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Nonderogatory directed windmills

Molinos de viento dirigidos no derogatorios

Juan Radaa

Universidad de Los Andes, Mérida, Venezuela

Abstract. A directed graph G is nonderogatory if its adjacency matrix A is
nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal
polynomial of A. Given integers r ≥ 2 and h ≥ 3, a directed windmill Mh (r)
is a directed graph obtained by coalescing r dicycles of length h in one vertex.
In this article we solve a conjecture proposed by Gan and Koo ([3]): Mh (r) is
nonderogatory if and only if r = 2.
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Resumen. Un grafo dirigido G es no-derogatorio si su matriz de adyacencia A

es no-derogatoria, es decir el polinomio caracteŕıstico de A es igual al polinomio
minimal de A. Dados enteros r ≥ 2 y h ≥ 3, el molino de viento dirigido Mh (r)
es un grafo dirigido que se obtiene por medio de la coalescencia de r diciclos de
longitud h en un vértice. En este art́ıculo resolvemos una conjetura propuesta
por Gan y Koo ([3]) : Mh (r) es no-derogatorio si, y sólo si, r = 2.

Palabras y frases clave. matriz no-derogatoria, polinomio caracteŕıstico de grafos
dirigidos, molinos de viento dirigidos.

1. Introduction

A digraph (directed graph) G = (V, E) is defined to be a finite set V and a
set E of ordered pairs of elements of V . The sets V and E are called the set
of vertices and arcs, respectively. If (u, v) ∈ E then u and v are adjacent and
(u, v) is an arc starting at vertex u and terminating at vertex v.

Let Mn (C) denote the space of square matrices of order n with entries in
C. Suppose that {u1, . . . , un} is the set of vertices of G. The adjacency matrix
of G is the matrix A ∈ Mn (C) whose entry aij is the number of arcs starting
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61



62 JUAN RADA

at ui and terminating at uj . The characteristic polynomial of G is denoted
by ΦG (x) (or simply ΦG) and it is defined as the characteristic polynomial of
the adjacency matrix A of G, i.e., ΦG (x) = |xI − A|, where I is the identity
matrix.

The monic polynomial of least degree which annihilates A is called the mi-
nimal polynomial of G and is denoted by mG (x) = mG; it divides every poly-
nomial f ∈ C [x] such that f (A) = 0. In particular, by the Cayley-Hamilton
Theorem, mG (x) divides ΦG (x). Moreover, ΦG (x) and mG (x) have the same
roots.

A digraph G is nonderogatory if its adjacency matrix A is nonderogatory,
i.e., if ΦG (x) = mG (x); otherwise, G is derogatory. For example, dipaths Pn,
dicycles Cn, difans Fn and diwheels Wn are classes of nonderogatory digraphs.
These classes of digraphs have been studied by Gan, Lam and Lim ([2],[4] and
[5]). More recently ([3]), Gan and Koo considered the problem of determining
when the directed windmills are nonderogatory.

Let h, r be integers such that h ≥ 3 and r ≥ 2. A directed windmill Mh (r)
is the directed graph with r (h − 1) + 1 vertices obtained from the coalescence
of r dicycles of length h in one vertex (see Figure 1).
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Figure 1. The directed windmill Mh(r) : r copies of the dicycle Ch.

Gan and Koo showed that M3 (r) is nonderogatory if and only if r = 2.
Moreover, they conjectured that for every h ≥ 3

Mh (r) is nonderogatory ⇔ r = 2 .

In this paper we show that this conjecture is true.
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2. Nonderogatory directed windmills

Recall that a linear directed graph is a digraph in which each indegree and
each outdegree is equal to 1 (i.e. it consists of cycles). The coefficient theorem
for digraphs ([1, Theorem 1.2]) relates the coefficients of the characteristic
polynomial with the structure of the digraph.

Theorem 2.1. Let

ΦG (x) = xn + a1x
n−1 + · · · + an−1x + an

be the characteristic polynomial of the digraph G. Then for each i = 1, . . . , n

ai =
∑

L∈Li

(−1)
p(L)

,

where Li is the set of all linear directed subgraphs L of G with exactly i vertices;

p (L) denotes the number of components of L.

Lemma 2.2. The characteristic polynomial of Mh (r) is

ΦMh(r) = xr(h−1)+1 − rxr(h−1)+1−h = xr(h−1)+1−h
[

xh − r
]

.

Proof. This is an immediate consequence of Theorem 2.1. �X

Let G be a directed graph and A = (aij) its adjacency matrix. By a walk of
length k in G we mean a sequence of vertices v0v1 · · · vk in which each (vi−1, vi)
is an arc of G. It is well known that the number of walks of length k between

two vertices vi and vj of G is a
(k)
ij , the entry ij of the power matrix Ak ([1,

Theorem 1.9]).

Theorem 2.3. Mh (r) is nonderogatory if and only if r = 2.

Proof. The characteristic polynomial of Mh (2) is

ΦMh(2) = xh−1
(

xh − 2
)

.

Let f (x) = xh−2
(

xh − 2
)

and A = (aij) the adjacency matrix of Mh (2). From

the structure of Mh (2) it can be easily seen that a
(2h−2)
h+1,h = 1 and a

(h−2)
h+1,h = 0.

Consequently f (A) 6= 0, which implies that ΦMh(2) = mMh(2) and Mh (2) is
nonderogatory.

We next show that if r ≥ 3 then Mh (r) is derogatory. For i = 1, . . . , h − 1,
we denote by ei the canonical row vector of Ch−1 and fi the canonical column
vector of Ch−1. Labeling the vertices of Mh (r) as shown in Figure 1, the
adjacency matrix A of Mh (r) has the form

A =















0 e1 e1 · · · e1

fh−1 X 0 · · · 0
...

. . .
...

fh−1 0 · · · X 0

fh−1 0 0 · · · X
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where 0 ∈Mh−1 (C) is the zero matrix and X = (xij) ∈ Mh−1 (C) is the matrix
such that xi,i+1 = 1 for i = 1, . . . , h − 2, and the rest of the entries of X are
zero. Set Y1 = X , Z1 = 0 and for j = 2, . . . , h − 1 define recursively

Yj = fh+1−je1 + Yj−1X (1)

and

Zj = fh+1−j e1 + Zj−1X . (2)

We next show that for every j = 1, . . . , h − 1

Aj =















0 ej ej · · · ej

fh−j Yj Zj · · · Zj

...
. . .

...
fh−j Zj · · · Yj Zj

fh−j Zj Zj · · · Yj















. (3)

In fact, this is clear for j = 1. Assume (3) holds for 1 ≤ i ≤ h − 2. Note that

eifh−1 = 0 and eiX = ei+1 . (4)

On the other hand, since Xfj = fj−1 for every j = 2, . . . , h − 1 then

Yifh−1 = fh+1−ie1fh−1 + Yi−1Xfh−1 = Yi−1fh−2

and after i − 1 steps we deduce

Yifh−1 = Yi−1fh−2 = Yi−2fh−3 = · · · = Y1fh−i .

But recall that Y1 = X and so

Yifh−1 = fh−(i+1) . (5)

Similarly,

Zifh−1 = Zi−1fh−2 = · · · = Z1fh−i ,

but Z1 = 0 implies

Zifh−1 = 0 . (6)

Also we know that

fh−ie1 + YiX = fh+1−(i+1)e1 + Y(i+1)−1X = Yi+1 (7)

and

fh−ie1 + ZiX = Zi+1 . (8)

Consequently, it follows from equations (4)-(8) that

Ai+1 = AiA =















0 ei+1 ei+1 · · · ei+1

fh−(i+1) Yi+1 Zi+1 · · · Zi+1

...
. . .

...
fh−(i+1) Zi+1 · · · Yi+1 Zi+1

fh−(i+1) Zi+1 Zi+1 · · · Yi+1















,

hence (3) holds for every j = 1, . . . , h − 1.
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On the other hand,

eh−1fh−1 = 1, eh−1X = 0,

Yh−1fh−1 = 0 = Zh−1fh−1,

and from repeated use of (1) and the fact that Xh = 0,

f1e1 + Yh−1X = f1e1 + (f2e1 + Yh−2X)X

= f1e1 + f2e2 + Yh−2X
2 = · · ·

=

h−2
∑

k=1

fkek + Y2X
h−2 =

h−2
∑

k=1

fkek + (fh−1e1 + Y1X)Xh−2

=

h−2
∑

k=1

fkek + fh−1e1X
h−2 + Xh =

h−1
∑

k=1

fkek = I .

Similarly, using (2) it can be shown that f1e1 + Zh−1X = I. It follows from
these relations and (3) that

Ah = Ah−1A =











r 0 · · · 0
0 I · · · I
...

...
...

0 I · · · I











, (9)

where the 0′s in the first row are the zero vectors in Ch−1, the 0′s in the first
column are the zero column vectors of Ch−1 and I ∈ Mh−1 (C) is the identity.

Relation (9) implies that for every integer k ≥ 2

Akh =











rk 0 · · · 0
0 rk−1I · · · rk−1I
...

...
...

0 rk−1I · · · rk−1I











= rA(k−1)h . (10)

Now consider the polynomial g ∈ C [x] defined as

g (x) = xrh−r−h
(

xh − r
)

,

we will show that g (A) = 0. To see this, note that since r ≥ 3 and h ≥ 3, by
the division algorithm, we can find integers q ≥ 2 and 0 ≤ s ≤ h − 1 such that

rh − r = qh + s .

From relation (10) we deduce that

Arh−r = Aqh+s = rA(q−1)h+s = rAqh+s−h = rArh−r−h

which implies g (A) = 0 and so Mh (r) is derogatory. �X
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