , if dist(x,K) < 1

n then there exists 1 ≤
j ≤ kn such that d(x, c

(n)
j ) ≤ 2

n . This can be expressed in continuous logic

by the condition 0 = supx(min( 1
n−. dist(x,K), d(x, c

(n)
j )−. 2

n |j = 1, . . . , kn)).
This holds in M′; hence, for each x ∈ M ′, Q(x) < 1

n implies that for some
1 ≤ j ≤ kn, min(d(x, c

(n)
j )) ≤ 2

n . Let K ′ be the zero set of Q inM′. Then every

element of K ′ is the limit of some sequence from {c(n)
j |n ≥ 1, 1 ≤ j ≤ kn},

which is a subset of K. So K ′ ⊂ K̄ = K. Hence K ′ = K. ¤X

Corollary 1.3. Let M 4 M′ be L-structures. If K ⊂ M is compact and
0-definable in M, then K is 0-definable in M′.

Proof. Let Q : M ′ → [0, 1] be a predicate 0-definable in M′ such that

(M′, Q(x)) < (M,dist(x,K)).

Q is in fact the uniform limit in M′ of a sequence of formulas that converges
uniformly to dist(x, K) in M. By the previous lemma we have that the zero
set of Q in M′ is K. On the other hand, in M the following conditions are
true:

0 = sup
x

inf
y

max(dist(y, K), |dist(x,K)− d(x, y)|); (E1)

0 = sup
x
|dist(x,K)− inf

y
min(dist(y,K) + d(x, y), 1)|. (E2)

Hence the same is valid in M′. So Q satisfies (E1) and (E2). Therefore, by
[1, Section 9], Q(x) = dist(x,K) for all x ∈ M ′. Therefore K is 0-definable in
M′. ¤X

Corollary 1.4. Let M 4 N be L-structures, and A a set in M. Then
aclM(A) = aclN (A).
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Proof. As mentioned above, without loss of generality we may set A = ∅.
(⊆) Let K be a compact subset of M , 0-definable in M. Then K is compact
in N , and 0-definable in N by the previous corollary, so aclM(∅) ⊆ aclN (∅).
(⊇) Let K be a compact subset of N , 0-definable in N . Then dist(x,K) is
0-definable in N . The restriction of dist(x,K) to M is dist(x,K ∩M), so by
[1, Section 9],

(N , dist(x, K)) < (M, dist(x,K ∩M)). (1.1)
The 0-definability of dist(x,K) in N also implies that there is a sequence of
formulas (ϕn|n ≥ 1) and a continuous function u : [0, 1]N → [0, 1] such that
for all x ∈ N , dist(x,K) = u(ϕNn (x)|n ≥ 1). By (1.1), dist(x,K ∩ M) =
u(ϕMn (x)|n ≥ 1) for all x ∈ M . Therefore dist(x,K ∩ M) is 0-definable in
M. Moreover, since M is complete, K ∩ M is compact. So, by Lemma 1.2
K ∩M = K ⊂ aclM(∅). ¤X

The following is a useful characterization of algebraicity, inspired by the
usual characterization of algebraicity in first order model theory.

Lemma 1.5. Let M be an L-structure, A ⊂ M and a ∈ M . Then a ∈ aclM(A)
if and only if there is some predicate P : M → [0, 1], A-definable in M, such
that P (a) = 0 and {u ∈ N |Q(u) = 0} is compact for all (N , Q) < (M, P ).

Proof. As before, we set A = ∅ without loss of generality.
(⇒) By definition, a ∈ aclM(∅) implies that a is in a compact set K, 0-definable
in M. This implies that dist(x,K) is 0-definable in M. Let P (x) = dist(x,K).
By Lemma 1.2, if (N , Q) < (M, P ), the zero set of Q in N is K, so it is
compact.
(⇐) Let P : M → [0, 1], 0-definable in M, such that P (a) = 0 and KN =
{u ∈ N |Q(u) = 0} is compact for all (N , Q) < (M, P ). In particular, choose
N to be ω1-saturated. Then by [1, Section 10], KN is 0-definable in N , and
hence KN∩M is 0-definable inM, and compact sinceM is complete. Therefore
a ∈ aclM(∅). ¤X

Note that for the proof from right to left the full strength of the condition
was not needed; in fact, we have the following:

Corollary 1.6. Let M be an L-structure, A ⊂ M and a ∈ M . Then
a ∈ aclM(A) if and only if there is some predicate P : M → [0, 1], A-definable
in M, such that P (a) = 0 and {u ∈ N |Q(u) = 0} is compact for some
(N , Q) < (M, P ) where N is ω1-saturated.

Another natural notion of closure is one related to the boundedness of the
set of realizations of a type. It is in fact a common notion not only in classic
first order model theory, but also in research related to simplicity and stability
of cats in [2].

Definition 1.7 (Bounded closure). Let M be an L-structure, and A ⊂ M .
The bounded closure of A in M, denoted bddM(A), is the collection of all
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a ∈ M for which there is some cardinal τ such that for any N < M, the set of
realizations of tp(a/A) in N has cardinality less than or equal to τ .

In the setting of metric structures, bounded closure and algebraic closure
are in fact the same:

Lemma 1.8. Let M be an L-structure, and A ⊂ M . Then aclM(A) =
bddM(A).

Proof. Without loss of generality, we set A = ∅.
(⊆) Let a ∈ aclM(∅). Let P be as in Lemma 1.5. Let (N , Q) < (M, P ), and
A the set of realizations of tp(a) in N . Then A ⊂ {u ∈ N |Q(u) = 0}; since
this latter set is compact, |{u ∈ N |Q(u) = 0}| ≤ 2ℵ0 . Therefore |A| ≤ 2ℵ0 , and
hence a ∈ bddM(∅).
(⊇) Without loss of generality, we may assume that M is ω1-saturated. Let
a ∈ M\ aclM(∅).
Claim 1.9. There exists n ≥ 1 such that for all L-formulas ϕ(x) such that
ϕM(a) = 0, the zero set of ϕ in M has no finite 1

n -dense set.

Suppose this is not the case. Then for each n there is a ϕn such that
0 = ϕMn (a) and the zero set of ϕn in M, Cn, has a finite 1

n -dense set. Let
K =

⋂
n Cn. Then, by [1, Section 9], K is also a zero set, and it is clearly

compact; therefore, by [1, Section 10], it is 0-definable. But this contradicts
the assumption that a 6∈ aclM(∅), thus proving the claim.
Fix n as in the claim. Let τ be any cardinal. Take a collection (xα|α < τ) of
new variables and let

Σ =
{
0 = ϕ(xα)|α < τ , ϕM(a) = 0

} ∪
{

0 =
1
n
−. d(xα, xβ)|α < β < τ

}

By the claim above, Σ is finitely satisfied in M. Let M′ be a κ-saturated
elementary extension of M, with κ > τ . Then Σ is realized in M′, say by
(aα|α < τ). But clearly for any α < τ , aα is a realization of tp(a) in M′, so
the set of realizations of tp(a) in M′ has cardinality greater than τ . Therefore
a 6∈ bddMM(∅). ¤X

This last proof gives an interesting dichotomy for sets defined by a complete
type in a saturated structure, which we restate:

Proposition 1.10. Let M be a κ-saturated L-structure, with κ > 2ℵ0 . Let X
be the set of realizations in M of a complete type, say tp(a/A), with |A| < κ.
Then either |X| ≤ 2ℵ0 and X is an algebraic set (i.e. a is algebraic over A),
or |X| ≥ κ.

2. Basic properties

We first check that aclM actually does define a closure operation. So we fix
a κ-saturated, strongly κ-homogeneous metric structure M (for κ sufficiently
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large) and subsets A and B of M of cardinality less than κ. When there is no
confusion, we omit the subscript M from aclM.

Proposition 2.1. A ⊂ acl(A).

Proof. Suppose a ∈ A. Then {a} is compact and dist(x, {a}) = d(x, a) is
A-definable. ¤X

Proposition 2.2. A ⊂ B, then acl(A) ⊂ acl(B).

Proof. Since A ⊂ B, if K ⊂ M is A-definable, then it is of course B-definable.
¤X

Proposition 2.3. If A ⊆ aclM(B), then aclM(A) ⊆ aclM(B).

Proof. Let a ∈ aclM(A). Note that, by homogeneity of M, for any element b,
tp(b/B) = tp(a/B) if and only if there exists σ ∈ AutB(M) such that σ(a) = b.
For each b with the same type as a over B, fix such an automorphism, and call
it σb. Define the following equivalence relation in X, the set of realizations
of tp(a/B) in M: b1 ∼ b2 if for all x ∈ A σb1(x) = σb2(x) (the fact that
it is an equivalence relation is easy to check, and left to the reader). Notice
that if b1 ∼ b2, then tp(b1/σb1(A)) = tp(b2/σb1(A)). Therefore, the number of
equivalence classes |X/ ∼ | is less than or equal to the number of possible images
of A under an automorphism of M that fixes B. However, since every element
of A is algebraic over B, by Lemma 1.8 and Proposition 1.10 it can have at most
2ℵ0 distinct images under such automorphisms. Therefore |X/ ∼ | ≤ (

2ℵ0
)|A|.

On the other hand, for any given b ∈ X, the size of its equivalence class is
bounded, since [b]∼ is a subset of the set of realizations of tp(σb(a)/σb(A)),
which is of the same size as the set of realizations of tp(a/A), and this set has
cardinality ≤ 2ℵ0 because a is algebraic over A, by Proposition 1.10. Thus
|[b]∼| ≤ 2ℵ0 , and therefore |X| ≤ (

2ℵ0
)|A| 2ℵ0 = 2ℵ0|A|. In other words, X is

bounded, which by Proposition 1.10 implies that in fact |X| ≤ 2ℵ0 . Therefore
a ∈ aclM(B), by Lemma 1.8. ¤X

Proposition 2.4. acl(Ā) = acl(A).

Proof. (⊇) is a corollary of Proposition 2.3.
(⊆) Let K ⊂ M be compact, Ā-definable in M. By definition, this means
that dist(x, K) is the uniform limit of a sequence of L(Ā)-formulas (ϕn(x)|n ≥
1). Say an is the tuple of elements of Ā that occur in ϕn, that is ϕn(x) is
ϕn(x, an). Since each an is a tuple of elements of Ā, for each n there is a
sequence (a(k)

n |k ≥ 1) of tuples of elements of A that converges to an. Without
loss of generality (by taking subsequences), we may assume that for every
n ≥ 1, |ϕMn (x, an)−dist(x,K)| < 1

2n for all x in M . Let ∆n be the modulus of
uniform continuity of ϕMn . By taking a subsequence of (a(k)

n ), if necessary, we
may assume that for each n ≥ 1, d(an, a

(k)
n ) < ∆n( 1

2n ) for k ≥ n. This implies
that |ϕMn (x, an) − ϕMn (x, a

(n)
n )| < 1

2n for all x in M . Therefore |dist(x,K) −
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ϕMn (x, a
(n)
n )| ≤ |dist(x,K) − ϕMn (x, an)| + |ϕMn (x, an) − ϕMn (x, a

(n)
n )| ≤ 1

n for
every x inM. So (ϕn(x, a

(n)
n )|n ≥ 1) converges uniformly to dist(x,K), proving

that K is A-definable. ¤X

Lemma 2.5 (Local character). If a ∈ acl(A), then there exists a countable
subset A0 of A such that a ∈ acl(A0).

Proof. Let a ∈ acl(A). By definition, this means that a ∈ K for some A-
definable compact K. Therefore, the predicate dist(x,K) is the uniform limit
of a sequence (ϕn(x, an)|n ≥ 1) of L(A)-formulas (here, an is a tuple of elements
of A, and ϕn(x, y) is an L-formula.) If we let A0 = {an|n ≥ 1}, then it is clear
that K is A0-definable, so a ∈ acl(A0). ¤X

Proposition 2.6. | acl(A)| ≤ |L(A)|ℵ0

Proof. The number of A-definable predicates is bounded by the number of
sequences of L(A)-formulas, |L(A)|ℵ0 . Therefore the number of A-definable
compact sets is bounded by this same value. Each compact set has at most
2ℵ0 elements, so acl(A) (the union of all the A-definable compact sets) has at
most |L(A)|ℵ0 · 2ℵ0 = |L(A)|ℵ0 elements. ¤X

Proposition 2.7. Let M and N be L-structures, A ⊂ M and B ⊂ N .
If f : A → B is an elementary map, then there exists an elementary map
g : aclM(A) → aclN (B) extending f . Moreover, if f is onto, then so is g.

Proof. There exists an L-structure M′ sufficiently saturated and strongly ho-
mogeneous, where M and N embed elementarily. By homogeneity of M′, f
extends to an automorphism g of M′. Now, if K ⊂ M is compact and A-
definable in M, then by continuity of g, g(K) is compact. And if dist(x,K) =
u(ϕn(x, an)|n ≥ 1) for some connective u and some sequence of L(A)-formulas
(ϕn(x, an)|n ≥ 1), then dist(x, g(K)) = u(ϕn(x, f(an))|n ≥ 1), so g(K) is B-
definable in N . Furthermore, if f(A) = B, then for any B-definable compact
C, dist(x,C) can be written as u(ϕn(x, f(an))|n ≥ 1) for some connective u,
some sequence of L-formulas (ϕn(x, y)|n ≥ 1) and some sequence of tuples (an)
in A. This implies that C = g(K) for some A-definable K ⊂ M . Since g−1 is
continuous, K is also compact. Therefore g(aclM(A)) = aclN (B) ¤X

All the definitions and properties above are valid when a denotes a tuple
of elements, in which case the compact sets in question would be subsets of
the appropriate cartesian product of M , and the predicates would be of the
corresponding arity. We now verify that such definitions are well behaved.

Proposition 2.8. Let M be an L-structure and A ⊂ M .
(1) Let a = (a1, . . . , an) ∈ Mn. Then a ∈ acl(A) if and only if ai ∈ acl(A)

for all i = 1, . . . , n.
(2) Let a = (ai|i ≥ 1) ∈ Mω. Then a ∈ acl(A) if and only if ai ∈ acl(A)

for all i ≥ 1. Here we consider the product topology in Mω, with the
metric d(x, y) =

∑
i≥1 2−i d(xi, yi).
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Proof. As before, we may assume A = ∅ without loss of generality.
(1) (⇐) Let πi : Mn → M be the projection on the ith coordinate. If

K ⊂ Mn is compact and 0-definable in M, then πi(K) is also compact
as πi is continuous, and 0-definable as

dist(xi, πi(K)) = inf
y∈K

(d(xi, yi)) = inf
y

(d(xi, yi) + dist(y, K)).

(⇒) If Ki ⊂ M is compact and 0-definable for each i = 1, . . . , n, then
K =

∏
1≤i≤k Ki is compact, and 0-definable as

dist(x,K) = max(dist(xi,Ki)|i = 1, . . . , n).

(2) (⇐) Same argument as above, except here

dist(xi, πi(K)) = inf
y

(d(xi, yi) + 2i dist(y, K)).

(⇒) Tychonoff’s theorem guarantees that if (Ki|i ≥ 1) is a family of
compact subsets of M , then K =

∏
i≥1 Ki is compact. And if each Ki

is 0-definable inM, then so is K, as dist(x,K) =
∑

i≥1 2−i dist(xi,Ki).

¤X
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