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Abstract. In this paper we study the regularity of the solutions for a Robin
problem, with a nonlinear term with sub-critical growth respect to a variable.
We establish the Sobolev space H1(Ω) as the orthogonal sum of two subspaces,
and we give the first step to demonstrate the existence of solutions of our
problem.
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1. Introduction

We examine the regularity of the solutions to the problem

(P)





u ∈ H1(Ω,−∆) ,
−∆u = f(x, u(x)) , in Ω ,

γ1u + αγ0u = 0 , on ∂Ω ,

here −∆ is the Laplacian operator, Ω is a bounded domain in R
n(n ≥ 2)

simply connected and with smooth boundary ∂Ω. The function f : Ω×R → R,
satisfies the conditions:

f0) The function f is continuous.
f1) There exists a constant c > 0 such that

|f(x, s)| ≤ c (1 + |s|σ) , ∀x ∈ Ω and ∀s ∈ R ,

where the exponent σ is a constant such that

1 < σ < n+2
n−2 if n ≥ 3 ,

1 < σ < ∞ if n = 2 .

The boundary condition γ1u + αγ0u = 0 involves the trace operators:

γ0 : H1(Ω) → H1/2(∂Ω) , and γ1 : H1(Ω,−∆) → H−1/2(∂Ω) ,

where H1(Ω,−∆) = {u ∈ H1(Ω) : −∆u ∈ L2(Ω)} with the norm

‖u‖H1(Ω,−∆) =
(
‖u‖2

H1(Ω) + ‖∆u‖2
L2(Ω)

)1/2

,

for each u ∈ H1(Ω,−∆), γ1u ∈ H−1/2(∂Ω), and γ0u ∈ H1/2(∂Ω). Identifying
the element γ0u with the functional γ∗

0u ∈ H−1/2(∂Ω) defined by

〈γ∗
0u, w〉 =

∫

∂Ω

(γ0u)wds , ∀w ∈ H1/2(∂Ω) ,

the boundary condition makes sense in H−1/2(∂Ω) (Theorem 2.3), and it ap-
pears in the functional of the problem (P), see Theorems 3.1, 3.2 and 3.3 in
section 3.

This work was motivated by Arcoya-Villegas [1], who proved the existence
of nontrivial solution of the nonlinear Neumann’s problem





−∆u = f(x, u) , in Ω ,

∂u
∂η = 0 , on ∂Ω .

We study the existence of solutions of the problem (P) in [4]. We write
this paper to separate the regularity conditions of the additional existence
conditions.
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2. Preliminary results

In this section, we introduce some notations and known theorems to familiarize
the reader with the boundary condition γ1u+αγ0u = 0. We also remember that
−∆ is an isomorphism between some spaces, properly enunciated in Theorem
2.5. Using the Trace Theorem, Theorem 2.5 and the bootstrapping we prove
that the weak solutions of Problem (P) belong to the space H2(Ω). (Theorem
3.2).

The norm

‖u‖2 =

∫

Ω

u2 +

∫

Ω

|∇u|2 , (2.1)

is the usual norm of the Sobolev space H1(Ω).

Theorem 2.1. Suppose Ω bounded with boundary ∂Ω of class C1. Then, there
exists a continuous and linear function γ0 : H1(Ω) → L2(∂Ω) such that:

a) γ0u = u|∂Ω , if u ∈ W 1,2(Ω) ∩ C
(
Ω

)
,

b) ‖γ0u‖L2(∂Ω) ≤ c1‖u‖ , ∀u ∈ H1(Ω) ,

here the constant c1 depends on Ω. The value γ0u is called trace of u on ∂Ω.

Proof. See [7, Theorem 1, p. 258]. �X

Theorem 2.2 (Trace Theorem). Let Ω ⊂ R
n be open, bounded, and with

smooth boundary ∂Ω. Then the trace operators γj can be extended to continuous

linear operators, mapping Hm(Ω) onto Hm−j−1/2(∂Ω), for 0 ≤ j ≤ m − 1.
Moreover, the operator γ = (γ0, γ1, . . . , γj , . . . , γm−1) maps Hm(Ω) onto the pro-

duct space
∏m−1

j=0 Hm−j−1/2(∂Ω). Finally, the space Hm
0 (Ω) is the Kernel of

the operator γ.

Proof. See [2, Theorem 3.1, p. 189] or [5, Theorem 5, p. 905]. �X

Theorem 2.3 (Green Formula). There exists a unique operator γ1 mapping
H1(Ω,−∆) into H−1/2(∂Ω) such that Green Formula holds:

〈γ1u, γ0v〉 =

∫

Ω

v∆u +

∫

Ω

∇u · ∇v , u ∈ H1(Ω,−∆) , v ∈ H1(Ω). (2.2)

Remark. The space C∞
(
Ω

)
is dense in H1(Ω,−∆).

Proof. See [2, Theorem 2.1, p. 174]. �X

Theorem 2.4 (Compactness of the trace operator). Let Ω ⊂ R
n be an open

set, bounded, and with boundary C0,1, m ≥ 1 an integer and 1 ≤ p < +∞.
Then the next claims are true :

a) If mp < n and 1 ≤ q < p(n−1)
n−mp , then there exists a unique mapping γ0 :

Wm,p(Ω) → Lq(∂Ω), linear and continuous, such that if u ∈ C
(
Ω

)
then

γ0u = u|∂Ω. If p > 1 then γ0 is compact.
b) If mp = n, then the affirmation (a) is valid for every q ≥ 1.
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c) If mp > n, the trace γ0u of u ∈ Wm,p(Ω) ⊂ C
(
Ω

)
is the classic restriction

u|∂Ω.

Proof. See [10, Theorem 6.2 p. 107], [8, Theorem 6.10.5] or [3]. �X

For the reader’s convenience, we recall some notation and definitions of
“normality” and “covering”.

If x = (x1, x2, . . . , xn) ∈ R
n and α = (α1, . . . , αn) an n−tuple of nonnegative

integers αj , then xα denotes the monomial xα1
1 xα2

2 . . . xαn
n , which has degree

|α| =
∑n

j=1 αj . Similarly, if Dj = ∂
∂xj

for 1 ≤ j ≤ n, then Dα = Dα1
1 . . . Dαn

n

is the differential operator of order |α|.
Let A be a partial differential linear operator of order 2m, defined by

Au =
∑

|k|,|h|≤m

(−1)|k|Dk
(
akhDhu

)
, (2.3)

where akh ∈ C∞
(
Ω

)
, with real values.

Let B0, . . . , Bm−1 be m boundary operators defined by

Bju =
∑

|h|≤mj

bjhDhu , j = 0, 1, . . . , m − 1 , (2.4)

where 0 ≤ mj ≤ 2m−1 and the functions bjh are infinitely differential functions
over ∂Ω.

Definition 2.1. We say that the set {Bj}m−1
j=0 is normal according to Aron-

szajn and Milgram, if for j 6= i, mj 6= mi, x ∈ ∂Ω, and normal vector η 6= 0 to
∂Ω in x, then

Qj(x, η) =
∑

|h|=mj

bjhηh 6= 0 , j = 0 , 1, . . . , m − 1.

Definition 2.2. The set {Bj}m−1
j=0 “covers” the operator A defined in (2.3),

if for each x ∈ ∂Ω and every pair of real non-null vectors ξ, ξ′ tangent and
normal to ∂Ω in x respectively, then the polynomial in the variable τ ,

P (x, ξ + τξ′) =
∑

|k|=|h|=mj

akh (ξ + τξ′)
k+h

,

has m roots: τ1(ξ, ξ
′), · · · , τm(ξ, ξ′), with positive imaginary parts, and the m

polynomials in τ

Qj(τ) := Qj(x, ξ + τξ′) =
∑

|h|=mj

bj,h(ξ + τξ′)h ,

are linearly independent module the polynomial
∏m

i=1(τ − τi(ξ, ξ
′)).

Definition 2.3. We say that the set of operators

{A, B0, B1, · · · , Bm−1} ,

satisfies condition (NR) if:
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a) The set of boundary operators B = {Bj : j = 0, 1, · · · , m−1} is normal
according to Aronszajn and Milgram, and

b) The set B “covers” operator A.

Proposition 2.1. The operators

−∆ = −
n∑

j=1

∂2

∂x2
j

, and the boundary operator B0u =
n∑

j=1

ηj(x)
∂u

∂xj
,

where η(x) = (η1, · · · , ηn) is a unit normal vector field over ∂Ω and external
to Ω, satisfies Condition (NR).

Proof. a) Let x ∈ ∂Ω and v(x) = (v1, · · · , vN ) 6= 0 a normal vector field to ∂Ω,

Q0(x, η) =
N∑

j=1

ηj(x) · vj(x) = η · v 6= 0 ,

therefore, the operator {B0} is normal according to Aronszajn and Milgram.
b) Now, the operator B0 “covers” the operator −∆. In fact, let ξ =

(ξ1, · · · , ξn) and ξ′ = (ξ′1, · · · , ξ′n) be tangent and normal vectors respectively
to ∂Ω at the point x. By the ellipticity of the operator −∆ we have

P (x, ξ + τξ′) = −‖ξ + τξ′‖2 = −‖ξ‖2 − τ2‖ξ′‖2 ,

then P (x, ξ + τξ′) has 2 roots: τ1 = ‖ξ‖
‖ξ′‖ i, and τ2 = −τ1. On the other hand,

the polynomial in τ

Q0(x, ξ + τξ′) =
N∑

j=1

nj(x)(ξj + τξ′j) = (η(x) · ξ′)τ = ‖η‖‖ξ′‖τ ,

is not multiple of the polynomial τ − τ1. �X

Let 1 < p < ∞, r ≥ 0 and η(x) = (η1, · · · , ηn) be a real vector normal field
over ∂Ω and external to Ω. We define :

N =



u ∈ W 2,p(Ω) : −∆u = 0 , B0u =

n∑

j=1

ηj(x)
∂u

∂xj
= 0



 ,

N∗ =
{
u ∈ W 2,p′

(Ω) : (−∆)∗u = 0V, B∗
0u = 0

}
,

where p′ = p
p−1 and ((−∆)∗, B∗

0 ) is the formal adjoint operator of (−∆, B0). It

is easy to see that (−∆, B0) is self-adjoint. Spaces N and N∗ are subspaces of
C∞

(
Ω

)
, and thus they neither depend on p nor on p′. If Ω is simply connected

then N = N∗ is the space of the constants. In this work, the set Ω is simply
connected.

We will consider the sets:

W 2+r,p
B0

(Ω) =
{
u ∈ W 2+r,p(Ω) : B0u = 0

}
, and

{W r,p(Ω); N∗} =
{
u ∈ W r,p(Ω) :

∫
Ω u(x)dx = 0

}
.
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132 RAFAEL A. CASTRO T.

Theorem 2.5. The operator −∆ is an isomorphism on {W r,p(Ω); N∗} of

W 2+r,p
B0

(Ω)/N for all real r ≥ 0 and 1 < p < +∞.

Proof. See [9, Theorem 3.1]. �X

3. Regularity results

In Theorem 3.1 we establish the derivative of the functional Φ : H1(Ω) → R,
corresponding to our problem (P). In Theorem 3.2 we show that the critical
points of Φ belong to the space H2(Ω). Finally in Theorem 3.3 we obtain the
variational formulation of the problem (P). Thus Theorem 3.2 is a regularity
result for weak solutions of the problem (P).

Theorem 3.1. The functional Φ : H1(Ω) → R, defined by

Φ(u) =
1

2

∫

Ω

|∇u|2 +
α

2

∫

∂Ω

(γ0u)2ds −
∫

Ω

F (x, u) ,

where α ∈ R, F (x, s) =
∫ s

0 f(x, t) dt belongs to class C1(H1(Ω), R) and its
derivative is

〈Φ′(u), v〉 =

∫

Ω

∇u · ∇v + α

∫

∂Ω

(γ0u)(γ0v)ds −
∫

Ω

f(x, u)v , ∀u, v ∈ H1(Ω) .

(3.1)

Proof. If

Φ1(u) =
1

2

∫

∂Ω

(γ0u)2ds ,

Φ1(u + tv) − Φ1(u)

t
=

∫

∂Ω

{
γ0u.γ0v +

t

2
(γ0v)2

}
ds ,

then,

〈Φ′
1(u), v〉 = lim

t→0

Φ1(u + tv) − Φ1(u)

t
=

∫

∂Ω

(γ0u)(γ0v)ds .

Using Theorem 2.1, the Gateaux derivative of Φ1 is continuous; indeed,

| 〈Φ′
1(u), v〉 | ≤ ‖γ0u‖L2(∂Ω)‖γ0v‖L2(∂Ω) ≤ C‖u‖ ‖v‖ .

Hence, Φ1 ∈ C1((Ω), R). It is well known that the functional

Φ2(u) =
1

2

∫

Ω

|∇u|2 −
∫

Ω

F (x, u) ,

belongs to the class C1(H1(Ω), R) whose derivative is

〈Φ′
2(u), v〉 =

∫

Ω

∇u.∇v −
∫

Ω

f(x, u)v.

Then we obtain (3.1). �X
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Theorem 3.2. Let Ω ⊂ R
n, n ≥ 2 be a bounded and simply connected domain

with smooth boundary ∂Ω, f : Ω × R → R a function satisfying (f0) and (f1),
and α a real number.

If u ∈ H1(Ω) satisfies

〈Φ′(u), v〉 =

∫

Ω

∇u · ∇v + α

∫

∂Ω

(γ0u)(γ0v)ds −
∫

Ω

f(x, u)v = 0 , (3.2)

for all v ∈ H1(Ω), then u ∈ H2(Ω).

Proof. Since γ1 : H2(Ω) → H1/2(∂Ω) is onto (Trace Theorem), and −αγ0u ∈
H1/2(∂Ω), there exists w ∈ H2(Ω) such that

∂w

∂η
= −αγ0u . (3.3)

From (3.2), (3.3) and the Green formula we obtain
∫

Ω

∇h · ∇v =

∫

Ω

gv , ∀v ∈ H1(Ω) , (3.4)

where

h = u − w , and g(x) = f(x, u) + ∆w(x) . (3.5)

(i) First we prove that

g ∈
{
W 0,p1(Ω); N∗

}
, where 1 < p1 ≤ 2 . (3.6)

Using Condition (f1) in the cases:

a) If n = 2, then

f ∈ L2(Ω) , and so g ∈ L2(Ω) . (3.7)

b) If n > 2, taking into account that

1 < σ <
n + 2

n − 2
, and 2∗ =

2n

n − 2
.

If p1 = 2∗

σ then

1 <
2n

n + 2
< p1 <

2n

n − 2
. (3.8)

Consequently
∫

Ω

|f(x, u)|p1 ≤ C

∫

Ω

(
1 + |u|2∗

)
< +∞ , (3.9)

thus, f ∈ Lp1(Ω), then g ∈ Lp1(Ω) for 1 < p1 ≤ 2. From (3.4) with v = 1 over
Ω, we have ∫

Ω

g(x)dx = 0 .

Thus, g ∈
{
W 0,p1(Ω); N∗

}
.

(ii) Now, we will prove that

u ∈ W 2,p1(Ω) . (3.10)
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By virtue of Theorem 2.5 , there exists a unique h̃ ∈ W 2,p1

B0
(Ω)/N such that

{
−∆h̃ = g , in Ω ,

∂h̃
∂η = 0 , on ∂Ω .

(3.11)

In the case n ≥ 3, we have 1
p′
1

= 1 − 1
p1

> 1 − n+2
2n = 1

2∗ , then p′1 < 2∗, and

hence H1(Ω) ⊂ Lp′
1(Ω). If n = 2, H1(Ω) ⊂ Lp′

1(Ω).
From (3.11) we get

−
∫

Ω

v∆h̃ =

∫

Ω

vg , ∀v ∈ H1(Ω) . (3.12)

Integrating by parts, the first integral of (3.12) gives

∫

Ω

∇h̃ · ∇v =

∫

Ω

gv , ∀v ∈ H1(Ω) . (3.13)

Subtracting (3.13) from (3.4) we obtain

∫

Ω

∇(h − h̃) · ∇v = 0 , ∀v ∈ H1(Ω) . (3.14)

Let us see that h̃ ∈ W 1,2(Ω). Since h̃ ∈ W 2,p1(Ω), if p1 = 2 then h̃ ∈ W 1,2(Ω);
if p1 < 2, then we have the cases: n = 2 and n > 2. If n = 2, given that p1 > 1
then 2 < 2p1

2−p1
; if n > 2, as p1 > 2n

n+2 , then 2 < np1

n−p1
. Therefore, in both cases

W 2,p1(Ω) ⊂ W 1,2(Ω), then h̃ ∈ W 1,2(Ω).

Making v = h − h̃ in (3.14) we obtain
∫
Ω |∇v|2dx = 0. By the Poincaré

inequality we have that v(x) = vΩ = 1
|Ω|

∫
Ω

v dx, x ∈ Ω. Then h(x) = h̃(x)+vΩ,

thus Dαh = Dαh̃ for any index α, with |α| ≤ 2. Since h̃ ∈ W 2,p1(Ω), then
h ∈ W 2,p1(Ω), therefore u ∈ W 2,p1(Ω).

(iii) Finally we will prove that

u ∈ W 2,2(Ω). (3.15)

If n = 2, by (3.7) and case (i), g ∈
{
W 0,2(Ω); N∗

}
, and by case (ii), u ∈

W 2,2(Ω). If n > 2, we have the following cases:

a) 2p1 > n ,
b) 2p1 = n ,
c) 2p1 < n .

In case a), W 2,p1(Ω) ⊂ C
(
Ω

)
⊂ L∞(Ω), thus u ∈ Lq(Ω), ∀q ∈ [1, +∞), and on

the other hand, we have
∫

Ω

|f(x, u)|2 ≤ c

∫

Ω

(
1 + |u|2σ

)
< +∞ , (3.16)

then f ∈ L2(Ω), g ∈ L2(Ω), thus by cases (i) and (ii), u ∈ W 2,2(Ω).
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In case b), W 2,p1(Ω) ⊂ Lq(Ω), ∀q ∈ [p1,∞), 2σ > 2 > p1 and by (3.16), then
f ∈ L2(Ω). Similarly to the last case u ∈ W 2,2(Ω).

In case c), we use bootstrapping. As W 2,p1(Ω) ⊂ Lp∗
1 (Ω), where p∗1 = np1

n−2p1
,

thus u ∈ Lp∗
1 (Ω). Let p2 =

p∗
1

σ be, and
∫

Ω

|f(x, u)|p2 ≤ c̃

∫

Ω

(
1 + |u|p∗

1

)
< +∞ .

Then, f ∈ Lp2(Ω), g ∈ Lp2(Ω), thus u ∈ W 2,p2(Ω). If p2 < 2 and 2p2 < n then

u ∈ Lp∗
2 (Ω), p∗2 = np2

n−2p2
. Considering p3 =

p∗
2

σ then f ∈ Lp3 , g ∈ Lp3(Ω), thus

u ∈ W 2,p3(Ω). Therefore, we obtain the sequence {pj}, such that

1 < p1 < p2 < · · · < ps ,

where ps ≥ 2. In fact, since p1 > 2n
n+2 , there exists ε > 0 such that p1 =

2n
n+2 (1 + ε) and we obtain

p2

p1
=

p∗1/σ

2∗/σ
=

(n − 2)(1 + ε)

n − 2 − 4ε
> 1 + ε ,

then p2 − p1 > ε. If 1 < p1 < p2 < · · · < pi−1 < pi, where
pj

pj−1
> 1 + ε for

j = 2, 3, · · · , i, then

pi+1

pi
=

p∗i
p∗i−1

=
pi(n − 2pi−1)

pi−1(n − 2pi)
>

pi

pi−1
> 1 + ε .

Hence {pj} is an strictly increasing sequence, therefore, there exists ps ≥ 2 and

u ∈ Lp∗
s−1(Ω), then f ∈ Lps(Ω), g ∈ Lps(Ω) and by case (ii) u ∈ W 2,ps(Ω).

Therefore u ∈ W 2,2(Ω). �X

Theorem 3.3. Based on the conditions in Theorem 3.2 on Ω, f and α, the
problems (P) and (Q) are equivalent:

(P)





i) u ∈ H1(Ω,−∆) ,
ii) −∆u = f(x, u(x)) , x ∈ Ω ,
iii) γ1u + αγ0u = 0 , on ∂Ω ,

and

(Q)

{
i) u ∈ H1(Ω) ,
ii)

∫
Ω
∇u · ∇v =

∫
Ω

f(x, u)v − α
∫

∂Ω
(γ0u)(γ0v)ds , ∀v ∈ H1(Ω) .

Proof. Let u be a solution to problem (P), then
∫

Ω

(−∆u)v =

∫

Ω

f(x, u(x))v , ∀v ∈ H1(Ω) .

Using the Green Formula (2.2) we obtain
∫

Ω

∇u · ∇v − 〈γ1u, γ0v〉 =

∫

Ω

f(x, u)vdx , ∀v ∈ H1(Ω) .

Now, taking the boundary condition, u is a solution to problem (Q).
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If u is a solution to the problem (Q) then
∫

Ω

∇u.∇v =

∫

Ω

f(x, u)v − α

∫

∂Ω

(γ0u)(γ0v)ds , ∀v ∈ H1(Ω) , (3.17)

thus ∫

Ω

∇u.∇v =

∫

Ω

f(x, u)v , ∀v ∈ C∞
c (Ω) . (3.18)

By Theorem 3.2 u ∈ H2(Ω), and using the Green formula, we obtain

−
∫

Ω

v∆u =

∫

Ω

f(x, u)v , ∀v ∈ C∞
c (Ω) ,

then −∆u = f(x, u(x)).
Changing f for −∆u in (3.17) and using the Green formula, we obtain

γ1u + αγ0u = 0 .

�X

4. Applications

The purpose of this section is to give the first step for the proof of the existence
of solutions of our the problem (P) (see [4]), which consists in expressing the
Sobolev space H1(Ω) as the orthogonal sum of two subspaces. To achieve this
goal we consider the problem (P) with f(x, u(x)) = µu(x) where µ is a parame-
ter. Making use of spectral analysis of compact symmetric operator, we obtain
the existence of eigenvalues and by virtue of theorems 3.2 and 3.3, we establish
some properties of the first eigenvalue and its associated eigenfunctions.

4.1. Existence of eigenvalues.

Theorem 4.1. Let α be a real parameter, α 6= 0. The eigenvalue problem
{

−∆u = µu , in Ω ,
γ1u + αγ0u = 0 , on ∂Ω ,

(4.1.1)

has an increasing sequence of eigenvalues. In the case α < 0 the first eigenvalue
is negative, and in the case α > 0 the first eigenvalue is positive.

Proof. 1) Case α < 0. In this case, to establish the existence of the eigenvalues
of the problem (4.1.1) first we introduce an scalar product (., .)k in H1(Ω). To
make this, first we have that given ε > 0, there exists a constant C(ε) > 0 such
that

α

∫

∂Ω

(γ0u)2ds ≥ αε

∫

Ω

|∇u|2 + αC(ε)

∫

Ω

u2 , ∀u ∈ H1(Ω) . (4.1.2)

Choosing k and ε such that

0 < ε < − 1

α
and k > −αC(ε) , (4.1.3)
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we define the symmetric bilinear form in H1(Ω) in this way for u, v ∈ H1(Ω):

ak[u, v] =

∫

Ω

∇u · ∇v + α

∫

∂Ω

(γ0u)(γ0v)ds + k

∫

Ω

uv . (4.1.4)

This defines an scalar product and we denote it by (., .)k. In fact, the form
ak[., .] is coercive: using (4.1.2) we have ak[u, u] ≥ δ‖u‖2, ∀u ∈ H1(Ω), with δ =
min{1+αε, k+αC(ε)}. On the other hand, using the inequality ‖γ0u‖L2(∂Ω) ≤
c1‖u‖, ∀u ∈ H1(Ω), and the Schwarz inequality we have |ak[u, v]| ≤ c3‖u‖ ‖v‖,
where c3 = 1 + |α|c2

1 + k, i.e. ak[., .] is continuous.

We define for each u ∈ H1(Ω) a norm ‖u‖k =
√

(u, u)k. Then

δ‖u‖2 ≤ ‖u‖2
k ≤ c3‖u‖2 , ∀u ∈ H1(Ω) , (4.1.5)

i.e., the norm ‖ · ‖k is equivalent to the usual norm of H1(Ω).
With our k chosen in (4.1.3), the problem (4.1.1) is equivalent to

{
−∆u + ku = (µ + k)u , in Ω ,

γ1u + αγ0u = 0 , on ∂Ω .
(4.1.6)

We prove that the eigenvalues µ + k are positive. Let u be a weak solution of
(4.1.6), then

(u, v)k = (µ + k)

∫

Ω

uv , ∀v ∈ H1(Ω) . (4.1.7)

If moreover, u 6= 0 and v = u in (4.1.7) we get that µ + k > 0.
For fixed u ∈ H1(Ω), the map v →

∫
Ω

uv is a bounded linear functional in

H1(Ω),

∣∣∣∣
∫

Ω

uv

∣∣∣∣ ≤
∫

Ω

|u| |v| ≤ ‖u‖ ‖v‖ ≤ 1

δ
‖u‖k‖v‖k , ∀v ∈ H1(Ω) . (4.1.8)

So, by the Riesz-Frechet Representation Theorem, there is an element in H1(Ω)
that we denote by Tu, such that

∫

Ω

uv = (Tu, v)k , ∀v ∈ H1(Ω) . (4.1.9)

Thus (4.1.9) defines the operator T : H1(Ω) → H1(Ω) that is linear and sym-
metric: (Tu, v)k = (u, T v)k, ∀u, v ∈ H1(Ω). By virtue of (4.1.8) and (4.1.9)
we have ‖Tu‖k ≤ 1

δ ‖u‖k, ∀u ∈ H1(Ω), i.e. T is bounded. Now, we are going
to prove that the operator T is compact. Let {un} be a bounded sequence in
H1(Ω). By the theorem on compact imbedding of H1(Ω) in L2(Ω) there exists
a subsequence {unj

} and a element u in H1(Ω) such that

unj
⇀ u in H1(Ω) , and unj

→ u in L2(Ω) , when j → ∞ .
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By (4.1.9) and the definition of the operator T , we have

∥∥Tunj
− Tu

∥∥2

k
=

∫

Ω

(unj
− u)T (unj

− u)

≤ ‖unj
− u‖L2(Ω)‖T (unj

− u)‖L2(Ω)

≤ ‖unj
− u‖L2(Ω)‖T (unj

− u)‖

≤ 1√
δ
‖unj

− u‖L2(Ω)‖T (unj
) − T (u)‖k .

Then

lim
j→∞

∥∥Tunj
− Tu

∥∥
k

= 0 .

Let us see that the eigenvalues of problem (4.1.6) are the inverse eigenvalues
of the operator T . In fact, if u is a weak solution of (4.1.6), then by (4.1.7)
and (4.1.9) we obtain

Tu =

(
1

µ + k

)
u. (4.1.10)

Reciprocally, if u satisfies (4.1.10) then u verifies (4.1.7) by (4.1.9).
Our next step is to establish the existence of eigenvalues of operator T .

Since,
1

µ1 + k
:= sup {(Tu, u)k : ‖u‖k = 1} > 0 , (4.1.11)

then by [6, Lemma 1.1, p. 36], there exists ϕ1 ∈ H1(Ω) with ‖ϕ1‖k = 1 such
that

(Tϕ1, ϕ1)k =
1

µ1 + k
, Tϕ1 =

(
1

µ1 + k

)
ϕ1 . (4.1.12)

On the other hand, we have

1

µ1 + k
= sup {(Tu, u)k : ‖u‖k = 1}

= sup
u6=0

(
T

u

‖u‖k
,

u

‖u‖k

)

k

(4.1.13)

= sup
u6=0

∫
Ω u2

‖u‖2
k

,

hence

µ1 + k = inf
u6=0

u∈H1(Ω)

‖u‖2
k∫

Ω
u2

. (4.1.14)

Then

µ1 = inf
u6=0

u∈H1(Ω)

∫
Ω
|∇u|2 + α

∫
∂Ω

(γ0u)2ds∫
Ω u2

, (4.1.15)
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in particular, for the constant function ϕ(x) = b, ∀x ∈ Ω, b 6= 0, we have

µ1 ≤
∫
Ω |∇ϕ|2 + α

∫
∂Ω(γ0ϕ)2ds∫

Ω
ϕ2

=
αb2|∂Ω|n−1

b2|Ω| < 0 ,

where |∂Ω|n−1 denotes the (n−1)-dimensional Lebesgue’s measure ∂Ω and |Ω|
the Lebesgue’s measure n-dimensional of Ω.

Let ϕ1, · · · , ϕj−1 be the j − 1 eigenfunctions that correspond to the j − 1
eigenvalues of T . We define

1

µj + k
:= sup{(Tu, u)k : ‖u‖k = 1, u⊥ϕ1, · · · , ϕj−1} > 0 , (4.1.16)

then by [6, Proposition 1.3, p. 37], there exists ϕj ∈ H1(Ω) with ‖ϕj‖k = 1
such that

(Tϕj , ϕj)k =
1

µj + k
, Tϕj =

1

µj + k
ϕj . (4.1.17)

Thus, the eigenvalues of Problem (4.1.6) are positive and form the sequence
0 < µ1 + k ≤ µ2 + k ≤ · · · , then the eigenvalue problem (4.1.1) has a sequence

−k < µ1 ≤ µ2 ≤ µ3 ≤ · · · . (4.1.18)

2) Case α > 0. In this case, the bilinear form

ak[u, v] =

∫

Ω

∇u · ∇v + k

∫

Ω

uv + α

∫

∂Ω

(γ0u)(γ0v)ds , u, v ∈ H1(Ω) ,

is coercive for every value of the constant k > 0. In fact

ak[u, u] ≥
∫

Ω

|∇u|2 + k

∫

Ω

u2 ≥ m‖u‖2 ,

where m = min{1, k}.
On the other hand, ak[., .] is continuous, hence |ak[u, v]| ≤ m2‖u‖ ‖v‖, where

m2 = 1 + k + αc2
1. This implies

m‖u‖2 ≤ ‖u‖2
k ≤ m2‖u‖2 , ∀u ∈ H1(Ω) , (4.1.19)

i.e., the norm ‖.‖k is equivalent to the usual norm of H1(Ω).
The procedure to determine the existence of the eigenvalues of Problem

(4.1.1) with α > 0 continues in analogous form to the case α < 0. Considering
the eigenvalue problem (4.1.6) with an arbitrary positive constant k, we find
that it has a sequence of eigenvalues β1 + k ≤ β2 + k ≤ β3 + k ≤ · · · . Hence

β1 ≤ β2 ≤ β3 ≤ · · · (4.1.20)

are the eigenvalues of problem (4.1.1).
The first eigenvalue β1 is positive. In fact, by virtue of (4.1.15) we have

β1 = inf
u6=0

u∈H1(Ω)

∫
Ω
|∇u|2 + α

∫
∂Ω

(γ0u)2ds∫
Ω u2

≥ 0 , (4.1.21)
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if β1 = 0, let ϕ be an eigenfunction associated to β1. Then

0 =

∫
Ω
|∇ϕ|2 + α

∫
∂Ω

(γ0ϕ)2ds∫
Ω ϕ2

,

thus γ0ϕ = 0, ϕ ∈ H1
0 (Ω) and |∇ϕ| = 0. Then ϕ ≡ 0 which is absurd because

‖ϕ‖k = 1.

�X

4.2. The first eigenvalue and its associated eigenfunctions.

Theorem 4.2. If ϕ is an eigenfunction of problem (4.1.1) associated to the
first eigenvalue λ1, then ϕ ∈ C∞

(
Ω

)
.

Proof. By Theorem 3.3 ϕ verifies
∫

Ω

∇ϕ · ∇v + α

∫

∂Ω

γ0ϕ · γ0v = µ1

∫

Ω

ϕv , ∀v ∈ H1(Ω) . (4.1.22)

Using Theorem 3.2 with f(x, ϕ(x)) = λ1ϕ(x) we have ϕ ∈ H2(Ω), γ0ϕ ∈
H2−1/2(∂Ω). Then there exists w1 ∈ H3(Ω) (Trace Theorem) such that γ1w1 =
−αγ0ϕ. By the Green formula (2.2) we have

∫

Ω

∇ϕ.∇v =

∫

Ω

{λ1ϕ + ∆w1}v +

∫

Ω

∇w1 · ∇v .

Making h = ϕ − w1 and G = λ1ϕ + ∆w1, we obtain
{ ∫

Ω ∇h · ∇v =
∫
Ω Gv , ∀v ∈ H1(Ω) ,

γ1(h) = 0 ,
(4.1.23)

thus, G ∈
{
H1(Ω); N∗

}
. By Theorem 2.5 there exists h̃ ∈ H3(Ω) such that
{

−∆h̃ = G in Ω ,
∂h̃
∂n = 0 on ∂Ω .

(4.1.24)

Multiplying the first equality in (4.1.24) by v and integrating we obtain
∫

Ω

∇h̃.∇v =

∫

Ω

Gv , ∀v ∈ H1(Ω) . (4.1.25)

Subtracting (4.1.25) from the first equation in (4.1.23) we have
∫

Ω

∇(h − h̃) · ∇v = 0 , ∀v ∈ H1(Ω) .

Making v = h−h̃ we obtain
∫
Ω

∣∣∣∇(h − h̃)
∣∣∣
2

= 0, then ∇
(
h − h̃

)
= 0, h−h̃ = M

for some constant M , then ϕ = w1 + h̃ + M ∈ H3(Ω). Since ϕ ∈ H3(Ω) then
γ0ϕ ∈ H3−1/2(∂Ω). Using again Trace Theorem there exists w2 ∈ H4(Ω) such
that γ1w2 = −αγ0ϕ and proceeding as in the above case, we conclude that
ϕ ∈ H4(Ω). Continuing on this way we obtain that ϕ ∈ Hm(Ω) for any integer
m ≥ 0. Thus, for Dβϕ there exists an integer mβ such that 2mβ > n and
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Dβϕ ∈ Hmβ (Ω). Then by the inclusion of Sobolev and smoothness of the

boundary, Dβϕ ∈ C
(
Ω

)
. �X

Theorem 4.3. The first eigenvalue of problem (4.1.1) is simple.

Proof. i) We claim that if ϕ is an eigenfunction associated to the first eigenvalue
λ1, then ϕ does not change sign. Looking for by contradiction, suppose that ϕ
changes sign. Then ϕ verifies the equality

(ϕ, ϕ)k = (λ1 + k)

∫

Ω

ϕ2 . (4.1.26)

Writing the function ϕ in the form ϕ(x) = ϕ+(x) + ϕ−(x), where ϕ+(x) =
maxx∈Ω{ϕ(x), 0} and ϕ−(x) = minx∈Ω{ϕ(x), 0}, the left member of (4.1.26)
can be written

(ϕ, ϕ)k =
(
ϕ+, ϕ+

)
k

+
(
ϕ−, ϕ−

)
k
,

because ϕ+ and ϕ− are orthogonals, i.e.

(
ϕ+, ϕ−

)
k

=

∫

Ω

∇ϕ+ · ∇ϕ− + k

∫

Ω

ϕ+ · ϕ− + α

∫

∂Ω

γ0ϕ
+ · γ0ϕ

−ds

= 0 .

Indeed, we have
∫
Ω ∇ϕ+ · ∇ϕ− = 0 and

∫
Ω ϕ+ϕ− = 0. Furthermore, by

Theorem 4.2, ϕ ∈ C
(
Ω

)
. Then γ0ϕ

+ and γ0ϕ
− are restrictions of ϕ+ and ϕ−

on ∂Ω, so ∫

∂Ω

γ0ϕ
+ · γ0ϕ

−ds =

∫

∂Ω

ϕ+ · ϕ−ds = 0 .

Let b1 = (ϕ+, ϕ+)k and b2 = (ϕ−, ϕ−)k, then b1 > 0 and b2 > 0. On the other
hand, ∫

Ω

ϕ2 =

∫

Ω

(
ϕ+

)2
+

∫

Ω

(
ϕ−

)2
= a1 + a2.

Then using the above notation we can write (4.1.26) in the following way:

b1 + b2 = (λ1 + k)(a1 + a2) . (4.1.27)

From (4.1.27) and (4.1.14) we have

1

λ1 + k
=

a1 + a2

b1 + b2
= sup

u6=0

∫
Ω u2

‖u‖2
k

. (4.1.28)

For the numbers a1

b1
, a2

b2
, and a1+a2

b1+b2
, we have the unique possibility a1+a2

b1+b2
=

a1

b1
= a2

b2
. So

1

λ1 + k
=

∫
Ω (ϕ+)

2

‖ϕ+‖2
k

=

∫
Ω (ϕ−)

2

‖ϕ−‖2
k

. (4.1.29)

Using (4.1.13), the previous equalities imply that ϕ+ and ϕ− are eigenfunctions
corresponding to λ1. Then ∀v ∈ H1(Ω) we have

λ1

∫

Ω

ϕ+ · v =

∫

Ω

∇ϕ+ · ∇v + α

∫

∂Ω

γ0ϕ
+ · γ0v , (4.1.30)
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By Theorem 4.2, we have that ϕ+ ∈ C∞
(
Ω

)
.

On the other side we observe that:

−∆ϕ+ + kϕ+ = (λ1 + k)ϕ+ ≥ 0 , in Ω .

Since ϕ changes sign in Ω, there exists x0 inside of Ω such that ϕ+(x0) = 0
which is its minimum value in Ω. Then by the Strong Maximum Principle ϕ+

is constant in Ω, thus ϕ+ = 0 in Ω, which is absurd. Therefore ϕ can not
change sign in Ω.

ii) Next we prove that the geometric multiplicity of λ1 is one. Let ϕ1 and
ϕ2 be two eigenfunctions associate to the eigenvalue λ1. By step i), for each
t ∈ R the eigenfunction ϕ1 + tϕ2 has definite sign in Ω, so the sets A = {t ∈
R : ϕ1 + tϕ2 ≥ 0 , in Ω} and B = {t ∈ R : ϕ1 + tϕ2 ≤ 0 , in Ω} are non empty,
closed and A∪B = R. Since the set of real number R is connected, there exists
t ∈ A ∩ B, t 6= 0 such as ϕ1 + tϕ2 = 0, i.e. ϕ1 and ϕ2 are linearly dependent.
Therefore, the eigenspace associate to the eigenvalue λ1 is generated by a single
eigenfunction, that we denote by ϕ1.

iii) The algebraic multiplicity of λ1 is one, (λ1 is simple). Let

N(λ1I + ∆) = {u : λ1u + ∆u = 0 and γ1u + αγ0u = 0} ,

N(λ1I + ∆)2 = {u : (λ1I + ∆)(λ1u + ∆u) = 0 and γ1u + αγ0u = 0} .

It is clear that N(λ1I +∆) ⊂ N(λ1I +∆)2. Next we show that N(λ1I +∆)2 ⊂
N(λ1I + ∆). Indeed, let ϕ ∈ N(λ1I + ∆)2 be, then λ1ϕ + ∆ϕ ∈ N(λ1I + ∆),
λ1ϕ + ∆ϕ = tϕ1 for some real t.

By the other side, we have

t(ϕ1, ϕ1)k = (tϕ1, ϕ1)k = (λ1ϕ + ∆ϕ, ϕ1)k

= λ1(ϕ, ϕ1)k + (∆ϕ, ϕ1)k

= λ1(ϕ, ϕ1)k + (λ1 + k)

∫

Ω

ϕ1∆ϕ, (by (4.1.7))

= (λ1 − λ1)(ϕ, ϕ1)k = 0 .

Hence t(ϕ1, ϕ1)k = 0, then t = 0. Thus λ1ϕ+∆ϕ = 0 and ϕ ∈ N(λ1I+∆). �X

4.3. Orthogonal sum. Finally we express the Sobolev space H1(Ω) as the
orthogonal sum of two subspaces, where an addend has finite dimension. In
the case α < 0, from (4.1.18) and Theorem (4.3), the sequence of eigenvalues
has the form

−k < µ1 < µ2 ≤ µ3 ≤ · · · (4.2.1)

Let X1 be the space associated to the first eigenvalue µ1 and X2 = X⊥
1

the orthogonal complement of X1 with respect to the inner product of (·, ·)k

defined in (4.1.4). Then we have

H1(Ω) = X1 ⊕ X2 , (4.2.2)
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and ∫

Ω

|∇ϕ|2 + α

∫

∂Ω

(γ0ϕ)2ds = λ1

∫

Ω

ϕ2 , ∀ϕ ∈ X1 . (4.2.3)

In the case α > 0, from (4.1.20) and Theorem (4.3), the sequence of eigen-
values has the form

β1 < β2 ≤ β3 · · · (4.2.4)

Let Y1 be the space associate to β1 and Y2 = Y ⊥
1 the orthogonal complement

of Y1 with respect to the inner product (·, ·)k, but here k > 0 is an arbitrary
constant. Then

H1(Ω) = Y1 ⊕ Y2 , (4.2.5)

and ∫

Ω

|∇ϕ|2 + α

∫

∂Ω

(γ0ϕ)2ds = β1

∫

Ω

ϕ2 , ∀ϕ ∈ Y1 . (4.2.6)

by virtue of Theorem 4.3, the subspaces X1 and Y1 have dimension one.
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