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RESUMEN. En este articulo se obtiene la existencia de soluciones débiles aco-
tadas globalmente para el problema de Cauchy de un sistema simétricamente
hiperbdlico con una fuente, usando la teoria de la compacidad compensada.
Este sistema surge en areas como la teoria de la elasticidad, la magneto-hidro-
dindmica y el mejoramiento en la recuperacién de petréleo.

Palabras y frases clave. Sistema simétrico hiperbdlico, términos fuente, solucién
débil, método de compacidad compensada.

1. Introduction

In this paper, we are concerned with a symmetrically hyperbolic system of two
equations with source terms

ur + (up(r))e + g1(v,v) =0
{ v+ (v6(r))e + g2(u,v) =0 (1.1)
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and bounded measurable initial data

(U(CC,O),’U(.”L',O)) = (UO(‘T)vUO(‘T)) ) (1'2)

where ¢(r) is a nonlinear symmetric function of u,v with r = u? + v In
the paper [9], Lu studied the homogeneous system of Cauchy problem (1.1)-
(1.2) with g1(u,v) = g2(u,v) = 0, this homogeneous system is interesting
because it arises from such areas as elasticity theory, magnetohydrodynamics,
and enhanced oil recovery (cf. [5, 6]). In this article we study a symmetrically
hyperbolic system with source terms, which is also interesting in mathematic
and fluid mechanics.
Let F be the mapping from R? into R? defined by

F:(u,v) — (up(r),ve(r)),

then two eigenvalues of dF are
A =0(r), A= o(r) +2r¢(r), (1.3)
with corresponding right eigenvectors
r = (—v,u)?, o= (u,v)". (1.4)
By simple calculations,
VAL -m =0, Vg-ro=6r¢ () +4r2¢ (r). (1.5)

Therefore, from (1.3) the strict hyperbolicity of system (1.1) fails at the
points where r¢/(r) = 0, and from (1.5) the first characteristic field is always
linearly degenerate and the second characteristic field is either genuinely non-
linear or linearly degenerate, depending on the behavior of ¢.

In this article, we suppose that

¢ €C?(RT), meas {r:3r¢’(r) +2r°¢"(r) = 0} = 0. (1.6)

Therefore the second characteristic field could be linearly degenerate on a set
of Lebesgue measure zero.

The study of the Cauchy problem (1.1)-(1.2) with g1 (u,v)=g2(u,v)=0 by
using the compensated compactness method started from [1], where Chen first
considered the propagation and cancelation of oscillations for the weak solution.
Along the second genuinely nonlinear characteristic field, the initial oscillations
cannot propagate and are killed instantaneously as time evolves, but along the
first linearly degenerate field, the initial oscillations can propagate. Lu [9]
studied the homogeneous system of Cauchy problem (1.1)-(1.2) with g; (u,v) =
g2(u,v) = 0 and obtained the existence of bounded weak solutions for the
Cauchy problem of a symmetrically homogeneous hyperbolic system.

In this work, we study the system of Cauchy problem (1.1)-(1.2) and have
the same conclusion for some source terms.
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2. The main theorem

For studying the Cauchy problem (1.1)-(1.2), we consider the Cauchy problem
for the related parabolic system.

ug + (up(r)) s + g1(u,v) = gy
{ v + (vO(7))z + g2(u, V) = €y (2.1)

with the initial data (1.2).
We suppose that the functions ¢q(u,v) and ga(u,v) satisfy the following
conditions:

(H1) Both g1 (u,v) and g2(u,v) are local Lipchitz continuous functions,
(H2) ug(u,v) + vga(u,v) > Cr + C, where C, C are constants.

(H3) g2(u,v) = vh(u,v), h(u,v) € C (R?).

(H4) w <Cq ‘%| + C;. where C1, C; > 0 are constants.
(H5)

H5) There exists a continuous function G(w), such that:

vg1(u,v) — uge(u,v) u
v2 =G (’U) ’
and
G (w) > 0.

The main result in this work is given as follows:

Theorem 2.1. (1) Suppose the initial data (uo(z),vo(z)) be bounded measur-
able and the conditions (H1)-(H2) are hold. Then for fized € > 0, the viscosity
solution (u®(x,t),v°(x,t)) of the Cauchy problem (2.1) and (1.2) exists and is
uniformly bounded with respect to the viscosily parameter €.

(2) Moreover, if condition (1.6) holds, then there exists a subsequence of
re = (u®)? + (v°)? (still labeled <) which converges pointwisely to a function
l(x,t).

(8) If vo(xz) > co > 0 for a constant ¢y , the total variation of % is
bounded in (—oo,+00) and the conditions (H1)-(H5) are hold, then there exists
a subsequence of (u®,v®) (still denoted by (u®,v®)) which converges pointwisely
to a pair of functions (u(x,t),v(z,t)) satisfying l(z,t) = u?(x,t) + v*(z,1),
which, combining with 2., implies that the limit (u,v) is a weak solution of the
hyperbolic system (1.1) with the initial data (1.2).

Remark 2.1. Since (u®,v®) is uniformly bounded with respect to e, its weak-
star limit (u,v) always exists. However, the strong limit [(x,t) of (uf)? + (v°)?
need not equal u®(x,t) +v2(x,t). If this equality is true, then, at least, (u,v) is
a weak solution of (1.1)-(1.2) without any more conditions, such as which are
gien in part 3.

Remark 2.2. There are many functions g1(u,v) and gz(u,v) which are satis-
fied the conditions (H1)-(H2), but there are some functions g1 (u,v) and g2(u,v)
which satisfy the conditions (H1)-(H5). For example, g1(u,v) = au + bv and
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g2(u,v) = cv satisfy the conditions (H1)-(H5), where a,b,c is constants and
a > c. For another instance, gi(u,v) = axvVu? + v + asv and ga(u,v) = azv
also satisfy the conditions (H1)-(H5), where c; € R, 1 =1,2,3 and aq > as.

The proof of Theorem 2.1 will be given in Section 4.

3. Some lemmas

By using the theory of compensated compactness, BV compactness and the
maximum principle, the existence of global bounded weak solutions is obtained
for the Cauchy problem (1.1)-(1.2). To prove this conclusion, at first we intro-
duce some lemmas which are useful later in this paper.

Let us consider the following Cauchy problem for the general parabolic sys-
tem

{ ut + fl (u7 U)w + kl (u7 U) = EUgy (31)

ve + fo(u,v)y + ka(u,v) =cvg,
with the initial data (1.2).

Lemma 3.1. Suppose that the initial data (ug(x),vo(x)) be bounded measurable
(that is |ug(z)| < M, |vo(z)| < M), fi(u,v) € C* (R?) and k;(u,v) is locally
Lipschitz continuous function, 1 = 1,2. Then

(1) The Cauchy problem (3.1) and (1.2) has unique solution (uf(x,t),ve(z,t))
€ C*®(R x (0,tg)) for a small ty > 0 which depends only on the L> norm of
the initial data, and

|uf(x,t)] < 2M, [vf(z,t)| < 2M V(x,t) € Rx[0,tp) .

(2) Moreover, if the solution (u®(x,t),v¢(x,t)) has an a priori estimate for
arbitrary fived T > 0
[u(z,t)| < M(T), |v°(x,t)] < M(T), V(x,t)€RxI[0,T],
where M(T) is a positive constant, being independent of € for arbitrary fixved

T > 0, then the solution (u®(x,t),v¢(x,t)) exists on R x [0,T].

Proof. We will give a sketch of the proof; for details see [3, 7, 12].
(1) The Cauchy problem (3.1) and (1.2) is equivalent to the following integral
equations:

+oo

u(a, t) = / uo(¥)G= (& — 3, 1)y
- t 400
+ / / [Fu(uly, 7)., 0(y, )G (x — 1t — 7)
0 —o0

— ki(u(y, 7),v(y, 7))G*(x — y,t — T)]dydT.
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—+oo
oo, 1) = / vo(y)G* (z — y, t)dy
- t 400
+ / / [Fa(uly, 7)oy, )G (& — 1t — 7)
0 ')

— ko (u(y, 7),v(y, 7))G*(x — y,t — 7')} dydr .

The existence of the local solution can be easily obtained by applying the
contraction mapping principle to above integral representation for a solution.
Following the standard theory of semilinear parabolic systems, we get unique
solution (u®(z,t),v%(x,t)) € C°(R x (0,tp)) for a small ¢y > 0 which depends
only on the L° norm of the initial data.

(2) Since the solution (u(z,t),v®(x,t)) has an a priori estimate M (T') for
arbitrary fixed " > 0 and tp > 0 depends only on the L* norm of the initial
data, we can use (u(x,to),v(z,t9)) as new initial data on the line ¢ = t; and
above a priori estimate M (T), we have a smooth solution on tg <t < tg+ 7
for the Cauchy problem (3.1) and (1.2). So we repeat this process to find a
solution on tg < t <ty + 27, and eventually after a finite number of steps we
obtain a solution on 0 <t < T. o

Lemma 3.2. Suppose that u(x,t) is a solution for the Cauchy problem of the
parabolic equation

ur + a(u, z, t)ug + g(u, 2, t) = Uy, (3.2)
and the initial data
u(z,0) = up(x). (3.3)
Also suppose that the functions ug(x) and g(u,:v,t) satisfy the following con-
ditions: |ug(z)| < M, |g(u,x,t)] < Clu| + C, where C,C > 0 and a(u,x,t) is
bounded. Then for any T > 0, there exists M (T) > 0 such that |u(z,t)] < M(T)
on R x [0,T].
Proof. Multiplying equation (3.2) by 2u, we have
(uz)t + a(u, z,t) (uz)x = Uiy, — 2ug(u,x,t)
< (2uuy)y — 2u2 + 2Ju| (Clu| + O)
< (u?), + (20 + 1)u® + C*.

Let w = (u2 + 2gi1) e~ (2C+Dt Direct calculations show that

wi + a(u, 2, t)wy, < Wy . (3.4)
Since the initial data ug < M, so w(x,0) = (ug)? + 20+1 < M?+ 2c:+1 Using
the maximum principle [11] to (3.4), we get w(z,t) < M? + 20+1, from the
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relationship between w(z,t) and u(z,t), we obtain the following L estimates
of u(x,t):

lu(z,t)] < M(T), (x,t) € Rx[0,1],

where M (T) = KMQ + %) 6(2C+1)t} %. o]

From Lemma (3.2), we have
Corollary 3.1. Suppose that u(z,t) > (<)0 satisfies
Ut + a(u, x, t)’u;p + g(U, x, t) < (Z)Umm ;

and |u(z,0)] < M, g(u,z,t) > (<)Cu + C, where C,C € R and a(u,x,t) is
bounded. Then for any T > 0, there exists M(T) > 0 such that u(x,t) <
M(T)(u(xz,t) > —M(T)) on R x [0,T].

Lemma 3.3. Suppose that (u®(z,t),v(x,t)) is a solution for Cauchy problem
(2.1) and (1.2). Also suppose that the conditions vo(x) > c¢o > 0, (H1) and
(H3) are hold. If |u(z,t)| < M(g,co,T), |v°(x,t)] < M(e,co,T) on Rx[0,T],
then the solution v¢(x,t) > c(t,co,€) > 0 on R x [0,T], where c(t,co, &) could
tend to zero as cy, € tend to zero or t tends to infinity.

Proof. Let w = logwv, we rewrite the second equation of the related parabolic
system (2.1) as follows:

wt + ¢(rwy + ¢(1r)z + h(u,v) = ¢ (wm + wi) , (3.5)

then

2 QT
wt—awm+5<wx—%) — (r)e — ¢4—(€)—h(u,v).

The solution w® of (3.5) with initial data wg(z) = logwvg(x) can be represented
by a Green function G¢(z — y,t) = ——— exp {— v,

Vinel Iet
Ji [T o(r) \2
w = [ G -y, tholy)d (0o = 20y (0,

ZO Y oy y"'O/ZO [5 %

- % - h(u,v)} [G(x —y,t — s)] dyds. (3.6)
Since,

7G8(:E—y,t)dy:1, /7‘G;(x—y,t—s)|dyds=2\/wz€, (t > 0),

oo 0 —oo
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it follows from (3.6) that

o0

w® zlogco—i—/t / ( _ ) —h(u,v)) G (z —y,t — s)dyds
0

=logcy + /
0
),

( ?r (,v)) Gg(x—y,t—s)]dyds

[t
ZlOgCO—2M1 — — Mot = —O(t,Co,E) > —00.
e

Thus v°(z,t) has a positive lower bound c(t, co, €). o

4e
— 00
o0
/ EI—yvt—S)
— 00

Let us consider the Cauchy problem for scalar conservation laws
u + f(u)y =0, (3.7)
and bounded measurable initial data
u(z,0) = up(x). (3.8)

The following lemmas are about the BV compactness and the compensated

compactness frameworks for Cauchy problem of scalar conservation laws (3.7)-
(3.8).

Lemma 3.4. (See [12]) Suppose that a sequence of function u®(x,t) satisfies
|u8|Loo S C|u0|Loo, TV(’UJE) S CTV(U()),

where uf(x,t) is a viscosity approximate solution of Cauchy problem (3.7)-
(3.8), the constant C' is independent of € and TV (u) is the total variation of
u. Then there exists a subsequence {u*}$2 | such that

et x) — u(t,z), ae., as, k—o00.

This limiting function u(t,z) is a bounded weak solutions for Cauchy problem
of scalar conservation laws (3.7)-(3.8).

Remark 3.1. The role of BV norms is indicated by Glimm’s theorem [12] for
hyperbolic systems (also see [10, 4, 14] ).

Lemma 3.5. (See [2]) Suppose that a sequence of function u®(x,t) satisfies

uf (2, )| e < M,
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where u®(x,t) is a viscosity approximate solution of Cauchy problem (3.7)-(3.8),
and for two entropy pairs

(m(u), q1(u)) = (u—k, f(u) = f(K))
(o) ) = | Fa) = 1B, [ £y ) |
k
satisfies
ni (u(z,t)), + ¢ (u(x,t)),  is compact in VVl;C12 (Rx RY),
where k € R,i =1,2. Then
(1) There exists a subsequence {u=k}° | such that

w* — lim u®* = u, w* — klim fw™) = f(u).

k—o0
(2) Furthermore, if there is no interval in which the flux function f(u) is
linear, then the sequence u®(t,z) is compact in L}, (R x RY). That is, if f €

loc
C?*(R x R") and meas {u: f"(u) =0} = 0, then u®*(t,x) — u(t,x),a.e as
k — oo. This limiting function u(t,x) is a bounded weak solutions for Cauchy
problem of scalar conservation laws (3.7)-(3.8).

Remark 3.2. The simple proof of this lemma can see [2, 8]. A rigorous proof
by using infinite entropy pairs was first given by Tartar [13].

4. Proof of Theorem 2.1

In this section we proof Theorem 2.1 by using the compensated compactness
method and BV compactness frameworks.

Proof. (1) According to Lemma 3.1, to prove the existence of the viscosity
solution in Theorem 2.1, it is sufficient to get the uniform L> bound. Multi-
plying the first and second equations of the parabolic system (2.1) by 2u and
2v, respectively, then adding the result, we have

re+ O(r)re +2r(d(r)) e + 2ugr (u, v) + 2vga (u, v) = eryy — 2 (ui + vi) . (4.1)
By using the condition (H2), we get the following inequality
re + f(r). +2Cr + 2C < eryy (4.2)
where f(r) = [ ¢(s) + 2r¢/(s)ds.

Since the initial data (ug(z), vo(z)) is bounded measurable, we have
r(z,0) = u?(x,0) +v*(z,0) < M.
Using Corollary 3.1 to (4.2), we obtain the following L°° estimates of r°(z, t)
e = (u¥)? + (v°)* < M(T), (x,t) € Rx[0,T], (4.3)

where M (T) is a positive constant, being independent of €, this implies the uni-
form boundedness of (u,v). According to Lemma 3.1, the viscosity solutions
exists on R x [0, T].

Volumen 42, Numero 2, Anio 2008



EXISTENCE OF GLOBAL WEAK SOLUTIONS 229

(2) To prove the strong convergence of 7€, we multiply (4.1) by a test function
®, where ® € C§° (R x R") satisfies @) =1, 0 < ® < 1, and S = supp ® for
an arbitrary compact set K C S C R x R*. Then, we have that

/Oo /Oo % ((u;f n @;)2) Sdadt = 7 7 [a«m = ()
0 —oo 0 —o0

—ug1(u,v) — vga(u,v)| Pdxdt

[ ole o}

:/ / er®u, + r®; + f(r)P,pdxdt
0 —oo
—|—/ / (—ugr (u,v) — vge(u,v))Pdxdt
0 —oo
< M(®), (4.4)
and hence
e(u$)® and e(v5)?  are bounded in  Lj,, (R x RY) . (4.5)

Let (n(r),q(r)) be any pair of entropy-entropy fluxes of the scalar equation
re + f(1r)e + 2ugi(u, v) + 2vg2(u,v) =0,
and multiply (4.1) by 7/(r). Then
(e +a(r)e = (1 (N)ra), —en” (r)ry — 261/ (r) (ug +v7)

=1 (r)(2ug1(u, v) + 2vg2(u, v))
=L —I—Is— Iy, (4.6)

where I + I are bounded in L} (R x R"), I is in L> (R x [0,T]), and since
I is compact in W, (R x RY), then I, is bounded in L} (R x R*), and
hence Iy — Iy — Is — I, are compact in Wl_oi’a(R x RT) for a € (1,2), by (4.5).

Noticing that 7(r); + q(r). is bounded in W ~1:°°_ and using Murat’s theorem
(cf. [13]), we get the proof that

0 (r°(x, 1)), + ¢i(r®(z,t)), are compact in ngclﬁ (R X R+) , (4.7)
for i = 1,2, where

(m(r),q1(r)) = (r =k, f(r) = f(F)), (4.8)

and
T

2
(). aa(r)) = | 700 = ), [ (7)) ds | (4.9)
k
and k is an arbitrary constant. Similar Lemma 3.5, if we consider that r is
an independent variable, noticing the condition (1.6) on f, we get the proof of
ré(x,t) — l(x,t), almost everywhere.
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(3) Now we are going to prove the third part of Theorem 2.1. First, using
Lemma 3.3, we get v¢ > c¢(t,co,e) > 0 when the conditions vgo(x) > ¢o > 0,
(H1)and (H3) are hold. Second, we prove the strong convergence of (u®,v®) —
(u,v). By simple calculations, from system (2.1) we have that

U u u 2u 4 2
(9,0 (), - (0), (B o
v/t v/a v/ z v3 v?

B (v91 (u,v) —ugs (u, U)) (4.10)

(1) v (p), - (mleipemten),

where, for simplicity, we omit the superscript € in the viscosity solutions (u®, v°).
Using the condition (H4) and the maximum principle for (4.10), similar the
proof of Lemma 3.2, we get that z—: is uniformly bounded with respect to e.
According to the BV compactness frameworks Lemma 3.4, for obtaining that
the total variation of (Z—:)z is bounded in (—o0, 00), we differentiate (4.10) with
respect to z and then multiplying the sequence of smooth functions m’ (6, «)
ue

by the result, where 6 = (—) and « is a parameter, we have

vz

m(0,a), + (Am(0,a)), + (m' (0,a)0 —m(0,a)) Ay =

=em (0,a),, —em” (0,a)0% + (252—% (6, a))z
+ (255—31 (m (0,a)0 —m (6, 0)) (4.11)

! (6,0) <’U g1 (u®,v%) —ugs (u®,v )) '

(v°)?
Choosing m(6, «) such that m” (0, «) > 0, m’(6, o) — sign 6, m(6,a) — |0] as
a — 0, we have from (4.11)

,UE
10]: + (A\1]0]),, < €]0]az + (2av—§|9|> (4.12)

—sign6‘<v g1 (U5, v )—?;gz(u v )) '
(v%) .

Using the condition (H5), we have
v u®
10]: + (M\116]),, < €lb]zz + (250—:|9|) -G (F) 6], (4.13)
hence

,UE
10]: + (M\1]6]),, < €lblaz + <2€v_z|9|> . (4.14)

x
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Integrating (4.14) in R x [0, ], we have

/ 10(2, )| da < / 10(z,0)|dz < M. (4.15)
Since
u(w,t)\ 7
we have

TV(M)STV<M>§M.

ve(x,t) ve(z,0)

According to Lemma 3.4, this implies the pointwise convergence of a subse-
quence of Z—i Combining this with the result in the second part of Theorem

2.1,

we get the pointwise convergence of a subsequence of (v°,v%) — (u,v),

where the limit (u, v) is a global bounded weak solution of the Cauchy problem
(1.1)-(1.2). Thus we complete the proof of Theorem 2.1.
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