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The Kuratowski-Mrowka characterization
and weak forms of compactness

La caracterizacion de Kuratowski-Mréwka y formas débiles de
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ABsTrACT. For cardinals k > Ng, characterizations of the Kuratowski-Mrowka
type of initial k-compactness and final k-compactness are given. Moreover,
a categorical characterization of k-compactness is given in terms of a closure
operator depending on an ultrafilter over k.
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RESUMEN. Se presentan caracterizaciones del tipo Kuratowski-Mréwka de la
k-compacidad inicial y de la k-compacidad final, donde x > R; es un cardinal.
Ademas, se presenta una caracterizacion categorica de la k-compacidad, en
términos de un operador de clausura que depende de un ultrafiltro sobre k.

Palabras y frases clave. Caracterizacion de Kuratowski-Mréwka de los espacios
compactos, operador de clausura, formas débiles de compacidad.

1. Introduction

The Kuratowski-Mréwka characterization of compact spaces as those spaces X
that satisfy the condition that the second projection 73 : X XY — Y is a
closed map, for each space Y, gave rise to a categorical approach to compactness
(ct. [3], [4], [5] and [7], among others).

The generality of this approach leads to a wide range of applications. In
particular, by defining different closure operators in the category of topological
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spaces and continuous functions, alternative notions of compactness are ob-
tained, some of them well known, like sequential compactness or countable
compactness. This points out the relevance of this categorical approach.

This paper describes a closure operator that induces F-compactness, where
F is an ultrafilter over a fixed set of indices. As a consequence and by means of
results due to X. Caicedo (cf. [2]), a characterization of the Kuratowski-Mrowka
type is found, for certain forms of weak compactness.

2. The Kuratowski-Mroéwka characterization

The present work revolves around the Kuratowski-Mréwka characterization of
compact topological spaces.

Note in the first place that each filter F over a set X defines a topology
over X U {w}, where w ¢ X, as follows: if # # w, the neighborhood filter
of z is V(z) = {V C X U{w} : z € V} and the neighborhood filter of w is
V(w) ={FU{w}: F € F} (cf. [1]). Denote by X the set X U{w} endowed
with this topology.

The spaces X, where F is a filter over the topological space X, play a
crucial role in the characterization of weak forms of compactness and allow to
simplify the Kuratowski-Mrowka characterization, as it will be seen below.

Suppose that U is a non convergent ultrafilter over a topological space
X. Since U doesn’t have any limit point, for each z € X, there exists an
open neighborhood V,, of  such that V,, ¢ U. Since U is an ultrafilter, then
XNV, €U, for each x € X. Consider the space Xy, and the set Ay = {(x,x) €
XxXy : x e X}. Foreach x € X theset V, x (X \V, [J{w}) is a neighborhood
of (z,w) in X x Xy, in a such way that V, x (X \ V. U{w}) Ao = 0, then
(z,w) ¢ Ag for each z € X. This implies that m3(Ag) = X and since X is not
a closed subset of Xy, because w € X, it follows that my : X x Xy — Xy, is
not a closed map.

From the above arguments, one obtains:
Proposition 1. For a topological space X, the following are equivalent:
(1) X is compact,
(2) The map m : X xY — Y is closed, for each topological space Y .
(8) The map mo : X x Xr — X g is closed, for each filter F over X.
(4) The map 7o : X x Xyy — Xy is closed, for each ultrafilter U over X.

3. [\, k]-compact spaces

Intermediate forms of compactness, other than countable compactness, has
been considerer by many authors. Characterizations of the Kuratowski-Mrowka
type for some of these notions are established in this section.
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Definition 1. Let A < k be infinite cardinals. A topological space X is said to
be [\, k]-compact if every cover of X consisting of at most k open sets, has a
subcover whose cardinality is smaller than .

Equivalently, X is [\, k]-compact, if and only if, if every intersection con-
sisting of less than A sets of a family {K,}o<x of closed subsets of X is not
empty, then (., Ko # (). Countable compactness is an example of [\, k|-
compactness, for A = k = Ng.

For the sake of simplicity, the [Ng, x]-compact spaces will be referred as
K-compact spaces.

Definition 2. A topological space X is [\, 00]-compact or finally A\-compact
if it is [\, k]-compact for each cardinal k, A < k. In other words, X is finally
A-compact if every open cover of X has a subcover whose cardinal is less than
A

Compactness and the Lindelof property are examples of finally A-compact-
ness. In the first case, A = Ng, and in the second, A = N;.

First we focus on the k-compact spaces.

Definition 3. Let x be an infinite cardinal. A net (z~)~yer over a set X is an
k-net if |T'| < k.

The next proposition establishes a characterization of the Kuratowski-Mréow-
ka type for the k-compact spaces.

Proposition 2. A topological space X is k-compact, if and only if, for each
filter F associated to a k-net (x)~ycr, the second projection ma : X X Xy —
Xr is a closed map .

Proof. First suppose that X is k-compact and let F be the filter associated to
the k-net (z)yer. Let M C X x Xr be a closed set and y € Xz ~\ ma(M).
If y # w, then {y} is a neighborhood of y contained in Xz \ my(M). Now
suppose that y = w; for each € X there exist an open neighborhood V,, of x
and v, € T, such that V; x {zy : v > 7.} C (X x Xz) ~ M. For each y € T’
consider the set V, = J{V, : Vo x {x5 : 6 > v} C (X x Xz) \ M}. The family
{V4}~er is an open cover of X and its cardinal is less or equal than k. The
r-compactness of X implies the existence of a finite subset IV = {y1,...,vn}
of I', such that Ui:l,...,n Vi = X. Let 7 € I' be such that v; < g, for each
i=1,..,n. It follows that {w}U{z, : v > 70} is a neighborhood of @ contained
in Xz~ ma(M). One concludes that Xz~ o (M) is an open set and thus mo (M)
is closed.

Now suppose that, for each filter F associated to a k-net in X, the second
projection 7y : X x Xz — X is closed and suppose that {V)}xea is an open
cover of X whose cardinal is less than or equal to x and has no finite subcover.
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The family I" of all finite subsets of A has a cardinal less or equal than x and is
directed by the relation <, defined by 7; < 7 if and only if v; C 2. Now, for
each v € T', we pick z, € X such that 2 ¢ [J,c, Vi and denote by F the filter
associated to the x-net (z,)yer. Consider the subset M = {(z,,z,) : v € '}
of X x Xgz. If z € V), then, for each v € I with v > ~y = {\}, it follows that
x ¢ Vy; this means that Vi x ({z, : v > v} U{w}) C (X x Xz) \ M, that
is, (r,) ¢ M, therefore @w ¢ mo(M). But, it is apparent that w € ma(M).
This proves that m3 : X x Xz — X is not a closed map, contradicting the
hypothesis. We conclude that {V\}.ca contains a finite subcover, thus X is
K-compact. o

In the particular case of countably compact spaces, one has the next result.

Corollary 1. A topological space X is countably compact, if and only if, for
each elementary filter F associated to a sequence, the second projection sy :
X X Xg — XF is a closed map.

Now we focus on the finally A-compact spaces.

Definition 4. Let k be an infinite cardinal. A net (z~)yer over a set X is a
final k-net if every subset IV of T such that |I'| < k has a upper bound in T.

Arguing in a similar way as in the proof of Proposition 2, one obtains the
following result.

Proposition 3. A topological space X is finally k-compact, if and only if,
for every filter F associated to a final k-net (x,)ycr, the second projection
w9 : X X Xr — Xr is a closed map.

Proof. First suppose that X is finally k-compact and let F the associated filter
to the final k-net (z,)yer. Let M C X x Xr be a closed set and y € Xx \
ma(M). If y # w, then {y} is a neighborhood of y contained in Xz \ mo(M).
Suppose now y = w. For each x € X there exist an open neighborhood V,
of z and 7, € T, such that V, x {z, : v > 7,} C (X x Xz) ~ M. For each
v € T consider the set Vy, = (J{V, : Vo x {x5 : § > v} C (X x Xz) N M}
The family {V,},er is an open cover of X and the final x-compactness of X
implies the existence of a subset I of I', whose cardinal is less than x and such
that J,cp Vo = X. Let 40 € T' be such that o < v, for each a € I'V. Then
{w}U{zy : v > 7} is a neighborhood of w contained in Xz ~\ mo(M). It
follows that Xz \ mo(M) is an open set, therefore mo(M) is closed.

Now suppose that for each filter F associated to a final x-net in X, the
second projection mg : X X Xz — X is closed and suppose that {V)}xen is
an open cover of X with no subcover with cardinal less than k. The family T’
of all subsets of A with cardinal less than « is directed by the relation v, < 4
if 71 C 72, furthermore if I'" C T" has a cardinal less than &, then (J o o is a
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upper bound of IV in I'. For each v € T' pick z, € X such that z, ¢ Uy, V2
and denote by F the filter associated to the x-net (z)er. Consider the subset
M = {(zy,zy) : v €T} of X x Xr. If © € V}, then, for each v € T" satisfying
v > v = {A}, one has that = ¢ V); this means that V) x ({z, : v > v} U

{w}) C (X xXz)\M,that is, (x,0) ¢ M, therefore @ ¢ mo(M). On the other

hand, it is clear that w € mo(M). This proves that mo : X x Xy — X is not a
closed map, contradicting our hypothesis. We conclude that {V)}xea contains
a subcover whose cardinal is less than x, thus X is finally x-compact.

4. Closure operators and compactness: the categorical approach

The notions of closure operator and compactness in a category with a proper
system of factorization has been studied by some authors like E. G. Manes in
[7] and M. M. Clementino, E. Giuli and W. Tholen in [3], [4]. We consider here
these notions restricted to the category of topological spaces and continuous
functions.

Definition 5. A closure operator ¢ in the category Top of topological spaces
and continuous functions is given by a family of functions cx : P(X) — P(X)
(X € Top) such that:

(1) c is extensive, that is, A C cx(A), for every A C X.

(2) ¢ is monotone, in the sense that if A C B, then c¢x(A) C cx(B), for
every A, B C X.

(8) Every continuous map is c-continuous. That is, if f : X — Y is a
continuous function then f(cx(A)) C ey (f(A)), for each A C X.

Let ¢ be a closure operator in Top, X and Y be topological spaces. A function
f+ X — Y is c-preserving, if and only if, cy (f(A)) C f(ex(A)), for each
AcCX.

Finally, a topological space X is c-compact if the second projection py :
X XY —Y is c-preserving for each space Y .

5. F-compact spaces

In this section a closure operator inducing the F-compactness is described, F
being an ultrafilter over a fixed set of indices. In terms of these operators
we will find a characterization of the Kuratowski-Mréwka type for some weak
forms of compactness.

Definition 6. Let F be an ultrafilter over a set I. A family {x;};c1 of elements
of a topological space X is said to F-converge to a point x in X if, for each
open neighborhood V' of x, one has that {i € I : x; € V} € F.
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Proposition 4. Let F be an ultrafilter over a set I, {x;};cr be a family of
elements of a topological space X and A : I — X the function defined by
A(i) = x;. The family {x;};c1 F-converges to a point x € X, if and only if,
the ultrafilter A(F) over X generated by the family {A(F) : F € F} converges
to x.

Proof. Suppose that {z;}ic; F-converges to x € X and let V be an open
neighborhood of z. Since {i € I : x; € V} € F, it follows that A({i € I : z; €
V}) € A(F) and, since A({i € I : x; € V}) C V, it follows that V € A(F).
Then A(F) converges to x.

Conversely, if V' is an open neighborhood of z, there exists F' € F such that
AF)cV.ButFc{iel:x; €V} thus{i € I:2; € V} € F. This means
that the family {z;};,c; F-converges to x. oif

Definition 7. Let F be an ultrafilter over a set I. A topological space X s
said to be F-compact if every family {x;}icr of elements of X is F-convergent.

Every ultrafilter F over a set I gives rise to a closure operator ¢’ in the
category of topological spaces and continuous functions as follows.

Definition 8. Let X be a topological space and A C X. An element x is said
to be an element of ¢% (A), if and only if, there exists an I-family {a;}icr in A
such that F-converges to x.

Proposition 5. The family of functions of the form c% : P(X) — P(X),

Ar— c§(A), where X is a topological space, determines a closure operator in

Top.

Proof. The first two conditions are straightforward. To prove the third, let
X and Y be topological spaces and f : X — Y be a continuous function.
For A C X and y € f(c%(A)), consider z € c%(A) such that f(z) = y. If
{a;}icr is an I-family in A F-converging to x, then {f(a;)}ics is an I-family
in f(A) F-converging to y. In fact, if V' is an open neighborhood of y, then
{iel:a;e fY(V)} € F, thatis, {i € I : f(a;) € V} € F. This shows that
f (% (A)) C L (f(A)), for every A C X. Hence every continuous function is

f

¢’ -continuous. This completes the proof. o

The following two lemmas are required in order to elucidate the relation
between F-compactness and ¢’ -compactness.

Lemma 1. If X is a topological space and A C X, then c%(A) C A.

Proof. Let z € c%(A) and V € V(x). There exists an I-family {a;}ics in A,
such that F-converges to x; then {i € I : a; € V} € F, therefore VNA # 0.
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Lemma 2. If X is a topological space and {x;}icr is an I-family in X de-
termined by the function A : I — X, i — x;, then the family {z;}icr
F-converges to w in Xy, where U the ultrafilter over X generated by the base
{A(F): F € F}.

Proof. A basic open neighborhood of w in Xy, is of the form V = A(F) U {w},
where F' € F, it follows that F C {i € [ :x; € V}, hence {i € [ : x; € V} €
F.

The following proposition asserts that the concept of F-compactness coin-

cides with that of compactness with respect to the closure operator ¢ .

Proposition 6. Let F be an ultrafilter over a set I. A topological space X is

¢’ -compact, if and only if, it is F-compact.

Proof. Suppose that X is ¢"-compact and let {z;};c; be an I-family in X
defined by the function A : I — X, i — ;. Denote by U the ultrafilter over
X generated by the base {A(F) : F € F}. By Proposition 4, it suffices to prove
that U converges.

Consider the subset A = {(z,2) : z € X} of X x Xp. From Lemma 2,
it follows that the family {z;}ic; in m2(A), F-converges to w in Xz, then
w € %, (m2(A)), hence w € m (%, x, (A)), thus (z,@) € ¢k, x,(A) for
some z € X. From Lemma 1, it follows that (z,w) € A, therefore if V € V(z)
and F € F, then V N A(F) # (. This implies that V € U, thus U converges to

z. This proves that X is F-compact.

Conversely, suppose that X is F-compact and consider a topological space
Y, K C X xY and yg € cy(ma(K)). There exists a family (y;)ier in m2(K)
F-converging to yo. For each i € I, let x; € X such that (x;,y;) € K. From
the F-compactness of X, it follows that (x;);e; F-converges to a point zg €
X. The family {(x;,v;)}ier F-converges to (zo,%0); in fact: if V' is an open
neighborhood of xzy in X and W is an open neighborhood of yg in Y, it follows
that {i € I : (z,y;) e Vx W}t ={iel:z eVin{iel:y €W}
thus {i € I : (z;,55) € V x W} € F; then (z0,y0) € ckyy(K), that is,
Yo € m2 (X yy (K)). This shows that ¢ (m2(K)) C 72 (c% .y (K)), for every
K C X x Y and consequently that X is ¢*-compact.

Remark 1. From the proof of the preceding proposition it also follows that a
space X is c¢” -compact, if and only if, for each A : I — X, the projection
7o 1 X X Xyy — Xy is ¢ -preserving, where U = A(F).

6. A closure operator generating k-compactness

The following definition was introduced by H. J. Keisler in 1964 (cf. [6]) and
has since then been widely used in the study of the [\, k]-compact spaces.
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Definition 9. An ultrafilter F over a set I is called (A, k)-regular if there
exists a family A C F, with |A| = k and such that if B C A and |B| = A, then
NB=0.

The following results due to X. Caicedo are indispensable in what follows.
Consider k<* := Y5\ k° (in particular, k<% = k). A family of topological
spaces T is said to be productively [\, k]-compact if the product of any family
of spaces in T is [\, k|-compact.

Lemma 3 (X. Caicedo [2]). Let X be a topological space

(1) If X is F-compact for a (A, k)-regular ultrafilter F, then X is [\, k]-
compact.

(2) If X is [\, K|-compact, then for each k<*-family of X there ewists an
ultrafilter (X, k)-regular F over k<, such that the family F-converges.

Theorem 1 (X. Caicedo [2]). The following assertions are equivalent:

(1) T is productively [\, k]-compact.

(2) There exists a (\, k)-reqular ultrafilter F over k<*, such that every space
in T is F-compact.

From these two last results and from the fact that the k-compactness is
preserved by products, for every £ > Vg (cf. [2]), one obtains the following
corollary.

Corollary 2. Let k > Xq. There exists an ultrafilter (Ng, k)-regular F,; over k
such that any topological space X is k-compact if and only if it is F,.-compact.

Now one can state the following characterization of the Kuratowski-Mrowka
type of the k-compact space, with k > Ng.

Theorem 2. Let k > Ry. A topological space X is k-compact if and only if it
is ¢F=-compact.

This means that X is k-compact, if and only if, for each A : kK — X, the
map 7y : X X Xyy — Xy, where U = A(F,,), is ¢’ =-preserving.
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