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Abstract. In this paper we compute the square root of the generalized squared

total angular momentum operator J for a Dirac particle in the Kerr-Newman

metric. The separation constant λ arising from the Chandrasekahr separation

ansatz turns out to be the eigenvalue of J . After proving that J is a symmetry

operator, we show the completeness of Chandrasekhar ansatz for the Dirac

equation in oblate spheroidal coordinates and derive an explicit formula for the

time evolution operator e−itH .
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Resumen. En este trabajo derivamos la ráız cuadrada del operador generali-

zado del momento angular para una part́ıcula de Dirac en la métrica de Kerr-

Newman. La constante de separación λ introducida por el ansatz de Chan-

drasekhar resulta ser el valor propio de J . Después de haber mostrado que J es

un operador de simetŕıa, probamos la completitud del ansatz de Chandrasekhar

para la ecuación de Dirac en coordenadas esferoidales oblongas y derivamos una

expresión anaĺıtica para el operador de evolución temporal e−itH .

Palabras y frases clave. Ecuación de Dirac, métrica de Kerr-Newman, relatividad

general.
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184 DAVIDE BATIC & HARALD SCHMID

1. Introduction

In the Newman-Penrose formalism [16] in two-component spinor notation, the
Dirac equation coupled to a general gravitational field and a 4-vector field V

is given in Planck units ~ = c = G = 1 by [18]

(∇AA
′ + ieVAA

′ )PA + iµ∗Q
∗
A

′ = 0 (1)

(∇AA
′ − ieVAA

′ )QA + iµ∗P
∗
A

′ = 0, (2)

where ∇AA
′ is the symbol for covariant differentiation, e is the charge or cou-

pling constant of the Dirac particle to the vector field V, µ∗ is the particle
mass me divided by

√
2 and PA and QA are the two-component spinors rep-

resenting the wave function. Here, the asterisk used as a superscript denotes
complex conjugation. Notice that the factor 2−

1
2 in the definition of the mass

µ∗ is due to the fact, that the Pauli matrices as defined in the Newman-Penrose
formalism differ from their usual definitions by the factor

√
2. Moreover, the

vector potential enters with opposite signs in (1) and (2) in order that gauge
invariance be preserved, since the spinors in the above equations are related by
complex conjugation.

According to [16], we denote with ξA
a a basis for the spinor space and with

ξ∗
a
′

A
′

a basis for the conjugate spinor space. To the spinor basis we can associate

at each point of the space-time a null tetrad (l,n,m,m∗) obeying the orthog-
onality relations l ·n = 1, m ·m∗ = −1 and l ·m = l ·m∗ = n ·m = n ·m∗ = 0.
Furthermore, the covariant derivative of a spinor ξA can be expressed in terms
of its components along the spinor basis ξA

a as follows [16], [19]

ξA
a ξ

A
′

a
′ ξB

b ∇AA
′ ξB = ∂aa

′ ξb + Γb
caa

′ ξc,

where Γb
caa

′ are the spin coefficients and

∂00′ := D = lb
∂

∂xb
, ∂11′ := ∆̃ := nb ∂

∂xb
, (3)

∂01′ := δ = mb ∂

∂xb
, ∂10′ := δ∗ := m∗b ∂

∂xb
, (4)

are the directional derivatives along l, n, m, and m∗. Following [18] and letting

P 0 =: F1, P 1 =: F2, Q∗1
′

=: G1, Q∗0
′

=: −G2,

equations (1) and (2) can be brought into the form

ODΨ = 0 , (5)

where OD is given by

OD =




Ime
B1

B2 Ime


 , (6)
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where

Ime
=




−ime 0

0 −ime


 ,

B1 =




∆̃ + µ∗ − γ∗ + ieVbn
b −

(
δ∗ + β∗ − τ∗ + ieVbm

b
)

−
(
δ + π∗ − α∗ + ieVbm

b
)

D + ǫ∗ − ρ∗ + ieVbl
b


 ,

B2 =




D + ǫ− ρ+ ieVbl
b δ∗ + π − α+ ieVbm

∗b

δ + β − τ + ieVbm
∗b ∆̃ + µ− γ + ieVbn

b


 ,

and Ψ = (F1, F2, G1, G2)
T . In what follows, we consider the Dirac equation in

the Kerr-Newman metric, i.e. in the presence of a rotating charged black hole.
In Boyer-Lindquist coordinates (t, r, ϑ, ϕ) with r > 0, 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π
the Kerr-Newman metric is given by [4]

ds2 =
∆

Σ

(
dt− a sin2 ϑdϕ

)2 − Σ

(
dr2

∆
+ dϑ2

)
− sin2 ϑ

Σ

[
adt−

(
r2 + a2

)
dϕ

]2

(7)
where

Σ := Σ(r, θ) = r2 + a2 cos2 θ , ∆ := ∆(r) = r2 − 2Mr + a2 +Q2 ,

where M , a and Q are the mass, the angular momentum per unit mass and the
charge of the black hole, respectively. In the non-extreme case M2 > a2 +Q2

the function ∆ has two distinct zeros, namely,

r0 = M −
√
M2 − a2 −Q2 and r1 = M +

√
M2 − a2 −Q2,

the first one corresponding to the Cauchy horizon and the second to the event
horizon, while in the extreme case M2 = a2 + Q2 Cauchy horizon and event
horizon coincide, since ∆ has two double roots at r∗1 = M . Throughout our
work we will consider the case M2 > a2 + Q2 and restrict our attention to
the region r > r1 outside the event horizon. Hence, ∆ will be always positive.
Notice that by setting M = Q = 0 in (7) the Kerr-Newman metric goes over
into the Minkowski metric in oblate spheroidal coordinates (OSC), namely

ds2 = dt2 − Σ

∆̂
dr2 − ∆̂

(
Σ

∆̂
dϑ2 + sin2 ϑdϕ2

)
, (8)

with ∆̂ = r2 + a2. In fact, by means of the coordinate transformation

x =
√
r2 + a2 sinϑ cosϕ , y =

√
r2 + a2 sinϑ sinϕ , z = r cosϑ . (9)

(8) can be reduced to the Minkowski metric in cartesian coordinates. Moreover,
in the OSC the surfaces r =const are confocal ellipsoids, while the surfaces
ϑ =const are represented by hyperbolids of one sheet, confocal to the ellipsoids.
Since sgn(z) =sgn(cosϑ) with ϑ ∈ [0, π], the surface ϑ =const is actually
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186 DAVIDE BATIC & HARALD SCHMID

given by a half-hyperboloid, truncated at its waist and laying in the half-space
z ≶ 0 according as ϑ ≶ π

2 . At this point it is interesting to observe that at

r = 0 the ellipsoids degenerate to the disk x2 + y2 = a2 sin2 ϑ, whose boundary
{(r, ϑ, ϕ)|r = 0, ϑ = π

2 } (and hence Σ = 0) corresponds to the set of points
at which the Kerr-Newman metric becomes truly singular. Furthermore, the
surfaces ϕ =const look like bent planes, which are approximately vertical for
large r, but flatten out and become horizontal at the edge of the disk. For
further details we refer to [9] and [3].

In order to write out explicitely (5) for the Kerr-Newman metric in Boyer-
Lindquist coordinates, we make use of the Kinnersley tetrad [13], namely

lb =

(
r2 + a2

∆
, 1, 0,

a

∆

)
(10)

nb =
1

2Σ

(
r2 + a2,−∆, 0, a

)
(11)

mb =
1√

2(r + ia cosϑ)
(ia sinϑ, 0, 1, i cscϑ) . (12)

Then, the non vanishing spin coefficients in (6) are [2]

ρ = − 1
r−ia cos ϑ

, β = ρ∗ cotϑ

2
√

2
, µ = ∆ρ

2Σ ,

π = ia√
2
ρ2 sinϑ, τ = − ia sin ϑ√

2Σ
, γ = µ+ r−M

2Σ ,

and

α = π − β∗ =
ρ√
2

(
iaρ sinϑ+

1

2
cotϑ

)
,

where ρ∗ denotes the complex conjugate of ρ. Notice that while the vanishing
of ǫ is due to the particular choice of the tetrad (10), (11), (12), the other spin
coefficients κ, σ, λ and ν are zero according to the Goldberg-Sachs theorem
[11]. By means of (3) and (4) the directional derivatives along the tetrad are
computed to be

D = D0 , D0 : = ∂
∂r

+ 1
∆

[
(r2 + a2) ∂

∂t
+ a ∂

∂ϕ

]
,

∆̃ = −∆D̂0

2Σ , D̂0 : = ∂
∂r

− 1
∆

[
(r2 + a2) ∂

∂t
+ a ∂

∂ϕ

]
,

δ = − ρ∗L̂0√
2
, L0 : = ∂

∂ϑ
− i

(
a sinϑ ∂

∂t
+ cscϑ ∂

∂ϕ

)
,

δ∗ = − ρL0√
2
, L̂0 : = ∂

∂ϑ
+ i

(
a sinϑ ∂

∂t
+ cscϑ ∂

∂ϕ

)
.

From [15] we know that the vector potential for a rotating charged black hole
is

Vb =
1

Σ
(−Qr, 0, 0, aQr sin2 ϑ) ,
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and therefore

Vbl
b = −rQ

∆
, Vbn

b = −rQ
2Σ

, Vbm
b = Vbm

∗b = 0 .

Notice that the vector potential V is stationary and axialsymmetric. Regarding
the elements of the matrix operator OD, we find that

∆̃ + µ∗ − γ∗ + ieVbn
b = − ∆√

2Σ

(
D̂0 +

r −M

∆
+ i

eQr

∆

)

−
(
δ∗ + β∗ − τ∗ + ieVbm

b
)

= ρ

(
L0 +

1

2
cotϑ+ iaρ∗ sinϑ

)

−
(
δ + π∗ − α∗ + ieVbm

b
)

= ρ∗
(
L̂0 +

1

2
cotϑ

)

D + ǫ∗ − ρ∗ + ieVbl
b =

√
2

(
D0 − ρ∗ − i

eQr

∆

)

D + ǫ− ρ+ ieVbl
b =

√
2

(
D0 − ρ− i

eQr

∆

)

δ∗ + π − α+ ieVbm
∗b = −ρ

(
L0 +

1

2
cotϑ

)

δ + β − τ + ieVbm
∗b = −ρ∗

(
L̂0 +

1

2
cotϑ− iaρ sinϑ

)

∆̃ + µ− γ + ieVbn
b = − ∆√

2Σ

(
D̂0 +

r −M

∆
+ i

eQr

∆

)
.

According to [5] we may replace the Dirac equation ODΨ(t, r, ϑ, ϕ) = 0 by
a modified but equivalent equation

Wψ̂(t, r, ϑ, ϕ) = 0 with W = ΓS−1ODS, (13)

where ψ̂ = S−1Ψ = (F̂1 F̂2 Ĝ1 Ĝ2)
T and Γ and S are non singular 4 × 4

matrices, whose elements may depend on the variables r and ϑ.

2. The decomposition of the operator W
In this section we show that it is possible to find non singular matrices S
and Γ such that the operator W decomposes into the sum of an operator
containing only derivatives respect to the variables t, r and ϕ and of an operator
involving only derivatives respect to t, ϑ and ϕ. There are several choices of S
and Γ, which accomplish this. Here, we look for matrices S and Γ such that
theysimplify later on the transformation of equation (13) into its Schrödinger
form.

Lemma 2.1. Let r be positive with r > r1. There exist a non singular 4 × 4
matrix

S = c diag
(
−ρ, 2 1

2 ∆− 1
2 , 2

1
2 ∆− 1

2 ,−ρ∗
)
, det(S) =

c4

Σ∆
,
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188 DAVIDE BATIC & HARALD SCHMID

with 0 6= c ∈ C and a non singular 4 × 4 matrix

Γ = diag
(
ρ∗−1

,−ρ∗−1
,−ρ−1, ρ−1

)
, det(Γ) = Σ ,

such that

W = W(t,r,ϕ) + W(t,ϑ,ϕ) (14)

with

rclW(t,r,ϕ) =




imer 0
√

∆D+ 0

0 −imer 0
√

∆D−
√

∆D− 0 −imer 0

0
√

∆D+ 0 imer




, (15)

W(t,ϑ,ϕ) =




−ame cosϑ 0 0 L+

0 ame cosϑ −L− 0

0 L+ −ame cosϑ 0

−L− 0 0 ame cosϑ




(16)

where

D± : =
∂

∂r
∓ 1

∆

[
(r2 + a2)

∂

∂t
+ a

∂

∂ϕ
− ieQr

]
,

L± : =
∂

∂ϑ
+

1

2
cotϑ∓ i

(
a sinϑ

∂

∂t
+ cscϑ

∂

∂ϕ

)
.

Proof. Let us define the matrix

S := diag(h(r, ϑ),Λ(r, ϑ), σ(r, ϑ), γ(r, ϑ)) ,

such that det(S) 6= 0 and h, Λ, σ, γ at least C1((r1,+∞)× [0, π]). The equation

ODSψ̂ = 0 gives rise to the system

0 = −imehF̂1 +
(
∆̃ + µ∗ − γ∗ + ieVbn

b
)
σĜ1 −

(
δ∗ + β∗ − τ∗ + ieVbm

b
)
γĜ2 ,

(17)

0 = −imeΛF̂2 −
(
δ + π∗ − α∗ + ieVbm

b
)
σĜ1 +

(
D + ǫ∗ − ρ∗ + ieVbl

b
)
γĜ2 ,

(18)

0 = −imeσĜ1 +
(
D + ǫ− ρ+ ieVbl

b
)
hF̂1 +

(
δ∗ + π − α+ ieVbm

∗b
)

ΛF̂2 ,

(19)

0 = −imeγĜ2 +
(
δ + β − τ + ieVbm

∗b
)
hF̂1 +

(
∆̃ + µ− γ + ieVbn

b
)

ΛF̂2 .

(20)
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Starting with (17), we find that

(
∆̃ + µ∗ − γ∗ + ieVbn

b
)
σĜ1 = − ∆√

2Σ

(
σD+ +

∂σ

∂r
+
r −M

∆
σ

)
Ĝ1 , (21)

−
(
δ∗ + β∗ − τ∗ + ieVbm

b
)
γĜ2 = ρ

(
γL+ +

∂γ

∂ϑ
+ iaρ∗γ sinϑ

)
Ĝ2 , (22)

with

D+ : =
∂

∂r
− 1

∆

[
(r2 + a2)

∂

∂t
+ a

∂

∂ϕ
− ieQr

]
,

L+ : =
∂

∂ϑ
+

1

2
cotϑ− i

(
a sinϑ

∂

∂t
+ cscϑ

∂

∂ϕ

)
. (23)

In order to obtain W as in the statement of this Lemma, we impose in (21)
that

∂σ

∂r
+
r −M

∆
σ = 0,

whose solution is given by σ(r, ϑ) = σ̃(ϑ)∆− 1
2 with σ̃(ϑ) 6= 0 for every ϑ ∈ [0, π],

while in (22) we require that

∂γ

∂ϑ
+ iaρ∗ sinϑ γ = 0,

whose solution is γ(r, ϑ) = −γ̃(r)ρ∗ with γ̃(r) 6= 0 for every r ∈ (r1,+∞).
Hence, (21) and (22) simplify to

(
∆̃ + µ∗ − γ∗ + ieVbn

b
)
σĜ1 = −

√
2∆

1
2 σ̃(r)

2Σ
D+Ĝ1 (24)

−
(
δ∗ + β∗ − τ∗ + ieVbm

b
)
γĜ2 = − γ̃(r)

Σ
L+Ĝ2. (25)

Regarding (18), we have

−
(
δ + π∗ − α∗ + ieVbm

b
)
σĜ1 =

ρ∗

∆
1
2

(
σ̃L− +

dσ̃

dϑ

)
Ĝ1 , (26)

(
D + ǫ∗ − ρ∗ + ieVbl

b
)
γĜ2 =

√
2

(
γD− +

∂γ

∂r
− ρ∗γ

)
Ĝ2 , (27)

where

D− : =
∂

∂r
+

1

∆

[
(r2 + a2)

∂

∂t
+ a

∂

∂ϕ
− ieQr

]
,

L− : =
∂

∂ϑ
+

1

2
cotϑ+ i

(
a sinϑ

∂

∂t
+ cscϑ

∂

∂ϕ

)
.

By imposing σ̃(ϑ) = c3 with some constant 0 6= c3 ∈ C and observing that
γ(r, ϑ) = −c4ρ∗ with 0 6= c4 ∈ C sets the last two terms in the parenthesis on
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the r.h.s. of (27) equal to zero, (24), (25), (26) and (27) become

(
∆̃ + µ∗ − γ∗ + ieVbn

b
)
σĜ1 = −c3

√
2∆

1
2

2Σ
D+Ĝ1

−
(
δ∗ + β∗ − τ∗ + ieVbm

b
)
γĜ2 = −c4

Σ
L+Ĝ2

−
(
δ + π∗ − α∗ + ieVbm

b
)
σĜ1 =

c3ρ
∗

∆
1
2

L−Ĝ1

(
D + ǫ∗ − ρ∗ + ieVbl

b
)
γĜ2 = −c4

√
2ρ∗D−Ĝ2.

Concerning (19), a short computation gives

(
D + ǫ− ρ+ ieVbl

b
)
hF̂1 =

√
2

(
hD− +

∂h

∂r
− ρh

)
F̂1 (28)

(
δ∗ + π − α+ ieVbm

∗b
)

ΛF̂2 = −ρ
(

ΛL+ +
∂Λ

∂ϑ

)
F̂2 , (29)

and by similar reasonings as we did for (26) and (27), we obtain h(r, ϑ) =

−ρh̃(ϑ) and Λ(r, ϑ) = c2λ̃(r) with 0 6= c2 ∈ C. Finally, regarding (20), we get

(
δ + β − τ + ieVbm

∗b
)
hF̂1 = −ρ∗

(
hL− +

∂h

∂ϑ
− iaρ sinϑh

)
F̂1 (30)

(
∆̃ + µ− γ + ieVbn

b
)

ΛF̂2 = −
√

2∆

2Σ

(
ΛD+ +

∂Λ

∂r
+
r −M

∆
Λ

)
F̂2. (31)

By proceeding similarly as we did for (26) and (27), we find that Λ(r, ϑ) =

c2∆
− 1

2 and h(r, ϑ) = −c1ρ with 0 6= c1 ∈ C. Hence, (28), (29), (30) and (31)
become

(
D + ǫ− ρ+ ieVbl

b
)
hF̂1 = −c1

√
2ρD−F̂1(

δ∗ + π − α+ ieVbm
∗b

)
ΛF̂2 = −c2ρ∆− 1

2L+F̂2

(
δ + β − τ + ieVbm

∗b
)
hF̂1 =

c1

Σ
L−F̂1

(
∆̃ + µ− γ + ieVbn

b
)

ΛF̂2 = −c2
√

2∆
1
2

2Σ
D+F̂2.

Then, the operator S−1OS is computed to be

S−1OS =




−ime 0

√
2c3ρ∗∆

1
2

2c1
D+

c4ρ∗

c1
L+

0 −ime

c3ρ∗

c2
L− −

√
2c4ρ∗∆

1
2

c2
D−

−
√

2c1ρ∆
1
2

c3
D− − c2ρ

c3
L+ −ime 0

− c1ρ
c4

L−

√
2c2ρ∆

1
2

2c4
D+ 0 −ime




.
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By choosing a non singular 4 × 4 matrix Γ as follows

Γ = diag
(
ρ∗−1

,−ρ∗−1
,−ρ−1, ρ−1

)
,

it can be checked that W = ΓS−1OS is given by




imer−ame cos ϑ 0

√
2c3

2c1

√
∆D+

c4

c1
L+

0 −imer+ame cos ϑ − c3

c2
L− −

√
2c4

c2

√
∆D−

√
2c1

c3

√
∆D−

c2

c3
L+ −imer−ame cos ϑ 0

− c1

c4
L−

√
2c2

2c4

√
∆D+ 0 imer+ame cos ϑ




.

If we impose the following conditions

c4 =
c3√
2

=
c2√
2

= c1 =: c ,

we finally have

W =




imer−ame cos ϑ 0
√

∆D+ L+

0 −imer+ame cos ϑ −L−

√
∆D−

√
∆D− L+ −imer−ame cos ϑ 0

−L−

√
∆D+ 0 imer+ame cos ϑ




.

This completes the proof. �X

Clearly, the result obtained in Lemma 2.1 is also valid in the extreme case,
where ∆ is simply (r −M)2. Without loss of generality we set c = 1. The
next result, which holds for the Dirac equation in oblate spheroidal coordinates,
follows directly from Lemma 2.2 by setting M = Q = 0.

Corollary 2.2. Let r > 0. There exist a non singular 4 × 4 matrix

S(OSC) = diag
(
−ρ, 2 1

2 ∆̂− 1
2 , 2

1
2 ∆̂− 1

2 ,−ρ∗
)
, det

(
S(OSC)

)
=

1

Σ∆̂

and a non singular 4 × 4 matrix

Γ = diag
(
ρ∗−1

,−ρ∗−1
,−ρ−1, ρ−1

)
, det(Γ) = Σ

such that

W(OSC) = W(OSC)
(t,r,ϕ) + W(OSC)

(t,ϑ,ϕ) (32)
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with

W(OSC)
(t,r,ϕ) =




imer 0
√

∆̂D̃+ 0

0 −imer 0
√

∆̂D̃−
√

∆̂D̃− 0 −imer 0

0
√

∆̂D̃+ 0 imer




,

W(OSC)
(t,ϑ,ϕ) = W(t,ϑ,ϕ) , (33)

where W(t,ϑ,ϕ) is given by (16), ∆̂ = r2 + a2 and

D̃± :=
∂

∂r
∓

(
∂

∂t
+
a

∆̂

∂

∂ϕ

)
.

Notice that the angular part of the operator W(t,ϑ,ϕ) remains unchanged,
when we treat the Dirac equation in the Minkowski space-time with oblate
spheroidal coordinates. Turning back to the Kerr-Newman metric, it can easily
be checked that

[
W(t,r,ϕ),W(t,ϑ,ϕ)

]
= 0 , (34)

which also implies

[
W(t,r,ϕ),W

]
=

[
W(t,ϑ,ϕ),W

]
= 0 .

An analogous commutator holds for the Dirac equation in OSC. Going back to
Lemma 2.1, we observe that the matrix Γ splits into the sum

Γ = Γ(r) + Γ(ϑ) , (35)

where Γ(r) = diag(−r, r, r,−r) and Γ(ϑ) = iadiag(− cosϑ, cosϑ,− cosϑ, cosϑ)
satisfy the commutation relations

[
Γ(r),Γ(ϑ)

]
= 0 , (36)

[
Γ(r),W(t,ϑ,ϕ)

]
=

[
Γ(ϑ),W(t,r,ϕ)

]
= 0 . (37)

3. Construction of the symmetry operator J

In this section we will make use of Chandrasekhar separation Ansatz in order to
construct a new operator J for the Dirac equation in the Kerr-Newman metric.
We show that J commutes with the Dirac operator OD given by (6), thus being
a symmetry operator for OD. Moreover, the separation constant turns to be
eigenvalue of J , whose physical interpretation is that one of the square root of
the squared total angular momentum for a Dirac particle in the presence of a
charged rotating black hole.
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Taking into account that the geometry of our problem is axial symmetric
and considering stationary waves with energy ω, the (t, ϕ) dependence of the

spinors ψ̂ entering in (13) is given by

ψ̂(t, r, ϑ, ϕ) = eiωtei(k+ 1
2 )ϕψ̃(r, ϑ) (38)

where k ∈ Z is the azimuthal quantum number of the particle and ψ̃(r, ϑ) ∈ C4.

Inserting (38) in (13), it is straightforward to verify that ψ̃(r, ϑ) satisfies the
following equation (

W(r) + W(ϑ)

)
ψ̃ = 0 , (39)

where

W(r) =




imer 0
√

∆D̂+ 0

0 −imer 0
√

∆D̂−
√

∆D̂− 0 −imer 0

0
√

∆D̂+ 0 imer




, (40)

and

W(ϑ) =




−ame cosϑ 0 0 L̂+

0 ame cosϑ −L̂− 0

0 L̂+ −ame cosϑ 0

−L̂− 0 0 ame cosϑ




, (41)

with

D̂± := ∂
∂r

∓ i
K(r)

∆ , K(r) = ω(r2 + a2) − eQr +
(
k + 1

2

)
a ,

L̂± := ∂
∂ϑ

+ 1
2 cotϑ±Q(ϑ) , Q(ϑ) = aω sinϑ+

(
k + 1

2

)
cscϑ .

By defining ψ̃(r, ϑ) = (f1(r, ϑ), f2(r, ϑ), g1(r, ϑ), g2(r, ϑ))T , equation (39) gives
rise to the following systems of first order linear partial differential equations

√
∆D̂+g1 + imerf1 +

(
L̂+g2 − amef1 cosϑ

)
= 0

√
∆D̂−g2 − imerf2 −

(
L̂−g1 − amef2 cosϑ

)
= 0

√
∆D̂−f1 − imerg1 +

(
L̂+f2 − ameg1 cosϑ

)
= 0

√
∆D̂+f2 + imerg2 −

(
L̂−f1 − ameg2 cosϑ

)
= 0 .

Let us now define

f1(r, ϑ) = γ1(r)δ1(ϑ), f2(r, ϑ) = σ2(r)τ2(ϑ), (42)

g1(r, ϑ) = α1(r)β1(ϑ), g2(r, ϑ) = ǫ2(r)µ2(ϑ). (43)

Revista Colombiana de Matemáticas
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If we substitute (42) and (43) into the above system, it can be easily seen that
the requirement of separability implies

β1(ϑ) = δ1(ϑ) , ǫ2(r) = γ1(r) , µ2(ϑ) = τ2(ϑ) , α1(r) = σ2(r) .

According to the notation used in [6], we set

γ1(r) = R−(r), δ1(ϑ) = S−(ϑ) , σ2(r) = R+(r) , τ2(ϑ) = S+(ϑ) .

Hence, we get

f1(r, ϑ) = R−(r)S−(ϑ) , f2(r, ϑ) = R+(r)S+(ϑ) ,

g1(r, ϑ) = R+(r)S−(ϑ) , g2(r, ϑ) = R−(r)S+(ϑ) ,

and the system of partial differential equations become

(√
∆D̂+R+ + imerR−

)
S− +

(
L̂+S+ − ame cosϑS−

)
R− = 0 (44)

(√
∆D̂−R− − imerR+

)
S+ −

(
L̂−S− − ame cosϑS+

)
R+ = 0 (45)

(√
∆D̂−R− − imerR+

)
S− +

(
L̂+S+ − ame cosϑS−

)
R+ = 0 (46)

(√
∆D̂+R+ + imerR−

)
S+ −

(
L̂−S− − ame cosϑS+

)
R− = 0. (47)

Introducing four separation constants λ1, . . . , λ4 as follows

L̂+S+ − ame cosϑS− = −λ1S− (48)

L̂−S− − ame cosϑS+ = +λ2S+ (49)

L̂+S+ − ame cosϑS− = −λ3S− (50)

L̂−S− − ame cosϑS+ = +λ4S+ , (51)

we obtain from the set of equations (44), (45), (46) and (47)

√
∆D̂+R+ + imerR− = λ1R− (52)

√
∆D̂+R+ + imerR− = λ4R− (53)

√
∆D̂−R− − imerR+ = λ2R+ (54)

√
∆D̂−R− − imerR+ = λ3R+ . (55)

Clearly, the systems of equations (48),· · · ,(51) and (52),· · · ,(55) will be consis-
tent if

λ1 = λ2 = λ3 = λ4 =: λ .
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Notice that the decoupled equations give rise to the following two systems of
linear first order differential equations, namely




√
∆D̂− −imer − λ

imer − λ
√

∆D̂+







R−

R+


 = 0 , (56)




−L̂− λ+ ame cos θ

λ− ame cos θ L̂+







S−

S+


 = 0 . (57)

Starting from the systems of equations (48),· · · ,(51) and (52),· · · ,(55), we are
now able to construct a new operator J . Moreover, we will show that such
operator commutes with the Dirac operator OD.
By setting λ1 = λ2 = λ3 = λ4 =: λ in (48),· · · ,(51) and (52),· · · ,(55), multiply-
ing (48) by −rR− and (52) by ia cosϑS−, respectively, and summing together
the resulting equations, we find that

−iaρ∗ cosϑ
√

∆D̂+g1 + rρ∗L̂+g2 = λf1 , (58)

with ρ∗ = −(r+ ia cosϑ)−1. By means of the same method we obtain from the
couples of equations ((49),(53)) and ((51),(55))

−iaρ∗ cosϑ
√

∆D̂−g2 − rρ∗L̂−g1 = λf2 (59)

+iaρ cosϑ
√

∆D̂−f1 + rρL̂+f2 = λg1 (60)

+iaρ cosϑ
√

∆D̂+f2 − rρL̂−f1 = λg2 , (61)

with ρ = −(r − ia cosϑ)−1. Equations (58),· · · ,(61) give the entries of the

matrix operator Ĵ we are looking for, namely



0 0 −iaρ∗ cos ϑ
√

∆D̂+ rρ∗L̂+

0 0 −rρ∗L̂− −iaρ∗ cos ϑ
√

∆D̂−

iaρ cos ϑ
√

∆D̂− rρL̂+ 0 0

−rρL̂− iaρ cos ϑ
√

∆D̂+ 0 0



.

The operator Ĵ can be written in a more compact form as follows

Ĵ = Γ−1
(
Γ(ϑ)W(r) − Γ(r)W(ϑ)

)
. (62)

Clearly, a similar expression holds for the Dirac equation in OSC.

Lemma 3.1. J = SĴS−1 is a symmetry matrix operator for the Dirac operator
OD in the Kerr-Newman metric, i.e.

[OD, J ] = 0.
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Proof. From (13) we have OD = SΓ−1WS−1, which acts on the spinors Ψ and

we consider the operator J = SĴS−1 with Ĵ given by (62). It holds

ODJ = SΓ−1WΓ−1(Γ(ϑ)W(r) − Γ(r)W(ϑ))S
−1

JOD = SΓ−1(Γ(ϑ)W(r) − Γ(r)W(ϑ))Γ
−1WS−1

and therefore we obtain

[OD, J ] = SΓ−1PS−1

with

P := WΓ−1(Γ(ϑ)W(r) − Γ(r)W(ϑ)) − (Γ(ϑ)W(r) − Γ(r)W(ϑ))Γ
−1W .

Making use of the decomposition W = W(r) + W(ϑ) and of the commutation
relations (37), we obtain

P = W(ϑ)(Γ(r)Γ
−1 + Γ−1Γ(ϑ))W(r) −W(r)(Γ

−1Γ(r) + Γ(ϑ)Γ
−1)W(ϑ)

= W(ϑ)W(r) −W(r)W(ϑ) = 0

where in the last line we employed (34). �X

Concerning the physical meaning of J , it is interesting to observe that, when
a = 0 the angular eigenfunctions S±(ϑ) can be expressed in terms of the spin-

weighted spherical harmonics Y jk

± 1
2

(see for instance [17, 10]). According to [5],

we will call J the square root of the total squared angular momentum operator.
In [5] it was proved that the separation constant λ is the eigenvalue of the
square root of the total squared angular momentum for the Dirac equation in
any type-D vacuum space-time. Moreover, the occurrence of this operator and
therefore the separability of the Dirac equation in the Kerr-Newman metric
by means of Chandrasekhar ansatz arises from the presence of a Killing spinor
field on the space-time under consideration. For a detailed description of the
concept of Killing spinors we refer to [22].

4. Schrödinger form of the Dirac equation in OSC

In order to bring the matrix equation

W(OSC)ψ̂ = 0 , (63)

with W(OSC) given by (32) into the form of a Schrödinger equation

i∂tψ̂ = HDψ̂ , (64)

we apply a method similar to that one used in [8]. Without risk of confusion
we can simplify our notation by omitting to write explicitely the superscript
(OSC) attached to the operator W . Starting with (63), we bring the time
derivatives on the l.h.s. of the equation and find that

−iT ∂tψ̂ =
(
W(r,ϕ) + W(ϑ,ϕ)

)
ψ̂ , (65)
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with

T =




0 0 i
√

∆ −a sinϑ

0 0 −a sinϑ −i
√

∆

−i
√

∆ −a sinϑ 0 0

−a sinϑ i
√

∆ 0 0




.

and with W(r,ϕ), W(ϑ,ϕ) already defined in Corollary 2.2, where the operators

D̂± and L̂± have been now replaced by

D̂± =
∂

∂r
∓ a

∆̂

∂

∂ϕ

L̂± =
∂

∂ϑ
+

1

2
cotϑ∓ i cscϑ

∂

∂ϕ
.

Since det(T ) = Σ2 6= 0 for r > 0 and ϑ ∈ [0, π], T is non singular and we can
multiply (65) on both sides by T−1 to obtain (64) with Hamiltonian operator

HD =
∆

Σ
S ·

(
Ŵ(r,ϕ) + Ŵ(ϑ,ϕ)

)
, (66)

where σ2 is the Pauli matrix and

S = 1I4 − a sin ϑ√
∆




σ2 0

0 −σ2


 ,

W(r,ϕ) = mer√
∆




0 1I2

1I2 0


 + diag(E−,−E+,−E+, E−) ,

W(ϑ,ϕ) = ame cos ϑ√
∆




0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0




+




0 M+ 0 0

M− 0 0 0

0 0 0 −M+

0 0 −M− 0



,

with

E± = iD̂± and M± =
i√
∆
L̂±

such that

E∗
± = −E± and M∗

± = −M∓ .

Notice that the formal operator HD acts on the spinors ψ̂ on the hypersurfaces
t =const. Moreover, the matrix S entering in (66) is hermitian. For simplicity
in the notation we will omit the hat of the wave functions. It can be checked
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that for every ψ, φ ∈ C∞
0

(
[0,∞) × S2

)4
the Hamiltonian HD is hermitian, i.e.

formally self-adjoint with respect to the positive scalar product

〈ψ|φ〉 =

∫ ∞

0

dr

∫ 1

−1

d(cosϑ)

∫ 2π

0

dϕ (ψ|Cφ) , (67)

with inner product given by

(ψ|Cφ) = ψCφ , (68)

where the ψ denotes the complex conjugated, transposed spinor and

C = 1I4 +
a sinϑ√

∆




σ2 0

0 −σ2


 . (69)

In order to see the positivity of the scalar product defined by (67) and (68)
it suffices to show that the matrix C entering in the inner product is positive
definite. Indeed, the eigenvalues of C are given by

Λ1 = Λ2 = 1 − |a| sinϑ√
∆

and Λ3 = Λ4 = 1 +
|a| sinϑ√

∆

and since the following inequality holds for all r > 0

|a| sinϑ√
∆

≤ |a|√
∆
< 1 ,

we can conclude that Λi > 0 for every i = 1, · · · , 4. In what follows we consider
the Hilbert space H = {C4, 〈·|·〉} made of wave functions φ : [0,∞)×S2 −→ C4

together with the scalar product (67).

5. Completeness of Chandrasekhar ansatz

We begin with some preliminary observations. Energy, generalized squared
angular momentum and the z-component of the total angular momentum form
a set of commuting observables

{
HD, J

2, Jz

}
. Moreover, the angular system

(57) can be brought in the so-called Dirac form [24], namely

US :=




0 1

−1 0



dS

dϑ
+




−ame cosϑ −k+ 1
2

sin ϑ
− aω sinϑ

−k+ 1
2

sin ϑ
− aω sinϑ ame cosϑ


S = λS

with S(ϑ) = (S−(ϑ), S+(ϑ))T and ϑ ∈ (0, π). According to [1], in L2((0, π))2

the angular operator U defined on D(U) = C∞
0 ((0, π))2 is essentially self-

adjoint, its spectrum is discrete, non degenerate (i.e. simple) and depends
smoothly on ω. Therefore, its eigenvalues can be written as λj(ω) with j ∈ Z

and λj < λj+1 for every j ∈ Z. Moreover, the functions Skj
± (ϑ) satisfy a gen-

eralized Heun equation [1] and become the well-known spin-weighted spherical

harmonics by setting a = 0. Furthermore, the functions ei(k+ 1
2 )ϕ are eigen-

functions of the z-component of the total angular momentum operator Jz with
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eigenvalues −
(
k + 1

2

)
with k ∈ Z. Hence, we will label the states φ in the

Hilbert space H by φkj
ω . In what follows, we consider the free Dirac operator

HD given by (66) in H = L2

(
[0,∞) × S2

)4
. From Theorem 1.1 [21] the opera-

tor HD defined on C∞
0

(
[0,∞) × S2

)4
is essentially self-adjoint and has a unique

self-adjoint extension on the Sobolev space W 1,2
(
[0,∞) × S2

)4
. In addition,

the spectrum of HD, which we will denote by σD, is purely absolutely continu-
ous and given by σD = (−∞,me]∪ [me,+∞). Notice that, since HD possesses
a unique self-adjoint extension, when we will derive an integral representation
for the Dirac propagator, there will be no need to impose Dirichlet boundary
conditions or other boundary conditions on the spinors, as it was done in [8].
In order to find a suitable decomposition of H, we begin by showing that

{
Y kj

ω (ϑ, ϕ)
}
, Y kj

ω (ϑ, ϕ) =
1√
2π




S
kj
ω,−(ϑ)

S
kj
ω,+(ϑ)


 ei(k+ 1

2 )ϕ , (70)

with k, j ∈ Z is a complete orthonormal basis of L2

(
S2

)2
and that it is possible

to define isometric operators Ŵk,j : C∞
0 ([0,∞))2 −→ C∞

0

(
[0,∞) × S2

)4
. In the

next result we prove the orthonormality of the set
{
Y kj

ω (ϑ, ϕ)
}
.

Lemma 5.1. For every k, k
′

, j, j
′ ∈ Z it holds

〈
Y kj

ω |Y k
′

j
′

ω

〉

S2
= δkk

′ δjj
′ ,

where 〈·|·〉S2 is the usual scalar product on S2.

Proof. Making use of (70), a direct computation gives

〈
Y kj |Y k

′

j
′
〉

S2
= δkk

′

∫ π

0

dϑ sinϑS
kj

(ϑ)Sk
′

j
′

(ϑ) ,

where for simplicity in notation we omitted to write the subscript ω attached to
the angular eigenfunctions. In order to investigate the above integral we need

to go back to the angular system (57). It is easy to see that Sk
′

j
′

+ , Sk
′

j
′

− and(
S

kj
+

)∗
,

(
S

kj
−

)∗
satisfy the following two systems of first order linear ODEs,

namely

+L̂′

+S
k
′

j
′

+ +
(
λj

′ − ame cos θ
)
S

k
′

j
′

− = 0 , (71)

−L̂′

−S
k
′

j
′

− +
(
λj

′ + ame cos θ
)
S

k
′

j
′

+ = 0 , (72)

and

+L̂+

(
S

kj
+

)∗
+ (λj − ame cos θ)

(
S

kj
−

)∗
= 0 , (73)

−L̂−

(
S

kj
−

)∗
+ (λj + ame cos θ)

(
S

kj
+

)∗
= 0 , (74)
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where (·)∗ denotes complex conjugation and

L̂′

± =
d

dϑ
+ Q̃(ϑ)±,

Q̃(ϑ)± =
1

2
cotϑ± Q̃(ϑ),

Q̃(ϑ) = aω sinϑ+

(
k

′

+
1

2

)
cscϑ .

After multiplication of (71) by sinϑ
(
S

kj
−

)∗
, of (72) by sinϑ

(
S

kj
+

)∗
, of (73) by

sinϑSk
′

j
′

− and of (74) by sinϑSk
′

j
′

+ , we consider the equations

(71) sinϑ
(
S

kj
−

)∗
− (73) sinϑSk

′

j
′

− = 0 ,

and

(72) sinϑ
(
S

kj
+

)∗
− (74) sinϑSk

′

j
′

+ = 0 ,

build their sum and integrate over ϑ from 0 to π. Hence, we obtain

2(λj
′ − λj)

∫ π

0

dϑ sinϑS
kj

(ϑ)Sk
′

j
′

(ϑ) =

∫ π

0

dϑ sinϑ

[(
S

kj
+

)∗
L̂′

−S
k
′

j
′

− − S
k
′

j
′

+ L̂−

(
S

kj
−

)∗
−

(
S

kj
−

)∗
L̂′

+S
k
′

j
′

+ + S
k
′

j
′

− L̂+

(
S

kj
+

)∗
]
.

Since the angular eigenfunctions S±(ϑ) even vanish at ϑ = 0 and at ϑ = π (see
[1]), it can be checked that the following relations hold

+

∫ π

0

dϑ sinϑSk
′

j
′

− L̂+

(
S

kj
+

)∗
= −

∫ π

0

dϑ sinϑ
(
S

kj
+

)∗
L̂−S

k
′

j
′

−

−
∫ π

0

dϑ sinϑSk
′

j
′

+ L̂−

(
S

kj
−

)∗
= +

∫ π

0

dϑ sinϑ
(
S

kj
−

)∗
L̂+S

k
′

j
′

+ .

By means of the above results we obtain that

2(λj
′ − λj)

∫ π

0

dϑ sinϑS
kj

(ϑ)Sk
′

j
′

(ϑ) =

∫ π

0

dϑ sinϑ

[(
S

kj
+

)∗ (
L̂′

− − L̂−

)
S

k
′

j
′

− +
(
S

kj
−

)∗ (
L̂+ − L̂′

+

)
S

k
′

j
′

+

]

and this completes the proof. �X

In what follows, we prove that the orthonormal set
{
Y kj

ω (ϑ, ϕ)
}

is complete

and therefore an orthonormal basis for L2

(
S2

)2
. The main idea of the proof

relies on the Projection Theorem (Theorem II.3 [20]), i.e. we show that in

L2

(
S2

)2
the only element orthogonal to our orthonormal basis is the zero

vector.
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Lemma 5.2. Let
{
Y kj

ω (ϑ, ϕ)
}

with Y kj
ω (ϑ, ϕ) as given in (70) and k, j ∈ Z

be an orthonormal set for L2

(
S2

)2
. Then for every Y kj

ω ∈ L2

(
S2

)2
it holds〈

ϕ̃|Y kj
ω

〉
S2 = 0 if and only if ϕ̃ = 0.

Proof. Since there is no risk of confusion, we will omit to write explicitely the
subscript ω and the superscripts k, j attached to the angular eigenfunctions.
Without loss of generality let us consider

ϕ̃ =
1√
2π




ϕ1(ϑ)

ϕ2(ϑ)


 ei(k+ 1

2 )ϕ with ϕi ∈ C∞
0 ((0, π)) for i = 1, 2 .

Then we have

〈
ϕ̃|Y kj

〉
S2 =

∫ 1

−1

dx (ϕ∗
1(x)S+(x) + ϕ∗

2(x)S−(x)) ,

where we made use of the transformation x = cosϑ. The following estimate
holds

∣∣〈ϕ̃|Y kj
〉

S2

∣∣ ≤
∫ 1

−1

dx (|ϕ∗
1(x)| |S+(x)| + |ϕ∗

2(x)| |S−(x)|)

≤ ‖ϕ1‖2
L2

∫ 1

−1

dx |S+(x)|2 + ‖ϕ2‖2
L2

∫ 1

−1

dx |S−(x)|2

≤ d

∫ 1

−1

dx
(
|S+(x)|2 + |S−(x)|2

)
= d ,

where in the second line we used Hölder inequality, in the third line the or-
thonormality condition for S±(ϑ) and we defined d := max

{
‖ϕ1‖2

L2
, ‖ϕ2‖2

L2

}
.

Clearly,
∣∣〈ϕ̃|Y kj

〉
S2

∣∣ ≤ 0 if and only if d = 0. Since d = 0 implies ϕ1 = ϕ2 = 0

and the scalar product 〈·|·〉S2 is positive, the proof is completed. �X

We show now that it is possible to construct isometric operators

Ŵk,j : C∞
0 ([0,+∞))2 −→ C∞

0

(
[0,+∞) × S2

)4
,

such that

Rkj
ω =




R
kj
ω,−(r)

R
kj
ω,+(r)


 7−→ A




R
kj
ω,−(r)Y kj

ω,−(ϑ, ϕ)

R
kj
ω,+(r)Y kj

ω,+(ϑ, ϕ)

R
kj
ω,+(r)Y kj

ω,−(ϑ, ϕ)

R
kj
ω,−(r)Y kj

ω,+(ϑ, ϕ)




,

with A a positive definite hermitian matrix and

Y
kj
ω,±(ϑ, ϕ) =

1√
2π
S

kj
ω,±(ϑ)ei(k+ 1

2 )ϕ .
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Since the angular eigenfunctions Y kj
ω are normalized, we have

∥∥Rkj
ω

∥∥2

L2([0,+∞))2
=

∫ ∞

0

dr

∫

S2

dΩ
(
ψkj

ω |ψkj
ω

)
with ψkj

ω =




R
kj
ω,−Y

kj
ω,−

R
kj
ω,+Y

kj
ω,+

R
kj
ω,+Y

kj
ω,−

R
kj
ω,−Y

kj
ω,+




.

Let us define a matrix

A2 :=
∆

Σ


1I4 +

a sinϑ√
∆




σ2 0

0 −σ2





 .

Clearly, it holds A2C = 1I4 with C given by (69) and A will be a positive
definite hermitian matrix. Therefore, taking into account that the matrices C
and A2 commute, we obtain that

∥∥Rkj
∥∥2

L2([0,+∞))2
=

∫ ∞

0

dr

∫ 1

−1

d(cosϑ)

∫ 2π

0

dϕ
(
ψkj

ω |CA2ψkj
ω

)

=
〈
ψkj

ω |A2ψkj
ω

〉
=

〈
Aψkj

ω |Aψkj
ω

〉
=

〈
Ŵk,j

(
Rkj

)
|Ŵk,j(R

kj)
〉

= ‖Ŵk,j

(
Rkj

)
‖2

L2([0,+∞)×S2)4 .

By means of the isometric operators Ŵk,j we can now introduce for every
ω ∈ σD an auxiliary separable Hilbert space h(ω) as follows

h(ω) =
⊕

k,j∈Z

Hk,j with Hk,j = Ŵk,j

(
C∞
0 ([0,+∞))2

)
.

Moreover, the expansion theorem (Th.3.7 [23]) implies that

ψω =
∑

k,j∈Z

〈
ψkj

ω |ψω

〉
ψkj

ω .

Notice that h(ω) is by no means a subspace of L2

(
[0,+∞)× S2

)4
with respect

to the spatial measure, since the solutions Rkj
ω,±(r) of the radial system (56)

oscillate asymptotically for r → +∞. To circumvent this problem we proceed

as follows. First we identify the absolutely continuous part of H
(A)
D with the

operator HD, since the spectrum σD is purely absolutely continuous. Then, by
applying lemma 10 (Ch.1 §3 [25]) we have that HD is unitary equivalent to the
operator of multiplication by ω in L2(σD; dω)4 and the following isomorphisms
holds, namely

H ∼=
∫ ⊕

σD

dω h(ω) =: H . (75)
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Moreover, since the operator HD is self-adjoint, the spectral representation
theorem (Theorem 7.18, [23]) implies the existence of a unitary map F from H
onto H. The vector valued function ψω = (Fψ)(ω) is called the representative
element of the element ψ ∈ H in the decomposition (75). The scalar product
in H will be introduced according to [25], as follows

〈φ|ψ〉H =

∫

σD

dω 〈φω |ψω〉 ,

where 〈·|·〉 denotes the scalar product given by (67). Furthermore, in H we can

introduce a norm by means of ‖ · ‖H =
(∫

σD

dω ‖ · ‖2
h

) 1
2

. The self-adjointness

of HD in H implies also (see theorem 7.37 [23]) that
{
U(t) = eitHD |t ∈ R

}
is a

strongly continuous one-parameter unitary group with U(t)ψ ∈ C0
∞([0,+∞) ×

S2)4 for every t ∈ R and every ψ ∈ C0
∞

(
[0,+∞) × S2

)4
. By employing the

version of the spectral theorem as given in [25] (Ch.1 § 4-5), we have

〈
φ|eitHDψ

〉
=

∫

σD

dω eiωt 〈φω |ψω〉 , (76)

where 〈φω |ψω〉 is given in terms of the resolvent of HD as follows

〈φω|ψω〉 =
d

dω
〈φ|E(ω)ψ〉 =

1

2πi
lim
ǫ→0

〈φ|[R(ω − iǫ) −R(ω + iǫ)]ψ〉 , (77)

with E(ω) the spectral family associated to HD. In addition Theorem 1.7
(Ch.10, §1 [12]) implies that 〈φω|ψω〉 is absolutely continuous in ω, while the
unicity of the spectral family E(ω) and the existence of a spectral family F (ω) =
FE(ω)F−1 on H follow directly from theorem 7.15 ([23]). Making use of the
relation (3) in (Ch.1, §4 [25]) adapted to our case

R(z) =

∫ +∞

−∞

1

ω̃ − z
dE(ω̃) ,

we get

1

2πi
[R(ω − iǫ) −R(ω + iǫ)] =

1

π

∫ +∞

−∞

ǫ

(ω − ω̃)2 + ǫ2
dE(ω̃) . (78)

Since the integrand in (78) is bounded and integrable, when we take the limit for
ǫ→ 0 in the above expression, we may apply Lebesgue dominated convergence
theorem in order to take this limit under the integral sign. Taking into account
that

lim
ǫ→0

1

π

ǫ

(ω − ω̃)2 + ǫ2
= δ(ω − ω̃) ,
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we find that

1

2πi
lim
ǫ→0

[R(ω − iǫ) −R(ω + iǫ)] = Id.

Finally, from (76) it follows that every solution ψ̂ of equation (63) can be
written as follows

ψ̂(t, x) = eitHDψ(x) =

∫

σD

dω eiωt
∑

k,j∈Z

ψkj
ω (x)

〈
ψkj

ω |ψω

〉
, (79)

with x = (r, ϑ, ϕ). In order to construct square integrable wave packets in the
coordinate space, we go over in the Minkowski metric in cartesian coordinates
by means of the inverse of the coordinate transformations (9) and apply The-

orem 1.8 in [21]. Hence, we can choose H = L2

(
[0,+∞) × S2

)4
and normalize

the wave packets according to 〈ψ|ψ〉H = 1.
The next Lemma describes locally uniformly in ω the asymptotics of the

solutions of the radial system



√
∆D̂− −imer − λ

imer − λ
√

∆D̂+







R−

R+


 = 0 , (80)

for r → +∞, where

D̂± =
d

dr
∓ i

[
ω +

(
k + 1

2

)
a

∆

]
, ∆ = r2 + a2 .

Lemma 5.3. Every non trivial solution R of (80) for |ω| > me behave asymp-
totically for r → +∞ like

R(r) =




R−(r)

R+(r)


 =




coshΘ sinhΘ

sinh Θ coshΘ







e−iκr
[
f∞
− + O(r−1)

]

e+iκr
[
f∞
+ + O(r−1)

]


 ,

with constants f∞
± 6= 0 and

Θ =
1

4
log

(
ω +me

ω −me

)
, κ = ǫ(ω)

√
ω2 −m2

e ,

where ǫ(ω) is a sign function such that ǫ(ω) = +1 for ω > me and ǫ(ω) = −1
for ω < −me.

Proof. Let us first rewrite (80) as follows

R
′

(r) = V (r)R(r) , V (r) =




−iΩ(r) ϕ(r)

ϕ∗(r) iΩ(r)


 , (81)
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where ∗ denotes complex conjugation and

Ω(r) = ω +

(
k + 1

2

)
a

∆
, ϕ(r) =

λ+ imer√
∆

.

By means of the Ansatz

R(r) = ÂR̃(r) , Â =




C1 C2

C2 C1


 , R̃(r) =




R̃−(r)

R̃+(r)


 ,

with constants C1 and C2 such that C2
1 − C2

2 6= 0 , (81) becomes

R̃
′

(r) = T (r)R̃(r), T (r) = Â−1V (r)Â =




−T11(r) −T12(r)

T12(r) T11(r)


 ,

where

T11(r) =
i
(
C2

1 + C2
2

)
Ω(r) + C1C2 (ϕ∗(r) − ϕ(r))

C2
1 − C2

2

T12(r) =
2iC1C2Ω(r) + C2

1ϕ
∗(r) − C2

2ϕ(r)

C2
1 − C2

2

.

We fix now C1 and C2 by requiring that

lim
r→+∞

T11(r) = iκ , C2
1 − C2

2 = 1 . (82)

Taking into account that asymptotically for r → +∞, it results that

T11(r) =
i
(
C2

1 + C2
2

)
ω − 2imeC1C2

C2
1 − C2

2

+ O
(

1

r2

)
,

condition (82) becomes
(
C2

1 + C2
2

)
ω − 2meC1C2 − κ = 0 .

A simple calculation gives

C1 = coshΘ , C2 = sinh Θ , Θ =
1

4
log

(
ω +me

ω −me

)
. (83)

With the help of (83) T11 and T12 can be rewritten as follows

T11(r) =
i

κ

(
ωΩ(r) −m2

e

r√
∆

)

T12(r) =
λ√
∆

+ i
me

κ

(
Ω(r) − ω

r√
∆

)
.

Let us now introduce the decomposition T (r) = A(r) +B(r) with

A(r) =




− i
κ

(
ω2 −m2

e
r√
∆

)
− λ√

∆
− ime

ω
κ

(
1 − r√

∆

)

λ√
∆

+ ime
ω
κ

(
1 − r√

∆

)
i
κ

(
ω2 −m2

e
r√
∆

)


 ,
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and

B(r) =
i

κ

(
k + 1

2

)
a

∆




−1 −me

me 1


 .

Since A(r) and B(r) are continuously differentiable on [0,+∞),
∫ +∞

0

dr
∣∣∣A

′

(r)
∣∣∣ <∞ ,

∫ +∞

0

dr|B(r)| <∞

and the eigenvalues λ1 and λ2 of the matrix A0 defined by

A0 := lim
r→+∞

A(r) =




−iκ 0

0 iκ




are simple, then Theorem 11 in [7], which is actually a simplified version of a

theorem due to Levinson [14], implies that the equation R̃
′

(r) = T (r)R̃(r) has
solutions such that for r → +∞

R̃(r) =




e−iκr
[
f∞
− + O(r−1)

]

e+iκr
[
f∞
+ + O(r−1)

]


 ,

where f∞
− and f∞

+ are the non zero components of the eigenvectors ξ− and ξ+
belonging to the eigenvalues −iκ and +iκ of the matrix A0, respectively. �X
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