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Abstract. Let G and Q be groups with isomorphic tables of marks, and for
each subgroup H of G, let H ′ denote a subgroup of Q assigned to H under
an isomorphism between the tables of marks of G and Q. We prove that if H
is cyclic/elementary abelian/maximal/the Frattini subgroup/the commutator
subgroup, then H ′ has the same property. However, we give examples where
H is abelian and H ′ is not, and where H is the centre of G and H ′ is not
the centre of Q. For this we construct (using GAP) the smallest example of
non-isomorphic groups with isomorphic tables of marks.
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Resumen. Sean G y Q grupos con tablas de marcas isomorfas, y para cada
subgrupo H de G, sea H ′ un subgrupo de Q asignado a H bajo un iso-
morfismo entre las tablas de marcas de G y Q. Demostramos que si H es
cíclico/elemental abeliano/maximal/el subgrupo de Frattini/el subgrupo con-
mutador, entonces H ′ tiene la misma propiedad. Sin embargo, damos ejemplos
donde H es abeliano y H ′ no lo es y donde H es el centro de G y H ′ no es
el centro de Q. Para esto construimos (usando GAP) el menor ejemplo de
grupos no isomorfos con tablas de marcas isomorfas.

Palabras y frases clave. Representación de grupos, anillo de Burnside, tabla de
marcas.

a Supported in part by CONACYT’s Project Funtores de tipo Burnside.
b Supported in part by CONACYT’s Project Funtores de tipo Burnside.
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1. Introduction

Groups with isomorphic tables of marks may not be isomorphic groups (as
proved by Thévenaz in [9]), but one still expects them to have many attributes
in common. Indeed, if G and Q are groups with isomorphic tables of marks,
then they have isomorphic composition factors (see [6] and [3] Section 7), and
they also have isomorphic Burnside rings (the converse is still an open prob-
lem, put forward also in [6]); if two groups have isomorphic Burnside rings and
one of them is abelian/Hamiltonian/minimal simple, then the two groups are
isomorphic (see [7]), and a similar result is known for several families of simple
groups (see [4]). The key for the previous proofs is that a lot can be said about
a group in terms of its table of marks (or even in terms of its Burnside ring).
But how much can be said about a group’s subgroups by its table of marks? Is
it possible to tell when a subgroup is cyclic, elementary abelian or abelian? Can
we tell from the table of marks of G which subgroup is the centre of G, or its
Frattini subgroup, or its commutator subgroup? More generally, if G and Q are
groups with isomorphic tables of marks, this isomorphism establishes a corres-
pondence between the (conjugacy classes of) subgroups of G and Q. Does this
correspondence preserve cyclic/elementary abelian/abelian subgroups? Does
the centre/Frattini subgroup/commutator subgroup of G correspond with its
counterpart in Q? And even if these properties/subgroups were not preserved
by a certain isomorphism, could it be possible to fix this, that is, find an-
other isomorphism between the tables of marks that does preserve them? In
this paper we answer these and a few more questions concerning groups with
isomorphic tables of marks.

In Section 2 we give the basic definitions and notation we shall use through-
out this paper. In Section 3 we list the easier facts that can be deduced about
a subgroup from the table of marks (such as being cyclic, maximal, the Frat-
tini subgroup, the commutator subgroup, to name a few), and which must
therefore be preserved by isomorphisms between tables of marks. In Section 4
we give the smallest example (order-wise) of two non-isomorphic groups with
isomorphic tables of marks, and conclude from this example that one cannot
determine either abelian subgroups or the center of the group from the table of
marks; we also observe that this problem is impossible to fix, in other words,
there is neither an isomorphism between the tables of marks of these groups
that preserves abelian subgroups, nor an isomorphism that makes the centres
of these groups correspond. The same groups show that one cannot determine
the normalizer of a subgroup from the table of marks, and that normalizers are
not preserved by isomorphisms of tables of marks. In the last Section, we rely
heavily on the data provided by GAP [2].

2. Tables of marks

Definition 2.1. Let G, Q be finite groups. Let C(G) be the family of all
conjugacy classes of subgroups of G. We usually assume that the elements of
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C(G) are ordered non-decreasingly. Let ψ be a function from C(G) to C(Q).
Given a subgroup H of G, we denote by H ′ any representative of ψ([H ]). We
say that ψ is an isomorphism between the tables of marks of G and Q if ψ is

a bijection and if #
(

(Q/K ′)H
′

)

= #
(

(G/K)H
)

for all subgroups H,K of G.

For more information on tables of marks and/or Burnside rings, refer to [3,
Section 7], [4, Sections 4 and 5], and [5, Section 4].

Note that #
(

(G/K)H
)

= |NG(K)|
|K| α(H,K) = |NG(H)|

|K| β(H,K), where we

define α(H,K) as the number of subgroups of G which are G-conjugate to K
and contain H , and β(H,K) equals the number of subgroups of K which are
G-conjugate to H . If ψ is an isomorphism between the tables of marks of G and
Q and we denote ψ(H) by H ′, we have that |H ′| = |H |, |NQ (H ′)| = |NG(H)|,
and α(H,K)) = α (H ′,K ′) for allH,K in C(G); in fact, the previous conditions
are an equivalent definition of an isomorphism between the tables of marks of
G and Q. The matrix whose H,K-entry is #

(

(G/K)H
)

is called the table
of marks of G (where H,K run through all the elements in C(G)). Some
authors define the table of marks of G as the transpose of the previous matrix
(for instance, that is how GAP defines it). Note that this matrix is defined
up to an ordering of the elements of C(G), so that the groups G and Q have
isomorphic tables of marks if and only if it is possible to rearrange the elements
of C(G) and/or C(Q) so that G and Q have identical tables of marks.

The Burnside ring of G, denoted B(G), is the subring of ZC(G) spanned
by the columns of the table of marks of G. It is easy to see that if G and Q
have isomorphic tables of marks, then they have isomorphic Burnside rings;
the converse is an open problem (see [6]).

3. Preserved attributes

An isomorphism between the tables of marks of two groups preserves many
properties of the parent group and its subgroups. Here we list a few of these
properties.

Theorem 3.1. Let G, Q be finite groups with isomorphic tables of marks. Let
K, H denote subgroups of G, and let K ′, H ′ denote representatives in their
respective conjugacy classes of subgroups under the isomorphism between their
tables of marks. Then we have that:

(1) G′ = Q, (1G)
′ = 1Q, |G| = |G′|, |H | = |H ′|, α(H,K) = α (H ′,K ′) , β(H,K) =

β (H ′,K ′) , |NG(H)| = |NQ(H
′)|.

(2) The subgroup H is normal in G if and only if H ′ is normal in Q. In this
case, G/H and Q/H ′ have isomorphic tables of marks.

(3) If K ≤ H and at least one of these two subgroups is normal in G, then
K ′ ≤ H ′ for any choice of K ′ and H ′.
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(4) If K and H are normal subgroups of G, then (K ∩ H)′ = K ′ ∩ H ′ and
(KH)′ = K ′H ′. In particular, two normal subgroups with trivial inter-
section correspond to two normal subgroups with trivial intersection. Fur-
thermore, if G = K ×H, then Q = K ′ ×H ′, K and K ′ have isomorphic
tables of marks, and H and H ′ have isomorphic tables of marks.

(5) The subgroup H is maximal in G if and only if H ′ is maximal in Q.

(6) If G is a p-group, then socle(Z(G))′ = socle(Z(Q)).

(7) The Frattini subgroups correspond, that is, Φ(G)′ = Φ(Q).

(8) The group G is nilpotent if and only if Q is nilpotent. However, there are
non-isomorphic p-groups with isomorphic tables of marks.

(9) For any divisor d of the order of H, the number of subgroups of H of
order d is preserved; in particular, the total number of subgroups of H is
preserved.

(10) The subgroup H is cyclic if and only if H ′ is cyclic.

(11) If H is isomorphic to the quaternion group of order 8, then H ′ is isomor-
phic to H.

(12) If G is abelian then G ∼= Q.

(13) The commutator subgroups correspond, that is, [G,G]′ = [Q,Q]. More-
over, the abelianized groups are isomorphic, that is, G/[G,G] ∼= Q/[Q,Q].

(14) If G is isomorphic to Sn for some n ≥ 5, then Q is isomorphic to G.

(15) The subgroup H is elementary abelian if and only if H ′ is elementary
abelian.

Proof. (1) This was observed before.

(2) This follows from 1.

(3) The normal subgroup corresponds to a unique subgroup; the rest follows
from 1.

(4) The intersection of two normal subgroups is the largest normal subgroup
contained in both subgroups, KH is the smallest normal subgroups con-
taining both K and H ; the rest is clear.

(5) Assume H is a maximal subgroup of G. Let M ′ be a subgroup of Q
between H ′ and Q, and let M be a corresponding subgroup in G. Since
0 6= α (H ′,M ′) = α(H,M), a conjugate of M contains H . But H is
maximal, so this conjugate is either H (so M ′ = H ′) or G (so M ′ = Q).
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(6) Note that the socle of the centre of a p-group is characterized as the
smallest normal subgroup of G that has a nontrivial intersection with
each nontrivial normal subgroup of G. This property is preserved under
the correspondence.

(7) Let X = Φ(G). By symmetry, it suffices to show that X ′ ≤ Φ(Q). Note
that X is a normal subgroup of G contained in all maximal subgroups.
Since maximal subgroups correspond, then X ′ is a normal subgroup of Q
contained in all maximal subgroups, so X ′ ≤ Φ(Q).

(8) Every Sylow p-subgroup of G is normal, and this property is preserved.
In [1] two 3-groups are constructed which have isomorphic tables of marks
but different nilpotency classes.

(9) The number of subgroups of H of order d equals
∑

β(K,H) for all K ∈
C(G) of order d.

(10) A subgroup H is cyclic if and only if for each divisor d of |H |, H has
exactly one subgroup of order d.

(11) The quaternion group is the only group of order eight with three cyclic
subgroups of order four.

(12) The group G is a direct product of cyclic subgroups.

(13) The commutator subgroup is the smallest normal subgroup of G with an
abelian quotient. This property is preserved under the correspondence.

(14) Sn with n greater than or equal to 5 is characterized by the following
three properties: (1) It has order n!; (2) It only has one proper normal
subgroup, whose order is n!/2; (3) It has a subgroup of index n (the
action on the n cosets gives an isomorphism to Sn). These properties are
preserved by an isomorphism between the tables of marks.

(15) Note that an elementary abelian p-group of order pn > 1 has precisely
(pn − 1) /(p−1) = 1+p+p2+ · · ·+pn−1 subgroups of index p. Let H be
an arbitrary p-group of order pn > 1. The Frattini subgroup Φ(H) is the
smallest normal subgroup of H such that H/Φ(H) is elementary abelian.
Now assume that |H/Φ(H)| = pk. Then, since every subgroup of index
p contains Φ(H), H has precisely 1 + p+ · · ·+ pk−1 subgroups of index
p. Now the result follows from the fact that the number of subgroups of
a given order is determined by the table of marks.

�X
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4. Counterexamples.

We wrote software in GAP to go through the library of SmallGroups searching
for the first instance of non-isomorphic groups with isomorphic tables of marks.
The first known example before this computation was Thévenaz’s pair of groups
of order 5 ∗ 112 = 605 (see [9]). The smallest example has order 96. In [8] we
prove rigourously that these two groups of order 96 are non-isomorphic and
have isomorphic tables of marks. In a future paper we shall prove that they
are indeed the smallest such example.

Definition 4.1. Let M denote the direct product S3 × C8 (that is, the sym-
metric group of degree 3, times the cyclic group of order 8). We shall give
two non-isomorphic semidirect products of M with the cyclic group of or-
der 2. Denote the elements of M as (σ, xn), where σ is a permutation in S3

and x is the generator of C8. The group M is generated by the elements
((1, 2, 3), 1), ((1, 2), 1), ((1), x). Consider the following two automorphisms of
order 2 of M , α and β, given by: α((1, 2, 3), 1) = β((1, 2, 3), 1) = ((1, 2, 3), 1),
α((1, 2), 1) = β((1, 2), 1) =

(

(1, 2), x4
)

, α((1), x) = ((1), x) and β((1), x) =
(

(1), x5
)

. Let G be the semidirect product of M with C2 using α, and let Q be
the semidirect product ofM with C2 using β. BothG and Q are groups of order
96, but they are not isomorphic; in fact, in GAP G is SmallGroup(96,108),
and Q is SmallGroup(96,114).

Consider the following file written in GAP:

G := SmallGroup(96,108);

Q := SmallGroup(96,114);

#------------------------------

testlattice := function(g,h)

# Explore the lattices of subgroups of the groups g and h.

local lat, conj, ans, subg, lath, conjh, n, subh;

lat := LatticeSubgroups(g);

conj := ConjugacyClassesSubgroups(lat);

lath := LatticeSubgroups(h);

conjh := ConjugacyClassesSubgroups(lath);

for n in [1..Size(conj)] do

subg := ClassElementLattice(conj[n],1);

subh := ClassElementLattice(conjh[n],1);

if not(IsAbelian(subg)=IsAbelian(subh)) then

Print("Subgroup number ",n,", Order ",Order(subg),

" ",IsAbelian(subg)," ",IsAbelian(subh),"\n");

fi;
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od;

end;

#----------------------------------------

subn := function(g,n)

# Return a representative of the n-th conjugacy class of subgroups

# of g.

return ClassElementLattice(ConjugacyClassesSubgroups

(LatticeSubgroups(g))[n],1);

end;

After loading this file, we checked that the tables of marks of G and Q are
identical:

gap> Read("testiso");

gap> MatTom(TableOfMarks(G))=MatTom(TableOfMarks(Q));

true

This means that there is an isomorphism between the tables of marks of
G and Q. Moreover, with the default tables of marks assigned by GAP, this
isomorphism maps the n-th conjugacy class of subgroups of G to the n-th
conjugacy class of subgroups of Q. We wonder whether the centres of G and
Q correspond under this isomorphism.

gap> Size(Centre(G));

8

gap> Size(Centre(Q));

4

This proves that the centres of G and Q cannot correspond under this or
any other isomorphism between their tables of marks (since such isomorphisms
must preserve the order of the subgroups). Next we wonder whether abelian
subgroups of G must necessarily correspond with abelian subgroups of Q.

The function testlattice(G,Q) runs through all the conjugacy classes of
subgroups of G and Q (which are the same length), and it tests whether the
corresponding subgroups are both abelian or both non-abelian. When it finds
a pair of corresponding subgroups that do not match, it prints them on the
screen, displaying their order and whether they are abelian or not.

gap> testlattice(G,Q);

Subgroup number 36, Order 16 true false

Subgroup number 37, Order 16 false true

Subgroup number 38, Order 16 false true

Subgroup number 40, Order 16 true false

Subgroup number 58, Order 48 true false

gap>
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These are the only corresponding subgroups which are neither both abelian
nor both non-abelian. Notice that there is exactly one abelian subgroup of G
of order 48 which does not correspond to an abelian subgroup of Q (in fact,
according to GAP, Q has no abelian subgroups of order 48). This means that
G has exactly one more abelian subgroup of order 48 than Q, so there is no
isomorphism between the tables of marks of G and Q that preserves abelian
subgroups.

Finally, we show that the table of marks cannot provide enough information
to determine the normalizer of a subgroup. Consider the function subn(g,n),
which returns a representative of the n-th conjugacy class of subgroups of the
group g.

gap> Normalizer(G,subn(G,2))=subn(G,58);

true

gap> Normalizer(Q,subn(Q,2))=subn(Q,58);

false

In both cases we had a subgroup in the second conjugacy class of subgroups;
in G, its normalizer was the (only normal) subgroup in the 58-th conjugacy
class, but in Q, the corresponding subgroup is not the normalizer.

We can summarize all this in the following result.

Theorem 4.2. Let G and Q be finite groups with isomorphic tables of marks,
and let H 7→ H ′ denote an isomorphism between their tables of marks. We
have that

(1) H and H ′ may not be isomorphic.

(2) Even if H is abelian, H ′ need not be abelian.

(3) H and H ′ may have different tables of marks.

(4) Even if K × L = H, it may not be possible to find K ′, L′ and H ′ such
that K ′ × L′ = H ′.

(5) Even if K is normal in H, it may not be possible to choose K ′ and H ′

such that K ′ is normal in H ′

(6) Given H, the table of marks does not determine which subgroup of G is
the normalizer of H in G.

Proof. Let G be SmallGroup(96,108) and Q be SmallGroup(96,114).

(1) This was known since Thévenaz [9].
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(2) This has been shown in our example with G and Q and subgroups of
order 48.

(3) This follows from the previous item and the fact that the table of marks
determines an abelian group up to isomorphism.

(4) If this were true, since cyclic subgroups correspond, it would follow that
abelian subgroups map to abelian subgroups.

(5) The subgroup subn(G,2) is a counterexample.

(6) The subgroup subn(G,2) is again a counterexample.

�X
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