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An optimal 3-point quadrature formula
of closed type and error bounds

Una férmula de cuadratura éptima de 3 puntos de tipo cerrado y
error de frontera
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ABSTRACT. An optimal 3-point quadrature formula of closed type is derived.
The obtained optimal quadrature formula has better estimations of error than
the well- known Simpson’s formula. A few error inequalities for this formula
are established.
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RESUMEN. Se establece una férmula de cuadratura éptima de 3 puntos de tipo
cerrado. Dicha férmula mejora la estimacién de error de la bien conocida
férmula de Simpson. Se establecen algunas desigualdades de error para esta
férmula.

Palabras y frases clave. Férmula de cuadratura 6ptima, desigualdades de error,
desigualdades de tipo de Ostrowski.

1. Introduction and preliminary results

In recent years a number of authors have considered error analyses for quadra-
ture rules of Newton-Cotes type. In particular, the mid-point, trapezoid and
Simpson rules have been investigated more recently ([2], [3], [4], [5], [6], [8]) with
the view of obtaining bounds on the quadrature rule in terms of a variety of
norms involving, at most, the first derivative. In the mentioned papers explicit
error bounds for the quadrature rules are given. These results are obtained
from an inequalities point of view. The authors use Peano type kernels for ob-
taining a specific quadrature rule. We say that f; f@)ydt =50 _ wif(zk) + R,
where a < zg <21 < --- < x,, < b wp, >0, k=0,1,...,n, is a quadrature
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formula of closed type if the end points are included, i.e., a = xg, b = z,, are
nodal points.

Quadrature formulas can be formed in many different ways. For example, we
can integrate a Lagrange interpolating polynomial of a function f to obtain a
corresponding quadrature formula (Newton-Cotes formulas). We can also seek
a quadrature formula such that it is exact for polynomials of maximal degree
(Gaussian formulas). Gauss-like quadrature formulas are considered in [9].

Here we present a new approach to this topic. Namely, we give a type
of quadrature formula. We also give a way of estimating its error and all
parameters which appear in the estimation. Then we seek a quadrature formula
of the given type such that the estimation of its error is best possible. Let us
consider the above described procedure with more details.

If we define

K?(a7677767 t) =

then, integrating by parts, we obtain
b

/ Ks (0, B,7,8,6) " (t)dt =

a

%{f’(b) (=) (b ~9)
e )
B (a—;—b_w) (a—;—b_é)]

- fa)(a~ a)(a —6)} # (o= 57 1@
(5 -50) ()

. (b - va) 1)+ /b o

If we choose « = 3 = a and v = § = b then we get the mid-point quadrature
rule. If we choose o =y =a and § = § = b then we get the trapezoid rule. If

we choose a =0, 0 = %Qb and v = 2"3“’, 6 = 1 then we get Simpson’s rule.
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If we require that

(b—7)(b-0)=0

() (52 0) (22 ) (5

(@ —a)(a—p) =0,

then we get a quadrature formula of the form

b

/Kz(a,ﬁ,y,é,t)f”(t)dt: <a— o‘;rﬁ) fla) ~ (7;5 - Q;B) f (a;rb>

- (b - %5) 1) + / Ft 1)

In practice we cannot find an exact value of the remainder term (error)

f: Koo, B,7,0,t) f"(t)dt. All we can do is to estimate the error. It can be
done in different ways. For example,

a

b b
/Kg(a,ﬁ,%é, DF(Ddt| < max |F7(0)] / Ko, B, 0,0 dt. (2)
J tela,b] J

It is a natural question which formula of the type (1) is optimal, with re-
spect to a given way of estimation of the error. The main aim of this paper
is to give an answer to this question and to consider the formula from an in-
equalities point of view. In fact, we seek a quadrature formula of the given
type such that its error bound is minimal. Note that we can minimize only the
factor f: |Kao(a, B,7,0,t)| dt in (2). A general approach is: we first consider
the minimization problem and then we formulate final results. A few error
inequalities for the obtained optimal formula are established. Let us mention
that the obtained optimal quadrature formula has better estimations of error
than the Simpson’s formula (see Remark 2).

Finally, we also mention that similar optimal quadrature rules are considered
in [10]-[11].

2. Optimal quadrature formula

We consider the problem, described in Section 1, on the interval [0,1]. Let
a, 3,7,0 € R. We define the mapping

K2(a757’7767t) = (3)

NI—= N
~—
~

|
Q
S~—
—~
~

|
=
S~—"
~
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Let I C R be an open interval such that [0,1] C I and let f: I — R be a twice
differentiable function such that f” is bounded and integrable. We denote

[fllo = sup [f(®)]. (4)
te[0,1]
Integrating by parts, we obtain
[ Kata s s i = [ —a)e-a1" 0+ [ =0 b
0 0 1
= —50B'(0) + 5 (1= 7)1 - ) (1) %)

where
Kl(aa 6)77 5) t) =

We require that the coefficients —%aﬁ, % [(% — a) (% — B) — (% — ) (% — 5)]
and (1 —~)(1 — 6) be equal to zero. Hence, we require that o = 0 or 3 =0
and v =1or §d = 1. If we choose &« = 0 and 6 = 1 then we get 4+ = 1. If we

now substitute « =0, y=1— F and § =1 in (5) then we have
1

/KQ(Ovﬁv 1- Ba 17t)f”(t)dt ==

0

Kl(oaﬁa 1- 67 lat)f/(t)dt

(t— §> f’(t)dt—/l(t— #) f/(t)at
: (6)
fO) —Q=-p)f (%) - éf(1) +O/f(t)dt.

/
/

[VIRsS

2

We also have

1

1
/KQ(Oaﬁal_ﬁu]wt)fH(t)dt S Hf””oo/lK?(Ouﬁul_ﬁalut”dta (7)
0

0
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and

1
2

O\NIH

1 1
/us@@l—@me= tn—mw+§/ﬁ—1+ma—ww (8)
0 1

We now define

3 1
1 1
o) =5 [tie=plde+ g [1t-1+510-tar, )
0 3
and consider the problem
minimize g(f3), 8 € R. (10)

Hence, we should like to find a global minimizer of g. We consider the following
cases:

(i) <o,
(i) 0<B <1,
(i) #> 5.

Case (i). If 3 < 0 then t|t — 8| = t(t — 3), for t € [0,%] and |t — 1+ B| x
[t —1] = (t =1+ B)(t — 1), for t € (3,1]. Thus,

3 1
1 1
gB)== [tt=P)dt+= [ (t—1+p)(t—1)dt (11)
s fre-mn f
_ L 5,1
24 8 — 24

Case (iii). If 8 > § then t|t — 8| = t(3 —t), for t € [0, 3] and |t — 1+ B| x
t—1]=(t—1+pB)(1—t), for t € (3,1]. Thus,

3 1
1 1
gB) == [tB—-t)dt+= [ (t—14+3)1 —t)dt (12)
_B_1 1
T8 24 748

Case (ii). 0 <3< % then

tt—p8) te(Bi]
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and
_ _ 19
14l —1] = t—1+p)(t—1) te[i1-0]
t—1+8)1-1t) te(l-0,1]
Thus,
1 / 1 :
o) = 5 [te-ndi+3 [e-par (13)
0 B
1-8 1
1
+ (t—1+5)(t—1)dt+§/(t—l—i—ﬁ)(l—t)dt
! 18
B B 1
- 3 st
We have )
J(B) =5 -5 and ¢"(5) =25, (14)
We now solve the equation ¢’(8) = 0. The solutions of this equation are

Bi2 = :I:\/Ti. Since g” (@) > 0 we conclude that 3 = ‘/Ti is, at least, a local
minimizer. We have

V2) _2-42
g< 1 pr (15)
From (11), (12) and (15) we conclude that 3 = *2 is the global minimizer. If
we now substitute 3 = i in (6) then we get
/K2<0£1 \i_lt>f()dt (16)

/f it =22 (0) - (1—£>f(%) -2,

The above quadrature formula is optimal in the sense described in Section 1.
From the previous considerations we can formulate the following result.

Theorem 1. Let I C R be an open interval such that [0,1] C I and let
f I — R be a twice differentiable function such that " is bounded and
integrable. Then we have

/f it = X2 0) - (1—£>f(%> ) < 2200 am
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Remark 2. If we set § = % in (6) then we get Simpson’s rule:

1

/f(t)dt—% [f(0)+4f (%) } /KQ( 33 1, )f”(t)dt. (18)
0

We have

1 Lo 2 (1 15"l
[ 1wae- 1037 (5) - gro| < (19)
0

It is obvious that (17) is a better estimate than (19). Note that (16) and (18)
are 3-point quadrature rules of the same (closed) type.

3. Error inequalities

On the space of square integrable functions, La(a, ), we introduce the standard

inner product
b
- [ 1ty (20)

with the corresponding norm written || f||,. The resulting space is a Hilbert
space. We also define the Chebyshev functional

T(fvg):<fag>_<fae> <g,€>, (21)
where f,g € La(a,b) and e = 1. This functional satisfies the pre-Griiss inequal-
ity

T(f,9)* <T(f./)T(g.9). (22)
We now define
o(f)=o(f;a,0) = (b—a)T(f, f). (23)
More about the above mentioned quantities can be found, for example, in [7]
and [1].
Finally, we define the functional

QUf) = Q(f;ab) (24)

= [ s~ [ fla)+ (1—§>f(“;b>+§f<b>]<b—a>.

We need the following lemma.

Lemma 3. Let
H = fl (t)v te [av‘TO] 7 (25)
fg(t), t e (xo, b]

where xg € [a,b], fi € CHa,z0), fo € Cl(xo,b). If fi(xo) = fa(z0) then f is
an absolutely continuous function.
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A proof of this lemma can be found in [12]. We now define

—a 2
s 9% ! (4 - 3\/5) [f'(0) = f'(a)]. (26)

P(f;a,b) =

Note that

Q(f;a,b) = P(f;a,b) = R(f;a,b)
is a corrected quadrature formula (with the remainder R(f;a,b)) which is sim-
ilar to the corrected trapezoid and corrected mid-point quadrature formulas.
It has similar properties as the last two mentioned formulas which are known
and can be found in the literature. Here we only mention that the corrected
formula improves the original formula.

For the simplicity, in this paper we choose [a,b] = [0, 1]. How we can obtain
corresponding results in the arbitrary interval [a, b] it is described, for example,
in [13]. In this book we can also find how to write corresponding compound
formulas.

Theorem 4. Let f':[0,1] — R be an absolutely continuous function such that
f" € L1(0,1) and there exist real numbers v, Ta such that v < f"(t) < Ty,
t €[0,1]. Then
o=y (5 29
;0,1)—P(f;0,1)| < —— | = - — 2
Qo - Pron < 252 (BV6- 2VE).

where Q(f;0,1) and P(f;0,1) are defined by (24) and (26), respectively.
If there exists a real number vo such that vo < f”(¢), t € [0,1] then

QU:0.1) = P(£:0.1)] < (1—12 - g) (S~ ), (28)

where S1 = f'(1) — f'(0).
If there exists a real number Ty such that f"(t) <T', t € [0,1] then

1 V2
|Q(f;0,1) = P(f;0,1)[ < <E - 5) (P — S1). (29)
Proof. We define the function
o s(t-2) + - h ref0.d]
pa(t) = 1 V2 V2 _ 1 1 (30)
5(15—1)(1t—1+7)+§—ﬂ, te (3]
Let p1 be defined by
V2 1
t—¥2  ¢eo,l
p1(t) _ 8 e [1 2] (31)
t 1+?,t€ (5,1}

Then we have

(P2, [") = = (p1, f') = P(f;0,1) = Q(f;0,1) — P(f;0,1) (32)
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since
(plaf/) = _Q(f7051)7 (33)
holds.
On the other hand, we have
Ty + _ .
(f” - %,pg) = (f".p2), (34)
since (p2,e) = 0. From (22) we get
Iy + - Iy + -
(=220 < -2 e, (35)
5 29 FQ — Y2
< —V6— —V3
- (96\/_ 432 ) 2
since
f,,_r2+’72 <F2—’Y2
2 o 2
and . -
p2o|l; = =v6 — —V3.

From (32)-(35) we see that (27) holds.
We now prove that (28) holds. We have

KW—wﬁMSIﬂ—whmﬁw—<l “3oa—w%

12 32
since .
157 =l = [0 = eyt = 50 - £0) = 2.
0

and

AN

Palle = 75 7 32
In a similar way we can prove that (29) holds. ™

Remark 5. Note that we can apply the estimate (27) only if the second de-
rivative f" is bounded. It means that we cannot use (27) to estimate directly
the error when approximating the integral of such a well-behaved function as
f(t) = V3 on [0,1], (since f(t) = 3/(4V/1) is unbounded on [0,1]). On the
other hand, we can use the estimation (28), (since v = 3/4 on [0,1] for the
given function).

Theorem 6. Let f':[0,1] — R be an absolutely continuous function such that
1" € Ly(0,1). Then

. . 47 \/§ ",
|Q(f3071)_P(f7051)|§ m_ﬁg(.f‘aovl)v (36)
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where o(f;0,1) is defined by (23). The inequality (36) is sharp in the sense

that the constant 2340740 — % cannot be replaced by a smaller one.

Proof. We define the function

(t—2) telo,d
pt) =9 i( 35) [1 ) (37)
Y- (t-1+%F) te (3]
Then we have
<ﬁ27 f”> = <p27 f”> - <p27 €> <f”7 €> ) (38)
since pa = pa — (p2, e). From (32) and (38) it follows
T(p27f”) = Q(f7071) _P(f;oul)a (39)
since (P2, f"') = (P2, ") if [a,b] = [0, 1]. From (22) we get
47 2
(02,5 < VT VI 77 = || s = Smor”0.1). (40
since
a7 V2
T(p2.p2) = 23040 768"

From (39) and (40) we see that (36) holds.
We now prove that (36) is sharp. For that purpose we define the function
= 4 )
G- e (D)o (- e

48 1927

such that
vl G-, el
-(-R)er(G-9)-(-4) e
and f"”(t) = p2(t). From Lemma 3 we see that the function f’, defined by

(42), is an absolutely continuous function. For the function defined by (41) the
left-hand side of (36) becomes

(42)

A7 V2
L.H.S.(36) — m - ﬁ .
The right-hand side of (36) becomes
AT V2
H.S. == — .
R.H.5.(36) 23040 768
We see that L.H.S.(36) = R.H.S.(36). Thus, (36) is sharp. ™
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Remark 7. The estimation (27) is better than the estimation (36). However,
note that we can apply the estimate (27) only if the second derivative f" is
bounded. It means that we cannot use (27) to estimate directly the error when
approzimating the integral of such a well-behaved function as f(t) = V15 on

[0,1], (since f"(t) =10/ (9V/t) is unbounded on [0,1]). On the other hand, we

can use the estimation (36) (since ||f”||§ =12 for the given function).

Note also that the estimation (36) is expressed by means of the quantity
o(f"”;0,1). This is a better estimation than an estimation expressed by means
of the norm || f"||5, since

o(f":0,1) = \/||f”||§ = (@) = £10))> < 11"l -
Furthermore, the term (f'(1) — £(0))? can be easily calculated.
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