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Continuity of the quenching time in a
semilinear heat equation with a potential
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Abstract. In this paper, we consider a semilinear heat equation with a poten-
tial subject to Neumann boundary conditions and positive initial data. Under
some assumptions, we show that the solution of the above problem quenches
in a finite time and estimate its quenching time. We also prove the continu-
ity of the quenching time as a function of the potential and the initial data.
Finally, we give some numerical results to illustrate our analysis.
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Resumen. En este trabajo consideramos una ecuación semilineal de calor
con potencial, sujeta a condiciones de Neumann de frontera y datos iniciales
positivos. Bajo ciertos supuestos mostramos que la solución de dicha ecuación
se apaga en tiempo finito y estimamos el tiempo en que lo hace. También
probamos la continuidad del tiempo de extinción en función del potencial y
de los datos iniciales. Finalmente damos algunos resultados numéricos que
ilustran nuestro análisis.
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56 THÉODORE K. BONI & THIBAUT K. KOUAKOU

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the
following initial-boundary value problem

ut = Lu− a(x)f(u) in Ω× (0, T ) , (1)
∂u

∂η
= 0 on ∂Ω× (0, T ) , (2)

u(x, 0) = u0(x) > 0 in Ω , (3)

where f : (0,∞) −→ (0,∞) is a C1 convex, nonincreasing function,
∫ γ

0
ds

f(s) <

∞ for any positive real γ, lims→0+ f(s) = ∞, a ∈ C0
(
Ω

)
, a(x) > 0 in Ω. The

operators L and ∂
∂η are defined as follows

Lu =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
,

∂u

∂η
=

N∑

i,j=1

aij(x)
∂u

∂xj
νi ,

where ν = (ν1, . . . , νN ) is the exterior normal unit vector on ∂Ω, aij : Ω −→ R,
aij ∈ C1

(
Ω

)
, aij = aji, 1 ≤ i, j ≤ N , and there exists a positive constant C

such that

N∑

i,j=1

aij(x)ξiξj ≥ C‖ξ‖2 , ∀ x ∈ Ω , ∀ ξ = (ξ1, . . . , ξN ) ∈ RN ,

where ‖ · ‖ stands for the Euclidean norm of RN . The initial data u0 ∈ C1
(
Ω

)
,

u0(x) > 0 in Ω and satisfies the compatibility condition ∂u0
∂η = 0 on ∂Ω. Here

(0, T ) is the maximal time interval of existence of the solution u. The time T
may be finite or infinite. When T is infinite, then we say that the solution u
exists globally. When T is finite, then the solution u develops a singularity in
a finite time, namely,

lim
t→T

umin(t) = 0 ,

where umin(t) = minx∈Ω u(x, t). In this last case, we say that the solution u
quenches in a finite time, and the time T is called the quenching time of the
solution u. Consequently, in this paper, with the definition of the time T , we
have

u(x, t) > 0 in Ω× [0, T ) .

Solutions of semilinear heat equations which quench in a finite time have
been the subject of investigation of many authors (see [1], [2], [3], [5], [7], [8],
[9], [10], [11], [17], [19], [20], [21], [22], [23], [25], [26], and the references cited
therein). In particular, in [5], the problem (1)-(3) has been studied. The local
in time existence of a classical solution has been proved and this solution is
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unique (see [5]). It is also shown that the solution of (1)-(3) quenches in a
finite time, and its quenching time has been estimated (see [5]). In this paper,
we are interested in the continuity of the quenching time as a function of the
potential a and the initial data u0. More precisely, we consider the following
initial-boundary value problem

vt = Lv − ah(x)f(v) in Ω× (
0, T k

h

)
, (4)

∂v

∂η
= 0 on ∂Ω× (

0, T k
h

)
, (5)

v(x, 0) = uk
0(x) > 0 in Ω , (6)

where ah ∈ C0
(
Ω

)
, 0 < ah(x) ≤ a(x) in Ω, limh→0 ah = a. The initial data

uk
0 ∈ C1

(
Ω

)
, uk

0(x) ≥ u0(x) in Ω, uk
0 obeys the compatibility condition ∂uk

0
∂η = 0

on ∂Ω, limk→0 uk
0 = u0. Here

(
0, T k

h

)
is the maximal time interval on which the

solution v of (4)-(6) exists. When T k
h is finite, then we say that the solution

v of (4)-(6) quenches in a finite time, and the time T k
h is called the quenching

time of the solution v. The definition of the time T k
h renders

v(x, t) > 0 in Ω× [
0, T k

h

)
.

By a little transformation, it is not hard to see

vt − Lv + a(x)f(v) ≥ 0 in Ω× (
0, T k

h

)
,

v0(x) ≥ u0(x) inΩ .

From the maximum principle, we have v ≥ u as long as all of them are defined.
We deduce that T k

h ≥ T. In the present paper, under some hypotheses, we prove
that if h and k are small enough, then the solution v of (4)-(6) quenches in a
finite time, and its quenching time T k

h goes to T as h and k go to zero, where
T is the quenching time of the solution u of (1)-(3) . Similar results have been
obtained in [4], [8], [13], [14], [15], [16], [18], [24], [27], where the authors have
considered both the phenomenon of blow-up and the continuity of the blow-up
time as a function of the initial data (we say that a solution blows up in a
finite time if it reaches the value infinity in a finite time). Recently, in [7], Boni
and N’gohisse have handled the continuity of the quenching time as a function
of the initial data for the problem (1)-(3) in the case where the operator L is
replaced by the Laplacian, a(x) = 1 and f(s) = s−p with p a positive constant.
The rest of the paper is organized as follows. In the next section, under some
assumptions, we show that the solution v of (4)-(6) quenches in a finite time
and estimate its quenching time. In the third section, we prove the continuity
of the quenching time and finally in the last section, we give some numerical
results to illustrate our analysis.
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2. Quenching time

In this section, under some assumptions, we show that the solution v of (4)-(6)
quenches in a finite time and estimate its quenching time.
We borrow an idea of Friedman and McLeod in [12], and prove the following
result.

Theorem 2.1. Suppose that there exists a constant A ∈ (0, 1] such that the
initial data at (6) satisfies

Luk
0(x)− ah(x)f

(
uk

0(x)
) ≤ −Af

(
uk

0(x)
)

in Ω . (7)

Then, the solution v of (4)-(6) quenches in a finite time T k
h which obeys the

following estimate

T k
h ≤

1
A

∫ uk
0min

0

ds

f(s)
,

where uk
0min = minx∈Ω uk

0(x).

Proof. Since
(
0, T k

h

)
is the maximal time interval of existence of the solution v,

our aim is to show that T k
h is finite and satisfies the above inequality. Introduce

the function J(x, t) defined as follows

(x, t) = vt(x, t) + Af(v(x, t)) in Ω× [
0, T k

h

)
.

A straightforward computation reveals that

Jt − LJ = (vt − Lv)t + Af ′(v)vt −ALf(v) in Ω× (
0, T k

h

)
. (8)

Again, by a direct calculation, it is easy to check that

Lf(v) = f ′′(v)
N∑

i,j=1

aij
∂v

∂xi

∂v

∂xj
+ f ′(v)Lv in Ω× (

0, T k
h

)
.

This implies that Lf(v) ≥ f ′(v)Lv in Ω × (
0, T k

h

)
, because the first term on

the right hand side of the above equality is nonnegative. Using this estimate
and (8), we arrive at

Jt − LJ ≤ (vt − Lv)t + Af ′(v)(vt − Lv) in Ω× (
0, T k

h

)
. (9)

According to (4) and (9), it is not hard to see that

Jt − LJ ≤ −ah(x)f ′(v)vt −Aah(x)f(v)f ′(v) in Ω× (
0, T k

h

)
.

Taking into account the expression of J, we find that

Jt − LJ ≤ −ah(x)f ′(v)J in Ω× (
0, T k

h

)
.
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We also have

∂J

∂η
=

(
∂v

∂η

)

t

+ Af ′(v)
∂v

∂η
= 0 on ∂Ω× (

0, T k
h

)
,

and due to (7), we discover that

J(x, 0) = Luk
0(x)− ah(x)f

(
uk

0(x)
)

+ Af
(
uk

0(x)
) ≤ 0 in Ω .

It follows from the maximum principle that

J(x, t) ≤ 0 in Ω× (
0, T k

h

)
,

which implies that

vt(x, t) + Af(v(x, t)) ≤ 0 in Ω× (
0, T k

h

)
.

This estimate may be rewritten in the following manner

dv

f(s)
≤ −Adt in Ω× (

0, T k
h

)
. (10)

Integrate the above inequality over
(
0, T k

h

)
to obtain

T k
h ≤

1
A

∫ v(x,0)

0

ds

f(s)
for x ∈ Ω .

We deduce that

T k
h ≤

1
A

∫ uk
0min

0

ds

f(s)
.

Use the fact that the quantity on the right hand side of the above inequality is
finite to complete the rest of the proof. ¤X

Remark 2.1. Let t0 ∈
(
0, T k

h

)
. Integrating the inequality in (10) from t0 to

T k
h , we get

T k
h − t0 ≤ 1

A

∫ v(x,t0)

0

ds

f(s)
for x ∈ Ω .

We deduce that

T k
h − t0 ≤ 1

A

∫ vmin(t0)

0

ds

f(s)
.
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3. Continuity of the quenching time

In this section, under some assumptions, we show that the solution v of (4)–(6)
quenches in a finite time, and its quenching time goes to that of the solution
u of (1)–(3) when h and k go to zero. Firstly, we show that the solution v
approaches the solution u in Ω× [0, T − τ ] with τ ∈ (0, T ) when h and k tend
to zero. This result is stated in the following theorem.

Theorem 3.1. Let u be the solution of problem (1)-(3). Suppose that u ∈
C2,1

(
Ω× [0, T − τ ]

)
and mint∈[0,T−τ ] umin(t) = α > 0 with τ ∈ (0, T ). Assume

that

‖ah − a‖∞ = o(1) as h → 0 , (11)∥∥uk
0 − u0

∥∥
∞ = o(1) as k → 0 , (12)

then, the problem (4)-(6) admits a unique solution v ∈ C2,1
(
Ω× [

0, T k
h

))
and

the following relation holds

sup
t∈[0,T−τ ]

‖v(·, t)− u(·, t)‖∞ = O
(‖ah − a‖∞ +

∥∥uk
0 − u0

∥∥
∞

)
as (h, k) → (0, 0) .

Proof. The problem (4)-(6) has a unique solution v ∈ C2,1
(
Ω× [

0, T k
h

))
, for

each h. In the introduction of the paper, we have seen that T k
h ≥ T. Let

t(h, k) ≤ T be the greatest value of t > 0 such that

‖v(·, t)− u(·, t)‖∞ ≤ α

2
for t ∈ (0, t(h, k)) . (13)

Obviously, we see that ‖v(·, 0) − u(·, 0)‖∞ =
∥∥uk

0 − u0

∥∥
∞ . Due to this fact,

we deduce from (12) and (13) that t(h, k) > 0 for k sufficiently small. By the
triangle inequality, we find that

vmin(t) ≥ umin(t)− ‖v(·, t)− u(·, t)‖∞ for t ∈ (0, t(h, k)) , (14)

which leads us to

vmin(t) ≥ α− α

2
=

α

2
for t ∈ (0, t(h, k)) .

Introduce the function e(x, t) defined as follows

e(x, t) = v(x, t)− u(x, t) in Ω× [0, t(h, k)) .

A routine computation reveals that

et − Le = −a(x)f ′(θ)e + (a(x)− ah(x))f(v) in Ω× (0, t(h, k)) ,

∂e

∂η
= 0 on ∂Ω× (0, t(h, k)),

e(x, 0) = uk
0(x)− u0(x) in Ω ,
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where θ is an intermediate value between u and v. According to (14), we find
that f(v) ≤ M , where M = f(α

2 ). We deduce that

et − Le ≤ −a(x)f ′(θ)e + M‖a− ah‖∞ in Ω× (0, t(h, k)) .

Introduce the function z defined as follows

z(x, t) = e(L+M+1)t
(‖ah − a‖∞ +

∥∥uk
0 − u0

∥∥
∞

)
in Ω× [0, T ] ,

where L = −‖a‖∞f ′(α
2 ). Due to (14), it is not hard to see that L = −‖a‖∞f ′(α

2 )
≥ −a(x)f ′(θ) in Ω× (0, t(h, k)). Thanks to this observation, a straightforward
calculation yields

zt − Lz ≥ −a(x)f ′(θ)z + M‖a− ah‖∞ in Ω× (0, t(h, k)) ,

∂z

∂η
= 0 on ∂Ω× (0, t(h, k)) ,

z(x, 0) ≥ e(x, 0) in Ω .

It follows from the maximum principle that

z(x, t) ≥ e(x, t) in Ω× (0, t(h, k)) .

In the same way, we also prove that

z(x, t) ≥ −e(x, t) in Ω× (0, t(h, k)) ,

which implies that

‖e(·, t)‖∞ ≤ e(L+M+1)t
(‖ah − a‖∞ +

∥∥uk
0 − u0

∥∥
∞

)
for t ∈ (0, t(h, k)) .

Let us show that t(h, k) = T. Suppose that t(h, k) < T. From (13), we obtain
α

2
= ‖v(·, t(h, k))− u(·, t(h, k))‖∞ ≤ e(L+M+1)T

(‖ah − a‖∞ +
∥∥uk

0 − u0

∥∥
∞

)
.

Since the term on the right hand side of the above inequality goes to zero as
h and k go to zero, we deduce that α

2 ≤ 0, which is impossible. Consequently,
t(h, k) = T , and the proof is complete. ¤X

Now, we are in a position to prove the main result of the paper.

Theorem 3.2. Suppose that problem (1)-(3) has a solution u which quenches
at the time T and u ∈ C2,1

(
Ω× [0, T )

)
. Assume that

‖ah − a‖∞ = o(1) as h → 0 ,∥∥uk
0 − u0

∥∥
∞ = o(1) as k → 0 .

Under the assumption of Theorem 2.1, the problem (4)-(6) admits a unique
solution v which quenches in a finite time T k

h and the following relation holds

lim
(h,k)→(0,0)

T k
h = T.
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Proof. Let 0 < ε ≤ T/2. There exists ρ > 0 such that

1
A

∫ y

0

ds

f(s)
≤ ε

2
, 0 ≤ y ≤ ρ . (15)

Since u quenches in a finite time T, there exists T0 ∈
(
T − ε

2 , T
)
such that

0 < umin(t) <
ρ

2
for t ∈ [T0, T ) .

Set T1 = T0+T
2 . It is not hard to see that

umin(t) > 0 for t ∈ [0, T1] .

From Theorem 3.1, for h and k small enough, the problem (4)-(6) admits a
unique solution v, and the following estimate holds

‖v(·, t)− u(·, t)‖∞ <
ρ

2
for t ∈ [0, T1] ,

which implies that ‖v(·, T1) − u(·, T1)‖∞ ≤ ρ
2 for h and k small enough. An

application of the triangle inequality leads us to

vmin(T1) ≤ ‖v(·, T1)− u(·, T1)‖∞ + umin(T1) ≤ ρ

2
+

ρ

2
= ρ ,

for h and k small enough. On the other hand, in the introduction of the present
paper, it has been mentioned that T k

h ≥ T , and from Theorem 2.1, we know
that v quenches at the time T k

h . We deduce from Remark 2.1 and (15) that

0 ≤ T k
h − T = T k

h − T1 + T1 − T ≤ 1
A

∫ vmin(T1)

0

ds

f(s)
≤ ε .

This ends the proof. ¤X

4. Numerical results

In this section, we give some computational experiments to confirm the theory
given in the previous section. We consider the radial symmetric solution of the
following initial-boundary value problem

ut = ∆u− a(x)u−p in B × (0, T ) ,

∂u

∂ν
= 0 on S × (0, T ) ,

u(x, 0) = u0(x) in B ,

where B =
{
x ∈ RN ; ‖x‖ < 1

}
, S =

{
x ∈ RN ; ‖x‖ = 1

}
. The above problem

may be rewritten in the following form
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ut = urr +
N − 1

r
ur − a(r)u−p, r ∈ (0, 1), t ∈ (0, T ) , (16)

ur(0, t) = 0, ur(1, t) = 0, t ∈ (0, T ) , (17)
u(r, 0) = ϕ(r), r ∈ [0, 1] . (18)

Here, we take ϕ(r) = 2+ε cos(πr)
5 and a(r) = 1 + ε(3 + sin(πr)), where ε ∈ [0, 1].

We start by the construction of an adaptive scheme as follows. Let I be a
positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I, and ap-

proximate the solution u of (16)-(18) by the solution U
(n)
h =

(
U

(n)
0 , . . . , U

(n)
I

)T

of the following explicit scheme

U
(n+1)
0 − U

(n)
0

∆tn
= N

2U
(n)
1 − 2U

(n)
0

h2
− a(x0)

(
U

(n)
0

)−p

,

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)
ih

U
(n)
i+1 − U

(n)
i−1

2h

− a(xi)
(
U

(n)
i

)−p

, 1 ≤ i ≤ I − 1 ,

U
(n+1)
I − U

(n)
I

∆tn
= N

2U
(n)
I−1 − 2U

(n)
I

h2
− a(xI)

(
U

(n)
I

)−p

,

U
(0)
i = ϕi, 0 ≤ i ≤ I ,

where ϕi = 2+ε cos(iπh)
5 , a(xi) = 1 + ε(3 + sin(iπh)). In order to permit the

discrete solution to reproduce the properties of the continuous one when the
time t approaches the quenching time T , we need to adapt the size of the time
step so that we take

∆tn = min
{

(1− h2)h2

4N
, h2

(
U

(n)
hmin

)p+1
}

,

with U
(n)
hmin = min0≤i≤I U

(n)
i . Let us notice that the restriction on the time

step ensures the positivity of the discrete solution. We also approximate the
solution u of (16)-(18) by the solution U

(n)
h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

∆tn
= N

2U
(n+1)
1 − 2U

(n+1)
0

h2
− a(x0)

(
U

(n)
0

)−p−1

U
(n+1)
0

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)
ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

− a(xi)(U
(n)
i )−p−1U

(n+1)
i ,
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with 1 ≤ i ≤ I − 1, and

U
(n+1)
I − U

(n)
I

∆tn
= N

2U
(n+1)
I−1 − 2U

(n+1)
I

h2
− a(xI)

(
U

(n)
I

)−p−1

U
(n+1)
I ,

with U
(0)
i = ϕi, 0 ≤ i ≤ I.

As in the case of the explicit scheme, here, we also choose

∆tn = h2
(
U

(n)
hmin

)p+1

.

Let us again remark that for the above implicit scheme, existence and positivity
of the discrete solution are also guaranteed using standard methods (see, for
instance [6]). It is not hard to see that urr(1, t) = limr→1

ur(r,t)
r and urr(0, t) =

limr→0
ur(r,t)

r . Hence, if r = 0 and r = 1, then we see that

ut(0, t) = Nurr(0, t)− a(x0)u−p(0, t), t ∈ (0, T ) ,

ut(1, t) = Nurr(1, t)− a(xI)u−p(1, t), t ∈ (0, T ) .

These observations have been taken into account in the construction of our
schemes when i = 0 and i = I. We need the following definition.

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→∞ U
(n)
hmin = 0, and the

series
∑∞

n=0 ∆tn converges. The quantity
∑∞

n=0 ∆tn is called the numerical
quenching time of the discrete solution U

(n)
h .

In the sequel, in order to facilitate our discussion, let us define the notion
of order of our method. In the vast majority of numerical methods, the error
is expressible in the form of an asymptotic series as

e(h) = c1h
p1 + c2h

p2 + · · · (19)

where the positive integer or real exponents pi have been arranged in an as-
cending order of magnitude, p1 < p2 < · · · ; ci are constants. The value of p1, in
particular, defines the order of the numerical method. Let us perform a series
of m computations with values of h that differ by a certain positive constant
factor q = 2 > 1, forming the geometric sequence

h1 = ε, h2 = ε/q, h3 = ε/q2, . . . , hm = ε/qm−1 . (20)

We denote the corresponding values of the numerical solution by

b1, b2, . . . , bm , (21)
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where bm is the most accurate value. Using Eq. (19), we write

bk+1 − bk

bk+2 − bk+1
=

ek+1 − ek

ek+2 − ek+1

∼=

(
ε
qk

)p1 −
(

ε
qk−1

)p1

(
ε

qk+1

)p1 −
(

ε
qk

)p1 = qp1 .

Consequently, we have

p1
∼= log ((bk+1 − bk) / (bk+2 − bk+1))

log(2)
.

The accuracy of this estimate improves as we use more advanced triplets in the
sequence (21).

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the numerical quenching
time tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |tn+1 − tn| ≤ 10−16.

The order (s) of the method is computed from

s =
log((T2h − Th)/(T4h − T2h))

log(2)
.

Numerical experiments for p = 1, N = 2

First case: ε = 0

Table 1. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler
method.

I tn n CPU time s

16 0.080156 2088 3.4 -
32 0.080039 7654 17.2 -
64 0.080009 27786 125 1.96
128 0.080002 99795 785 2.09
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Table 2. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler
method.

I tn n CPU time s

16 0.080156 1794 3 -
32 0.080038 6475 13 -
64 0.080008 23071 131 1.97
128 0.079998 80933 2983 1.58

Second case: ε = 1/10

Table 3. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler
method.

I tn n CPU time s

16 0.055760 1547 2.2 -
32 0.055641 5663 12.7 -
64 0.055609 20634 95 1.89
128 0.055601 74183 659 2.00

Table 4. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler
method.

I tn n CPU time s

16 0.055697 1535 2.3 -
32 0.055610 5661 12.2 -
64 0.055595 20625 122 2.53
128 0.055593 74163 2829 2.91
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Third case: ε = 1/100

Table 5. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler
method.

I tn n CPU time s

16 0.076972 2014 3.1 -
32 0.076856 7386 17 -
64 0.076827 26821 121 1.04
128 0.075820 96347 862 1.02

Table 6. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler
method.

I tn n CPU time s

16 0.076954 2014 3 -
32 0.076847 7385 16 -
64 0.076823 26820 211 2.15
128 0.076817 96343 3617 2.00

Fourth case: ε = 1/1000

Table 7. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler
method.

I tn n CPU time s

16 0.079827 1261 3 -
32 0.079710 7626 17 -
64 0.079681 27686 177 2.01
128 0.079673 99438 904 1.85
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Table 8. Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler
method.

I tn n CPU time s

16 0.079825 2080 3 -
32 0.079709 7626 16 -
64 0.079680 27686 149 2.00
128 0.079673 99438 3570 2.05

Remark 4.1. If we consider the problem (16)-(18) in the case where the po-
tential a(r) = 1, the initial data ϕ(r) = 2

5 and p=1, then we see that the
numerical quenching time of the discrete solution for the explicit scheme or the
implicit scheme is approximately 0.08 (see Tables 1 and 2). Let us notice that
theoretically, we know that value. In fact, since the initial value is constant,
and the potential equals one, it is well known that the quenching time is that
of the solution of the following differential equation α′(t) = −α−p(t), t > 0,
α(0) = 2

5 , with p = 1, and this quenching time is equal to 0.08. We observe
from Tables 3, 4, 5, 6, 7 and 8 that if the above initial data increases slightly,
then the numerical quenching time also increases slightly. This result confirms
the theory established in the previous section.
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