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Perfect powers in solutions to Pell
equations

Potencias perfectas en soluciones a las ecuaciones de Pell
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Abstract. In this paper, we study the appearance of perfect powers in the
first component of a non-minimal solution of a Pell equation. We give an upper
bound on the counting function of the positive integers n having the property
that some power of it (of exponent larger than 1) is the first component of
a non-minimal solution of a Pell equation, and we present a Diophantine
application.
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Resumen. En este trabajo, investigamos la aparición de las potencias perfectas
en la primera componente de una solución no minimal de una ecuación de
Pell. Damos una cota superior sobre la función de conteo del conjunto de los
enteros positivos n tal que alguna potencia suya con exponente mayor que 1
es la primera componente de una solución no-minimal de una ecuación de Pell
y presentamos una aplicación Diofántica.

Palabras y frases clave. Ecuación de Pell.

1. Introduction

Given a positive integer U , we can always write each one of the numbers U2 +1
or U2− 1 as dV 2, where d and V are integers and d is square-free. Conversely,
given any square-free number d > 1, the equation

U2 − dV 2 = ±1 , (1)
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usually referred to as the Pell equation has infinitely many positive integer
solutions (U, V ). Let (U1, V1) be the minimal positive integer solution of the
above equation (1). Put

α = U1 +
√

dV1 , (2)

and for each integer t ≥ 1 write

αt = Ut +
√

dVt , (3)

with positive integers Ut and Vt. Then all positive integer solutions (U, V ) of
equation (1) are of the form (U, V ) = (Ut, Vt) for some t ≥ 1 (see, for example,
Theorem 8.2.9 on page 110 in [7]). Equation (1) has a solution with the sign
−1 in the right hand side if and only if U2

1 − dV 2
1 = −1, and in this case

U2
t − dV 2

t = (−1)t. Otherwise, all positive integer solutions of equation (1)
have the sign +1 in the right hand side.

Given d, the problem of determining all the perfect powers in either the
sequence (Ut)t≥1 or (Vt)t≥1 has received a lot of interest. For example, when
U2

1 − dV 2
1 = 1, then from the combined work of Ljunggren [9] and Cohn [6] it

follows that if Ut is a square, then either t = 1 or t = 2, and Ut is a square
for both t = 1 and 2 only when d = 1785. More general results on polynomial
values in linear recurrence sequences have been proved by Nemes and Pethő
[11], and also by Shorey and Stewart [13]. It follows from the above mentioned
results that there are only finitely many perfect powers in each of the two
sequences (Ut)t≥1 and (Vt)t≥1.

Here, we assume that U2
1 − dV 2

1 = −1 and we take a different point of view
concerning the equation Ut = ng for some positive integers n and g with g > 1.
We fix neither d nor g, but rather take a positive integer n and ask whether or
not ng = Ut holds for some positive integers g > 1 and t > 1. In other words,
we ask whether there exists a positive integer g > 1 such that when writing

n2g + 1 = dv2,

with integers d and v such that d is square-free; the pair (ng, v) is not the
minimal solution of the Pell equation U2 − dV 2 = −1. In what follows, we
write A for the set of such positive integers n. For a positive real number x
we put A(x) = A ∩ [1, x]. In this note, we give an upper bound for #A(x) as
x →∞.

Before mentioning our main result we point out that the set A(x) has al-
ready been investigated in our previous paper [5]. In that paper, we showed
that the estimate

#A(x) ≤ x(c0+o(1))(log log log log log x/ log log log log x)1/3
, (4)

holds as x →∞, where c0 = 2(10/3)1/3. Here and in what follows, we use log x
for the natural logarithm of x. Under the ABC-conjecture, it was also shown
that A is finite. The above results are Lemma 3 in [5].
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In this paper, we improve upon the upper bound (4) on the cardinality of
A(x). Our main result is as follows.

Theorem 1. The estimate

#A(x) ≤ exp
(
(c1 + o(1))

√
log x log log x

)
,

holds as x →∞, where c1 =
√

13/2.

As applications, in [5] the positive integers n not in A were used to cons-
truct quadratic fields having class number divisible by any given positive in-
teger g. Namely, it was shown that for x > x0, there are are at least x1/g/5
real quadratic fields K of discriminant ∆K < x whose class group has an ele-
ment of order g (even), and this holds uniformly for even positive integers
g ≤ (log log x)/(8 log log log x).

Furthermore, consider the equation

(xm + 1) (yn + 1) = z2, (5)

in positive integer unknowns (x, y, m, n, z) with xm > yn. In [10], it was
shown that the ABC-conjecture implies that equation (5) has only finitely
many solutions with min{m,n} ≥ 4. Note that for each solution of equation
(5) there exists a square-free integer d and integers v and w such that xm +1 =
dv2, xn +1 = dw2. When m ≥ 2 and n ≥ 2 are both even, it follows that both
(U, V ) =

(
xm/2, v

)
,

(
yn/2, w

)
are solutions to the Pell equation U2−dV 2 = −1.

Since xm/2 > yn/2, we get that xm/2 = Ut for some t > 1. In particular,
x ∈ A for m > 2, therefore our result can be used to yield an unconditional
upper bound on the number of solutions (x, y, m, n, z) to equation (5) with
max{x, y} ≤ X below some fixed upper bound X. We record this as

Corollary 1. Let B(X) be the set of quintuples (x, y, m, n, z) of positive in-
tegers satisfying equation (5) with xm > yn, m, n even, min{m,n} ≥ 4 and
max{x, y} ≤ X. Then

#B(X) ≤ exp
(
(c1 + o(1))

√
log X log log X

)

as X →∞.

2. Proof of Theorem 1

For any odd positive integer m, let

Pm(X) =

(
X +

√
X2 + 1

)m
+

(
X −√X2 + 1

)m

2
∈ Z[X] . (6)

For example, P1(X) = X and P3(X) = 4X3 + 3X, etc. It is known and easy
to check that Pmn(X) = Pm(Pn(X)) holds for all odd positive integers m and
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n. It is also well-known, and it can be immediately deduced from formulas (2)
and (3) that if U2

1 − dV 2
1 = −1, then Ut = Pt(U1) .

Hence, if n ∈ A(x), then n2g + 1 = dv2, where d is square-free, and so ng =
Ut = Pt(U1) holds with some integer t ≥ 2. Furthermore, since U2

t − dV 2
t =

(−1)t, it follows that t is odd. Using the fact that Pmn(X) = Pm(Pn(X)), it
follows that we may replace t by any prime factor p of it (necessarily odd) and
U1 by u = Ut/p = Pt/p(U1), and thus assume that

ng = Pp(u) . (7)

Thus, it remains to count the number of positive integers n ≤ x such that
relation (7) is satisfied for some integers g > 1, u ≥ 1 and prime p ≥ 3.

Some of the following arguments have already appeared in [5]. We review
them here in order to make this paper self contained.

The structure of n.

If u = 1, we then get that

ng = Pp(1) =

(
1 +

√
2
)p

+
(
1−√2

)p

2
.

Since g > 1, we get that Pp(1) is a perfect power. Since non-degenerate bi-
nary recurrent sequences contain only finitely many perfect powers (see [11],
or Theorem 9.6 on page 152 in [14], for example), we get that the number of
such exponents p is O(1). From now on, we assume that u > 1. In this case,

(2u)p − 1
2

<

(
u +

√
u2 + 1

)p
+

(
u−√u2 + 1

)p

2
<

(2u + 1)p

2
. (8)

Let us take a closer look at the polynomial Pp(X). Its roots are zj =
i sin ((2j + 1)π/p), j ∈ {0, 1, . . . , p − 1}. In particular, Pp(X) has no double
roots. Hence, from known results about perfect power values of polynomials
(see Theorems 10.1 on page 169 and 8.1 on page 141 in [14]), we deduce that
for any fixed p ≥ 3, the equation

Pp(u) = ng ,

has only finitely many positive integer solutions (u, n, g). From now on, we
assume that p > 100.

Now note that u | Pp(u). Further, it is known that gcd (u, Pp(u)/u) | p, and
that if this greatest common divisor is p, then p ‖ Pp(u)/u (see [5]). Hence,
from the equation

ng = Pp(u) ,
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we deduce that either

u = ng
1, Pp(u)/u = ng

2, and n1n2 = n ,

or

u = pg−1ng
1, Pp(u)/u = png

2, and pn1n2 = n .

Bounding n1 and p.

Assume first that n1 = 1. Then, since u > 1, we have that u = pg−1, and
png

2 = Pp(u)/u. Hence,

xg ≥ ng = Pp(u) ≥ up/2 = pp(g−1)/2 ≥ pp(g−1)/2 ≥ ppg/4 ,

therefore
g log x À pg log p ,

giving p ¿ log x/ log log x .
Next, assume that n1 > 1. Then log u ≥ g log n1, while

p log u− log 2 = log(up/2) < log (Pp(u)/u) ≤ log (ng
2p)

≤ g log n2 + log p ,

therefore

p− 1 ≤ p log u− log 2
log u

≤ log n2 + (log p)/g

log n1
. (9)

Since g ≥ 2 and n2 ≤ x/n1, it follows, from (9), that

(p− 1) log n1 ≤ log x− log n1 + (log p)/2 ,

giving np
1 ≤ p1/2x, which implies

n1 ¿ x1/p . (10)

Further, since n1 ≥ 2, g ≥ 2 and n2 ≤ x, we have

p− 1 ≤ log n2 + (log p)/2
log 2

≤ 2 log x + log p .

Since log p < p/2 − 1 when p > 100, we get that p ≤ 4 log x. Thus, in both
cases when n1 = 1 or n1 > 1, we have that

p ≤ 4 log x , (11)

provided that x > x0 is sufficiently large.
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Bounding g.

We now deal with the more difficult task of bounding g. It is known that
2Pp(X) = Qp(2X), where Qp(X) ∈ Z[X] is a monic polynomial. A quick
way to prove this fact is to first notice, by comparing leading terms, that
Qp(X) ∈ Q[X] is monic, and next to notice that the roots of Qp(X):

2zj = 2i sin((2j + 1)π/p) = e(2j+1)iπ/p − e−(2j+1)iπ/p, j = 0, . . . , p− 1 ,

are all algebraic integers and Galois conjugates; thus, Qp(X) ∈ Q[X] is, in
fact, a polynomial with integer coefficients. Hence, the equation Pp(u) = ng is
equivalent to Qp(2u) = 2ng.

At this stage, we record a result of Bugeaud from [2].

Lemma 1. Let f(X) = Xd+a1X
d−1+· · ·+ad ∈ Z[X] be a monic polynomial of

degree d ≥ 2 with integer coefficients without multiple roots. Assume that a 6= 0
and u are integers such that f(u) = avm. Then, either m ≤ 2d log(2H + 3) or

m ≤ 215(d+6)d7d|D|3/2 (log |D|)3d (log(3|a|))2 log log (27|a|) ,

where D is the discriminant of f and H = max{|a1|, . . . , |ad|} is the naive
height of f .

We apply Lemma 1 to bound the number g in terms of x. For this, we
need upper bounds for the parameters H and |D| associated to the polynomial
Qp(X). Since Qp(X) has only nonnegative coefficients, it follows that

H = H (Qp) ≤ H (Pp) ≤ 1 +
p∑

i=1

ai = Pp(1) <

(
1 +

√
2
)p

2
.

Here, Pp(X) = 2p−1Xp + a1X
p−1 + · · ·+ ap ∈ Z[X].

As for the discriminant D of Qp(X), note that

|D| =
p−1∏

j=0

∣∣Q′
p(2zj)

∣∣ =
p−1∏

j=0

∣∣P ′p(zj)
∣∣ ,

where again zj = i sin((2j + 1)π/p), j = 0, . . . , p − 1 are the roots of Pp(X).
Here, we used the fact that Q′

p(2X) = P ′p(X), which follows with the chain
rule from the fact that Qp(2X) = 2Pp(X). Since

P ′p(X) =
p

2
√

X2 + 1

[(
X +

√
X2 + 1

)p

−
(
X −

√
X2 + 1

)p
]
, (12)

one checks easily that

P ′p(zj) =
±p

cos((2j + 1)π/p)
, for j = 0, . . . , p− 1 .
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Since

| cos((2j + 1)π/p)| = | sin((p− 2(2j + 1))π/(2p))| ≥ sin(π/(2p)) ≥ 1/p ,

for all j = 0, . . . , p− 1, and p ≥ 3, we get that

|D| ≤ p2p .

Thus, from Lemma 1 with a = 2 and f(X) = Qp(X), we conclude that either

g ≤ 2p log
((

1 +
√

2
)p

+ 3
)
¿ p2 ,

or

g ≤ 215(p+6)p7pp3p(2p log p)3p(log 6)2 log log 54 .

In both cases,
g ≤ exp(13p(log p + O(log log p))) . (13)

We define y = c2

√
log x/ log log x, where c2 =

√
2/13. If p ≤ y, then log p <

(1/2 + o(1)) log log x as x → ∞, and the above inequality (13) immediately
implies that the inequality

g < exp((c3 + o(1))
√

log x log log x) (14)

holds as x →∞, where c3 =
√

13/2.
We now look at the case when p > y. Estimate (10) implies that

n1 ¿ x1/y = exp
(
(c3 + o(1))

√
log x log log x

)
. (15)

Further, the constant term ap−1 of Pp(u)/u = Qp(2u)/(2u) is p. This can be
noticed by observing that this constant term is

ap−1 = lim
t→0

Pp(t)
t

= P ′p(s)
∣∣∣
s=0

= p (cf. formula (12)).

Since u | Pp(u)/u−ap−1, we get that ng
1 | ng

2−p, or pg−1ng
1 | png

2−p, according
to whether u = ng

1 or pg−1ng
1.

Assume first that n1 = 1. Then pg−2 | ng
2 − 1. It then follows easily that

g − 2 ≤ ordp(n
g
2 − 1) ≤ (p− 1)

log n2

log p
+

log g

log p

< p log x + log g < 4(log x)2 + log g .

This shows that g ¿ (log x)2 in this case. Hence, inequality (14) holds in this
case as well if x is large.
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Assume now that n1 > 1. Then ng
1 | ng

2 − δ, where δ ∈ {1, p}. Let q be the
smallest prime factor of n1. Applying a linear form in q-adic logarithms (see,
for example, [3]), we get that

g ≤ ordq (ng
2 − δ) ¿ q

log q
log n2 log p log g ¿ n1 log x log log x log g ,

which together with inequality (15) implies easily that inequality (14) holds in
this instance also.

Comparing inequalities (14) and (16), we conclude that estimate

g < exp
(
(c3 + o(1))

√
log x log log x

)
holds as x →∞ . (16)

Let Ap(x) be the number of n ≤ x corresponding to the same value for p.
Since n1 and g are bounded as in (10), and (16), and since n2 is determined in
at most two ways once n1, p and g are fixed, we deduce that if p is fixed then

#Ap(x) ¿ #{choices for n1} ×#{choices for g}
¿ x1/p exp((c3 + o(1))

√
log x log log x) (17)

as x → ∞. Furthermore, if n1 ≤ p, then the number of choices for the pair
(n1, p) is O

(
(log x)2

)
. Writing M(x) for the set of n ≤ x for which n1 ≤ p,

we get that

#M(x) ¿ #{choices for g} × (log x)2

≤ exp((c3 + o(1))
√

log x log log x) . (18)

Thus, from now on we assume that n1 > p.

We now distinguish two cases according to whether g is much larger than
p or not.

The case when g > 5p.

We write N (x) for the set of such n ≤ x. We treat in detail the case when
n = n1n2, and later on we shall indicate the minor adjustments needed to deal
with the case when n = pn1n2. We then have u = ng

1, and

ng
2 =

Pp(u)
u

= 2p−1up−1 + a1u
p−2 + · · ·+ ap−1 .

Replacing u by ng
1 we get,

ng
2 = 2p−1n

g(p−1)
1 + a1n

g(p−2)
1 + · · ·+ ap−1 .

Volumen 43, Número 1, Año 2009



PERFECT POWERS IN SOLUTIONS TO PELL EQUATIONS 79

We divide both sides of the above equation by n
g(p−1)
1 and obtain

∣∣∣∣∣

(
n2

np−1
1

)g

− 2p−1

∣∣∣∣∣ <
a1 + a2 + · · ·+ ap−1

ng
1

. (19)

Recall that a1, . . . , ap−1 are nonnegative coefficients. Since the roots zj =
i sin((2j + 1)π/p) for j = 1, . . . , p − 1, of the polynomial Pp(X)/X are all at
most 1 in absolute value, and the first coefficient of this polynomial is 2p−1, it
follows, from the Viète relations, that

ak < 2p−1

(
p− 1

k

)
< 4p , for all k = 1, . . . , p− 1 .

Thus, inequality (19) implies that
∣∣∣∣∣

(
n2

np−1
1

)g

− 2p−1

∣∣∣∣∣ <
4pp

ng
1

. (20)

One checks immediately that the inequality

4pp

ng
1

<
1

2n
2(p−1)
1

holds, since it is implied by ng−2p
1 > (2p)4p, which is true when g > 5p and

n1 > p > 100. Thus, inequality (19) leads to
∣∣∣∣∣

n2

np−1
1

− 2(p−1)/g

∣∣∣∣∣

∣∣∣∣∣∣

(
n2

np−1
1

)g−1

+ · · ·+ 2(p−1)(g−1)/g

∣∣∣∣∣∣
<

1

2n
2(p−1)
1

.

Since n2 and n1 are positive and (p− 1)(g− 1)/g > 1, the second factor in the
left hand side above is larger than 1. Hence, the last inequality above leads to

∣∣∣∣∣
n2

np−1
1

− 2(p−1)/g

∣∣∣∣∣ <
1

2n
2(p−1)
1

.

Note that 2(p−1)/g is irrational since g > 5p. By a classical result from the the-
ory of continued fractions (see Theorem 8.2.4b on page 108 in [7]), we conclude
that n2/np−1

1 is a convergent of 2(p−1)/g. Since n2 ≤ n ≤ x and the sequence
{pk/qk}k≥0 of convergents to the irrational number 2(p−1)/g has the property
that {pk}k≥0 has exponential growth (in fact, pk ≥ Fk for all k ≥ 0, where Fk

is the kth Fibonacci number), we get that the number of possibilities for n ≤ x
once p and g are fixed such that g > 5p is O(log x).

The same argument applies in the case n = pn1n2, except that now we get
that n2/(pn1)p−1 is a convergent to (2p−1/pp)1/g. Thus, in both instances when

Revista Colombiana de Matemáticas



80 KALYAN CHAKRABORTY & FLORIAN LUCA

n = n1n2 or n = pn1n2, we get that the number of possibilities for n ∈ N (x)
is at most

#N (x) ¿ #{choices for p} ×#{choices for g} × log x

≤ exp((c3 + o(1))
√

log x log log x), as x →∞ . (21)

The case when g ≤ 5p.

As a first remark, we observe that inequalities (10) and (17) together with the
fact that g ¿ p ¿ log x, show that

#Ap(x) ¿ x1/p log x . (22)

Next, we digress a bit in order to state a particular version of a result of Evertse
and Silverman, which is useful for our purpose.

Let L be an algebraic number field of degree ` and class number h(L).
Assume that f(X) ∈ Z[X] is a polynomial of degree p having only simple
roots. With these notations, Evertse and Silverman proved the following result
(see [8], or Theorem 5A on page 142 of [12]).

Lemma 2. Consider the equation

yg = f(x) , with x ∈ Z and y ∈ Q∗ . (23)

(i) Suppose g ≥ 3, p ≥ 2, and L contains at least two roots of f(x). Then
the number of solutions of (23) is bounded by

177`g2`h(L) .

(ii) Suppose g = 2, p ≥ 3 and L contain at least three roots of f(x). Then
the number of solutions of (23) is bounded by

713`h(L)2 .

We apply Lemma 2 above to our equation

ng = Pp(u) . (24)

Fix the prime p and let f(X) = Pp(X) ∈ Q[X]. We may take L = Q
[
e2πi/2p

]
to be the cyclotomic field of degree ` = φ(2p) = p − 1, which contains the
splitting field of f(X). Since the discriminant ∆L of L is ±pp−2, and by a
classical result of Landau h(L) ¿

√
|∆L|(log |∆L|)`−1, we get that

h(L) ≤ exp((3/2 + o(1))p log p) ,
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as p → ∞. By Lemma 2 and the fact that g ≤ 5p, we get at once that the
number of solutions of (24) for p fixed is at most

#Ap(x) ≤ exp ((7/2 + o(1))p log p) , (25)

when p →∞. Inequalities (22), (18), (21) and (25), imply immediately that

#A(x) ≤ #M(x) + #N (x) +
∑

p≤4 log x

#Ap(x)

¿ exp
(
(c3 + o(1))

√
log x log log x

)

+
∑

p≤4 log x

min
{

x1/p log x, exp((7/2 + o(1))p log p)
}

,

as x →∞. A quick computation reveals that

min
{

log x

p
, (7/2 + o(1))p log p

}
≤ (c4 + o(1))

√
log x log log x ,

as x →∞, where c4 =
√

7/2. Since c3 > c4, we get the desired inequality upon
ignoring lower order factors and noticing that c3 = c1.

3. Proof of Corollary 1

Let X be large and (x, y,m, n, z) ∈ B(X). Then xm/2 = Ut and yn/2 = Us

for some positive integers s < t. Clearly, x ∈ A(X). Observe that z > 0 is
uniquely determined by (x, y, m, n), so it suffices to count the number of such
quadruples. Let us assume that x ≤ X is fixed.

We first bound the number of choices for t. By the primitive divisor theo-
rem for Lucas sequences (see [4], for example), for each odd k > 3, the num-
ber Uk has a primitive prime factor pk, which is an odd prime not dividing
dU1U2 · · ·Uk−1. It is known that such a prime is congruent to (d|pk) ∈ {±1},
where for an odd prime p we use (•|p) for the Legendre symbol with respect to
p. In particular, writing

t = rα1
1 · · · rαs

s ,

we observe that for all divisors k > 3 of t we have that Uk | Ut and that Uk has
a primitive prime factor pk. Clearly, pk | x and k | pk ± 1. This shows that

tτ(t)/2 =
∏

k|t
k ¿

∏

3<k
k|t

(pk + 1) ¿
∏

p|x
(p + 1) ¿ x log log x .

Here, we write τ(t), ω(t) and Ω(t) for number of divisors, prime divisors, and
prime power divisors of t (> 1), respectively. Since t ≥ 2Ω(t), we get that

2Ω(t)τ(t)/2 ¿ x log log x ,
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yielding Ω(t)τ(t) < 4 log x once x is sufficiently large. Since τ(t) ≥ 2ω(t), we
get that 2ω(t) ≤ 4 log x, therefore s = ω(t) ≤ 2 log log x once x is sufficiently
large. Note that all prime factors of t divide

∏

3≤p, p|x
p 6| d

(p− (d|p)) ,

which is a number having at most log x distinct prime factors for large enough
values of x. Furthermore, the multiplicity αi of each prime factor ri of t is at
most Ω(t) < 4 log x. Thus, the number of possibilities for t once x is fixed is at
most

(4 log x)2 log log x

( blog xc
b2 log log xc

)
< exp

(
5 (log log X)2

)
, (26)

for sufficiently large values of X. From now on, we assume that both x and t
are fixed. Observe that, by the primitive divisor theorem again, if t > 3, then
t | (p± 1) for some prime factor p of x, and, in particular, t ≤ x + 1.

Observe that the count (26) on t is already of order exp(o(
√

log X)) as
X →∞. In what follows, we will show that the count on n is of order at most
polynomial in log X. This would later imply that the counts on t, s and m are
also bounded polynomially in log X, which will then complete the proof of this
corollary.

So, let us look at n and let us assume that n > 20 log X. Write

xn/2 = U1

(
Ut

U1

)
.

It is well-known that if a prime q divides both U1 and Ut/U1, then q divides
t. Furthermore, if qβ‖U1 and qγ‖t, then qβ+γ‖Ut. Armed with these facts, we
first conclude that if q 6 |t, then (n/2) | β. If on the other hand q | t, then qγ | t,
and β + γ is a multiple of n/2. To summarize, there exists a positive integer
x1 dividing x such that

U1 =
x

n/2
1

`
,

where ` is a divisor of t. We may also assume that x1 > 1, since otherwise U1 =
1, therefore xn/2 = Ut and ym/2 = Us are both perfect powers of exponents
n/2 and m/2, respectively (both larger than 1), in the recurrence of general
term

Uk =

(
1 +

√
2
)k

+
(
1−√2

)k

2
, for k = 1, 2, . . . ,

and as we have already mentioned it is known that there are only finitely many
such possibilities for the quadruple (x, y, m, n).
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Putting now x2 = x/x1, we get

x
n/2
2 =

Pt(U1)
U1

= 2t−1U t−1
1 + · · ·+ at−1 , (27)

where we again use

Pt(X)
X

=

(
X +

√
X2 + 1

)t
+

(
X −√X2 + 1

)t

2X

= 2t−1Xt−1 + · · ·+ at−1 ∈ Z[X] . (28)

We rewrite relation (27) as
∣∣∣∣∣

x
n/2
2

2t−1U t−1
1

− 1

∣∣∣∣∣ =
a1U

t−2
1 + · · ·+ at−1

2t−1U t−1
1

.

Replacing U1 by x
n/2
1 /` in the left hand side of the above expression, and

using the formula (28) for Pt(U1) to rewrite the right hand side of the above
expression, we get

∣∣∣∣∣
x

n/2
2 (`/2)t−1

x
(t−1)n/2
1

− 1

∣∣∣∣∣ <

(
U1 +

√
U2

1 + 1
2U1

)t

+

(
U1 −

√
U2

1 + 1
2U1

)t

− 1 . (29)

We now study the right hand side of the above expression. Observe that

(
U1 +

√
U2

1 + 1
2U1

)t

=

(
1 +

1
2

(√
1 +

1
U2

1

− 1

))t

=
(

1 + O

(
1

U2
1

))t

= exp
(

O

(
t

U2
1

))
. (30)

Observe further that

t

U2
1

≤ t

U1
=

t`

x
n/2
1

¿ x2

x
n/2
1

¿ 1

x
n/4
1

, (31)

where the last inequality follows because it is implied by x
n/4
1 ≥ x2, which is

implied by 2n ≥ x8, which in turn holds because n ≥ 20 log X.
Next observe that

(
U1 −

√
U2

1 + 1
2U1

)t

<
1
U1

¿ 1

x
n/4
1

. (32)
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Thus, from estimates (30), (31) and (32), we get that

(
U1 +

√
U2

1 + 1
2U1

)t

+

(
U1 −

√
U2

1 + 1
2U1

)t

− 1

¿
(

exp

(
O

(
1

x
n/4
1

))
− 1

)
+

1

x
n/4
1

¿ 1

x
n/4
1

,

which together with estimate (29) leads to

∣∣∣xn/2
2 (`/2)t−1x

−(t−1)n/2
1 − 1

∣∣∣ ¿ 1

x
n/4
1

. (33)

The left hand side above is nonzero, since if it were, then we would get that

Pt(U1)
U1

= 2t−1U t−1
1 ,

which is not possible for t > 1 since then the left hand side above is larger than
the right hand side above. Applying now a lower bound for a linear form in
logarithms à la Baker [1] to the nonzero expression

∣∣∣αb1
1 αb2

2 αb3
3 − 1

∣∣∣ ,

with α1 = x2, α2 = `/2, α3 = x1, b1 = n/2, b2 = t− 1 and b3 = −(t− 1)n/2,
we get that the left hand side above is bounded from below by

exp
(−c5(log X)3 log(Xn)

)
,

where c5 is some positive constant. Thus, we get that

exp
(−c5(log X)3 log(Xn)

) ¿ 1

x
n/4
1

,

leading to
n log 2 ≤ 4c5 (log X)3 log(Xn) ,

which yields n ≤ c6(log X)4 for some absolute constant c6. Hence, xn/2 =
exp

(
O(log X)5

)
. Since xn/2 = Ut À (

√
2 + 1)t, we get that t ¿ (log X)5, and

since s < t, we get that s ¿ (log X)5 also. Finally, having fixed n ¿ (log X)4

and both t and s of sizes O
(
(log X)5

)
, we have that ym/2 = Us is a fixed number

on the scale exp
(
O((log X)5)

)
. Since y > 1, we get that m can be fixed in
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O
(
(log X)5

)
ways, after which y is uniquely determined. This argument shows

that we have

#B(X) ≤ O(1) + #{choices for x} ×#{choices for n}
×#{choices for t} ×#{choices for s} ×#{choices for m}

¿ #A(X)× (log X)4 × (log X)5 × (log X)5 × (log X)5

≤ exp
(
(c1 + o(1))

√
log X log log X

)
,

as X →∞, as desired. This completes the proof of Corollary 1.
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