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Maximal Virtual Schottky Groups:

Explicit Constructions

Grupos de Schottky virtuales maximales: construcciones expĺıcitas

Rubén A. Hidalgoa

Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile

Abstract. A Schottky group of rank g is a purely loxodromic Kleinian group,
with non-empty region of discontinuity, isomorphic to the free group of rank g.

A virtual Schottky group is a Kleinian group K containing a Schottky
group Γ as a finite index subgroup. In this case, let g be the rank of Γ. The
group K is an elementary Kleinian group if and only if g ∈ {0, 1}. Moreover,
for each g ∈ {0, 1} and for every integer n ≥ 2, it is possible to find K and Γ
as above for which the index of Γ in K is n. If g ≥ 2, then the index of Γ in
K is at most 12(g − 1).

If K contains a Schottky subgroup of rank g ≥ 2 and index 12(g−1), then
K is called a maximal virtual Schottky group. We provide explicit examples of
maximal virtual Schottky groups and corresponding explicit Schottky normal
subgroups of rank g ≥ 2 of lowest rank and index 12(g − 1). Every maximal
Schottky extension Schottky group is quasiconformally conjugate to one of
these explicit examples.

Schottky space of rank g, denoted by Sg, is a finite dimensional complex
manifold that parametrizes quasiconformal deformations of Schottky groups of
rank g. If g ≥ 2, then Sg has dimension 3(g−1). Each virtual Schottky group,
containing a Schottky group of rank g as a finite index subgroup, produces a
sublocus in Sg, called a Schottky strata. The maximal virtual Schottky groups
produce the maximal Schottky strata. As a consequence of the results, we see
that the maximal Schottky strata is the disjoint union of properly embedded
quasiconformal deformation spaces of maximal virtual Schottky groups.
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Resumen. Un grupo de Schottky de rango g es un grupo Kleiniano puramente
loxodrómico, con región de discontinuidad no vaćıa, e isomorfo al grupo libre
de rango g.

Un grupo de Schottky virtual es un grupo Kleiniano K que contiene un
grupo de Schottky Γ como subgrupo de ı́ndice finito. En tal caso, sea g el rango
de Γ. El grupo K es un grupo Kleiniano elemental si y sólo si g ∈ {0, 1}. Más
aún, para cada g ∈ {0, 1} y para cada entero n ≥ 2, es posible construir Γ and
K de manera que Γ tenga ı́ndice n en K. Si g ≥ 2, entonces el ı́ndice de Γ en
K es a lo más 12(g − 1).

Si K contiene un subgrupo de Schottky de rango g ≥ 2 e ı́ndice 12(g− 1),
entonces K es llamado un grupo de Schottky virtual maximal. Proveemos
ejemplos expĺıcitos de grupos de Schottky virtuales maximales y correspondi-
entes subgrupos de Schottky normales de rango g ≥ 2 e ı́ndice 12(g−1). Todo
grupo de Schottky virtual maximal es cuasiconformemente conjugado a uno
de estos ejemplos.

El espacio de Schottky de rango g, denotado por Sg, es una variedad com-
pleja finito dimensional que parametriza las deformaciones cuasiconformes de
grupos de Schottky de rango g. Si g ≥ 2, entonces Sg tiene dimensión 3(g−1).
Cada grupo de Schottky virtual, conteniendo un grupo de Schottky de rango
g como subgrupo de ı́ndice finito, produce un subconjunto en Sg, llamado un
estrato de Schottky. Los grupos de Schottky virtuales maximales producen el
estrato de Schottky maximal. Como consecuencia de los resultados obtenidos,
se obtiene que el estrato de Schottky maximal es la unión disjunta de in-
crustaciones de espacios de deformación cuasiconforme de grupos de Schottky
virtuales maximales.

Palabras y frases clave. Grupos de Schottky, grupos Kleinianos, automorfismos,
superficies de Riemann.

1. Introduction

A Kleinian group, isomorphic to a free group of rank g, with non-empty region
of discontinuity and containing no parabolic transformation is called a Schottky
group of rank g. The lowest regular planar covers of closed Riemann surfaces
of genus g are exactly the ones with Deck group being a Schottky group of
rank g [15]. A virtual Schottky group is a Kleinian group containing a Schottky
group as a finite index subgroup; in particular, it contains a Schottky group as
a finite index normal subgroup.

Let S be a closed Riemann surface of genus g and let P : Ω → S be a regular
planar cover of S whose Deck group is a Schottky group Γ. LetH < Aut(S) be a
finite group, where Aut(S) denotes the full group of conformal automorphisms
of S. We say that H lifts with respect to the previous cover if for every h ∈ H
there is a Möbius transformation ĥ so that ĥ(Ω) = Ω and P ◦ĥ = h◦P . If g ≥ 2,
necessary and sufficient conditions for the group H to lift to a suitable regular
planar cover of S, whose Deck group is a Schottky group, is the existence of
a collection of pairwise disjoint simple loops on S with the properties that (i)
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the collection is invariant under the action of H and (ii) the complement of
these loops consists of planar surfaces [12]. In particular, this obligates to H to
have order at most 12(g− 1) [11, 21]. Note that Hurwitz’s bound for Aut(S) is
84(g − 1), so there are examples of groups H < Aut(S) which cannot lift with
respect to any regular planar cover whose Deck group is a Schottky group.

If H < Aut(S) lifts with respect to a regular planar cover P : Ω → S, whose
Deck group is a Schottky group Γ, then the lifted Möbius transformations
generate a Kleinian group K containing Γ as a finite index normal subgroup so
that K/Γ = H ; in particular, K is a virtual Schottky group. Conversely, if K
is a virtual Schottky group, Γ is a Schottky group of rank g, which is a normal
subgroup of finite index in K, Ω is the region of discontinuity of K (which is
the same as for Γ) and S = Ω/Γ, then the group H = K/Γ < Aut(S) lifts with
respect to the regular planar cover P : Ω → S whose Deck group is Γ. It follows
that if a virtual Schottky group K contains a Schottky group Γ of genus g ≥ 2
as a finite index subgroup, then the index of Γ in K is at most 12(g − 1). We
say that K is a maximal virtual Schottky group if we may chose a Schottky
subgroup Γ with the maximal index 12(g − 1).

A decomposition structure theorem for maximal Schottky extension groups
was provided in [10] (see Theorem 2). In this paper we provide explicit construc-
tions, in terms of the Klein-Maskit’s combination theorems, of the maximal
virtual Schottky groups.

A marked Schottky group of rank g is a pair (Γ, (A1, . . . , Ag)), where Γ is
a Schottky group of rank g and A1,. . . , Ag is a set of generators of Γ. Two
such marked Schottky groups, say (Γ1, (A1, . . . , Ag)) and (Γ2, (B1, . . . , Bg)),
are equivalent if there is a Möbius transformation T so that TAjT

−1 = Bj , for
every j ∈ {1, . . . , g}. The space Sg, that parameterizes marked Schottky groups
of rank g, is called the Schottky space of rank g. This space can be identified
with the quasiconformal deformation space of any Schottky group of rank g
(see [5, 6, 13, 20] and Section 2 for a more precise definition). Schottky space
of rank g is a complex manifold of dimension 3(g − 1) for g ≥ 2 (dimension 1
for g = 1 and a point if g = 0) and it is an intermediate (non-regular) cover of
moduli space of genus g.

Schottky strata Eg ⊂ Sg is defined by those classes of marked Schottky
groups which are non-trivial normal subgroups of finite index of some virtual
Schottky group. The sublocus of Eg for which the virtual Schottky group can
be chosen to be with index 12(g − 1) is the maximal Schottky strata MEg.
Schottky strata is the union of some properly embedded quasiconformal defor-
mation spaces of virtual Schottky groups (called the irreducible components of
the Schottky strata). The configuration of Schottky strata is not known, for in-
stance, it is not known how the irreducible components intersect and what are
the possible intersections. The main obstruction to this problem is the fact that
no every subgroup of conformal automorphisms of a closed Riemann surface
needs to lift with respect to a suitable regular planar cover whose Deck group
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is a Schottky group. Corollary 2 provides a partial answer to this; it says that
maximal Schottky strata consists of pairwise disjoint irreducible components,
each one being a copy of a quasiconformal deformation space of a maximal
Schottky virtual group. A general study of the irreducible components of the
Schottky strata will pursued elsewhere.

Schottky space of rank g can also be seen as the spaces that parameterizes
(marked) complete geometrically finite hyperbolic structures, with injectivity
radius bounded away from zero, on the interior of a handlebody of genus g; we
talk of a Schottky structure on the corresponding handlebody. In this setting,
Schottky strata corresponds to those structures with extra isometries. Two
irreducible components of the Schottky strata intersect if there is a handlebody
with two groups of isometries, each group providing one of the components.

This paper is organized as follows. In Section 2 we recall some basic defini-
tions (not already stated in the introduction) and standard results we will need
in the rest of this paper. In Section 3 we describe the decomposition theorem of
maximal virtual Schottky groups (Theorem 2), define the (maximal) Schottky
strata and provide the structure of such locus in Schottky space (Corollary 2).
We also provide, in terms of Schottky structures on handlebodies, a description
of (maximal) Schottky strata. In Section 4 we provide the explicit constructions
of maximal virtual Schottky groups.

2. Preliminaries

2.1 In what follows, U < V (respectively, U � V ) means that U is a subgroup
(respectively, normal subgroup) of V , [V : U ] denotes the index of U in
V , and if R is a Riemann surface, then Aut(R) denotes its full group of

conformal automorphisms. If Ĉ denotes the Riemann sphere, then it is well
known that Aut(Ĉ) = M; the group of Möbius transformations.

2.2 An orientation-preserving homeomorphism W : Ĉ → Ĉ, with local L2

derivatives ∂zW and ∂zW is called a quasiconformal homeomorphism of
the Riemann sphere.

2.3 A group K < M is said to act discontinuously at the point p ∈ Ĉ if: (i) the
K-stabilizer Kp = {k ∈ K : k(p) = p} is finite and (ii) there is an open set

U ⊂ Ĉ, p ∈ U , so that, for every k ∈ K −Kp, it holds that k(U) ∩ U = ∅.

2.4 AKleinian group is a discrete subgroupK ofM and its region of discontinu-
ity is the open subset Ω(K) of Ĉ of points on which it acts discontinuously.

Observe that Ω(K) might be empty. The complement Λ(K) = Ĉ − Ω(K)
is the limit set of K.

Let K1 < K2 < M, where [K2 : K1] < ∞; then K1 is a Kleinian group if
and only if K2 is a Kleinian groups; moreover they have the same region
of discontinuity. Generalities on Kleinian groups can be seen, for instance,
in the books [18, 19].
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2.5 Two Kleinian groups, say K1 and K2 are said to be topologically equiv-
alent (respectively, quasiconformally equivalent) if there is an orientation-
preserving homeomorphism (respectively, quasiconformal homeomorphism)

f : Ĉ → Ĉ such that K2 = fK1f
−1.

2.6 An elementary group is a Kleinian group whose limit set is finite (it is
known that its cardinality is at most two); otherwise, we say that it is
a non-elementary Kleinian group. A function group is a finitely generated
Kleinian group K for which there is a connected component of Ω(K) which
is invariant under K. Next we list some examples of non-elementary func-
tion groups. A quasifuchsian group is a function group whose limit set is
a Jordan curve (so each of the two components of its region of disconti-
nuity is invariant). A totally degenerate group is a non-elementary finitely
generated Kleinian group whose region of discontinuity is connected and
simply-connected. These groups are the basic groups in the construction of
function groups from the Klein-Maskit combination theorems [18].

Theorem 1 (Decomposition theorem of function groups [17]). Any func-
tion group can be constructed from a finite collection of elementary groups,
quasifuchsian groups and totally degenerate groups by a finite number of
applications of the Klein-Maskit combination theorems.

2.7 If Γ is a Schottky group of rank g > 0 and A1, . . . , Ag is any set of gener-
ators of Γ, then there is a collection of pairwise disjoint simple loops, say
C1, C

′

1,. . . , Cg, C
′

g, all of them bounding a common domain of connectiv-
ity 2g, say D, so that, for each j ∈ {1, . . . , g}, it holds that Aj(Cj) = C′

j

and Aj(D) ∩ D = ∅ [8, 16]. It is known that the limit set of a Schottky
group is totally disconnected (this fact can be seen from the previous ge-
ometric picture; the collection of Γ translates of all the loops Cj and C′

j

separates different limit points). In particular, a Schottky group is a func-
tion group (as its region of discontinuity is connected). It is also clear from
this geometric picture that any two Schottky groups of the same rank are
quasiconformally equivalent.

2.8 A virtual Schottky group K is elementary if and only if it contains, as
finite index subgroup, a Schottky group Γ of rank g ∈ {0, 1}. In this case,
for any integer n ≥ 2 there are examples of pairs K and Γ, where Γ is a
Schottky group of rank g and of index n in K. In fact, if g = 1, then we
may consider any Schottky group K = 〈A〉 and let Γ = 〈An〉. If g = 0,
then, as a Schottky group of rank g = 0 is the trivial group, then it is
enough to set K =

〈
A(z) = e2πi/nz

〉 ∼= Zn.

2.9 IfK is a non-elementary virtual Schottky group, then it contains a Schottky
group Γ of rank g ≥ 2 as a finite index normal subgroup. As both, K and Γ,
have the same limit set, and the limit set of a Schottky group is a totally
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disconnected set, K is a function group with totally disconnected limit
set. It follows, from this and Maskit’s decomposition theorem of function
groups, the following decomposition result.

Theorem 2 (Decomposition theorem of virtual Schottky groups). Any
virtual Schottky group can be constructed from a finite collection of fi-
nite groups of Möbius transformations and cyclic groups generated by lox-
odromic transformations by a finite number of applications of the Klein-
Maskit combination theorems.

2.10 Generalities on quasiconformal maps can be found, for instance, in [3, 2]
and on quasiconformal deformation spaces of Kleinian grops in [5, 6, 13, 20].
We proceed to recall the basic properties we need in this paper. Let K be a
finitely generated Kleinian group, with region of discontinuity Ω 6= ∅ and
limit set Λ = Ĉ − Ω. Let L∞(K) be the Banach space consisting of mea-
surable functions µ : Ω → C with ‖µ‖∞ = ess supz∈Ω|µ(z)| < ∞ such that,

for every k ∈ K and for almost every z ∈ Ω, it holds that µ(k(z))k′(z) =
µ(z)k′(z) (one extends µ to be zero in Λ). A Beltrami differential for K
is an element of the unit ball L∞

1 (K) of the Banach space L∞(K). As a
consequence of results of Ahlfors-Bers [4], for every µ ∈ L∞

1 (K) there is
a quasiconformal homeomorphism (or µ-quasiconformal homeomorphism)

W : Ĉ → Ĉ satisfying the Beltrami equation ∂zW (z) = µ(z)∂zW (z),
for almost every z ∈ Ω. Any other µ-quasiconformal homeomorphism is
of the form AW , where A is a Möbius transformation. The above µ-
quasiconformal homeomorphism W (or AW ) is called a quasiconformal

deformation of K. If we fix three different values a, b, c ∈ Ĉ, as a Möbius
transformation that fixes them is just the identity and the Möbius group
acts triply-transitive on Ĉ, there is one and unique µ-quasiconformal home-
omorphism W normalized by the condition that W (a) = a, W (b) = b and
W (c) = c.

If W is a µ-quasiconformal deformation of the Kleinian group K, then, for
every k ∈ K it holds that WkW−1 is again a Möbius transformation; so
WKW−1 is a finitely generated Kleinian group, quasiconformally equiv-
alent to K. In this way, we have an isomorphism φW : K → WKW−1

defined by φW (k) = WkW−1. As noted, a different µ-quasiconformal de-
formation is of the form W2 = AW1, for a suitable Möbius transformation
A. It follows that φW2

(k) = AφW1
(k)A−1, that is, the corresponding iso-

morphisms are conjugate in the Möbius group.

Two Beltrami differentials µ1, µ2 ∈ L∞

1 (K) are said to be equivalent if,
for given quasiconformal homeomorphisms W1 and W2 (where Wj is a µj-
quasiconformal homeomorphism), there is a Möbius transformation A so
that AW1 and W2 coincide on the limit set Λ. We denote by [µ] the equiv-
alence class of µ ∈ L∞

1 (K). Note that, if K is non-elementary, that is, Λ is
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infinite, this definition is equivalent to saying that φW2
(k) = AφW1

(k)A−1,
that is, the corresponding isomorphisms are conjugate in the Möbius group.
If K is elementary, these two definitions are not longer equivalent. In this
paper we will be restricted to the case of non-elementary Kleinian groups,
so we may work with any of the two definitions.

The space of equivalence classes of Beltrami differentials for K is called the
quasiconformal deformation space of K and it will be denoted by Q(K).
It is known that Q(K) is a finite dimensional complex manifold, in fact,
holomorphically equivalent to a domain in some C

n [13].

2.11 Let K and K̂ be finitely generated quasiconformally equivalent Kleinian
groups and let W0 : Ĉ → Ĉ be a quasiconformal homeomorphism so that
W0KW−1

0 = K̂. Let µ0 ∈ L∞

1 (K) be a Beltrami differential associated to
W0, that is, ∂zW0(z) = µ0(z)∂zW0(z), for almost every z ∈ Ω. For each

µ ∈ L∞

1 (K̂), we consider a quasiconformal homeomorphism Wµ : Ĉ → Ĉ

associated to µ. As

WµW0K(WµW0)
−1 = WµK̂W−1

µ ,

there is a natural biholomorphism F : Q(K̂) → Q(K), where F ([µ]) is
the equivalence class of a Beltrami differential for WµW0. In this way, we

may identify Q(K̂) and Q(K); in this identification the origin [0] ∈ Q(K̂)
corresponds to [µ0] ∈ Q(K).

2.12 Let K be a finitely generated non-elementary Kleinian group and let Γ be
a finite index subgroup of K. In this situation, both Γ and K have the
same limit set Λ, which is infinite. Let us fix three different limit points,
say a, b, c ∈ Λ. Each Beltrami differential for K provides, by restriction, a
Beltrami differential for Γ, that is, we may assume L∞

1 (K) ⊂ L∞

1 (Γ). It
follows that there is a natural holomorphic map φ : Q(K) → Q(Γ). This
map is a complex analytic embedding. In fact, for j ∈ {1, 2}, let µj be a

Beltrami differential for K and let Wj : Ĉ → Ĉ be a µj-quasiconformal
homeomorphism. We may assume that they are normalized as Wj(a) = a,
Wj(b) = b and Wj(c) = c. With this normalization, these two Beltrami
differentials are equivalent with respect to K (respectively, with respect to
Γ) if and only if the restrictions of W1 and W2 to Λ are equal, so we are
done. We may think of the image φ(Q(K)) as the complex submanifold of
Q(Γ) consisting of those classes of Beltrami differentials of Γ which are also
Beltrami differentials for the bigger group K.

2.13 As any two Schottky groups of the same rank, say Γ1 and Γ2, are quasicon-
formally equivalent, the corresponding quasiconformal deformation spaces
Q(Γ1) andQ(Γ2) are holomorphically equivalent. Let us fix a marked Schot-
tky group of rank g, say

(
Γ, (A1, . . . , Ag)

)
. If

(
Γ1, (B1, . . . , Bg)

)
is another
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marked Schottky group, then, as a consequence of the geometric picture of
Schottky groups (see Section 2.7) we may find a quasiconformal homeomor-

phism W : Ĉ → Ĉ so that WΓW−1 = Γ1 and WAjW
−1 = Bj , for every

j ∈ {1, . . . , g}. In this way, the quasiconformal deformation of Γ can be
holomorphically identified with the Schottky space of rank g; we say that
Q(Γ) is a model for Sg. This also asserts that Sg is a complex manifold of
dimension 3(g − 1) if g ≥ 2.

3. Maximal Virtual Schottky Extension Groups

3.1 Theorem 2 provides a general decomposition result for virtual Schottky
groups. In the case of maximal virtual Schottky groups a more explicit
decomposition theorem is provided in [10]. In this paper we provide explicit
constructions, in terms of the Klein-Maskit’s combination theorems, of the
maximal virtual Schottky groups.

Theorem 3 (Decomposition theorem of maximal virtual Schottky groups
[10]). We denote by Dr the dihedral group of order 2r, by Ar the alternating
group in r letters and by S4 the symmetric group in 4 letters.

(a) Each maximal virtual Schottky groups can be constructed, using the
first Klein-Maskit combination theorem, as the free product of two fi-
nite Kleinian groups, say K1 and K2, amalgamated over a finite cyclic
group K0 = K1 ∩K2, where K1, K2 and K0 are as described below.

1. K1 = 〈A,B : A3 = B2 = (BA)2 = 1〉 ∼= D3, K2 = 〈B,C : B2 =
C2 = (CB)2 = 1〉 ∼= D2 and K0 = 〈B〉 ∼= Z2, where C preserves
a simple loop around one of the fixed points of B, with both fixed
points of C on such a loop. In this case K = 〈A,B,C〉 ∼= D2 ∗Z2

D3

and we say that K is of type (1).

2. K1 = 〈A,B : A3 = B2 = (BA)3 = 1〉 ∼= A4, K2 = 〈A,C : A3 =
C2 = (CB)2 = 1〉 ∼= D3 and K0 = 〈A〉 ∼= Z3, where C preserves
a simple loop around one of the fixed points of A, with both fixed
points of C on such a loop. In this case K = 〈A,B,C〉 ∼= D3 ∗Z3

A3

and we say that K is of type (2).

3. K1 = 〈A,B : A4 = B2 = (BA)3 = 1〉 ∼= S4, K2 = 〈A,C : A4 =
C2 = (CB)2 = 1〉 ∼= D4 and K0 = 〈A〉 ∼= Z4, where C preserves
a simple loop around one of the fixed points of A, with both fixed
points of C on such a loop. In this case K = 〈A,B,C〉 ∼= D4 ∗Z4

S4

and we say that K is of type (3).

4. K1 = 〈A,B : A5 = B2 = (BA)3 = 1〉 ∼= A5, K2 = 〈A,C : A5 =
C2 = (CB)2 = 1〉 ∼= D5 and K0 = 〈A〉 ∼= Z5, where C preserves
a simple loop around one of the fixed points of A, with both fixed
points of C on such a loop. In this case K = 〈A,B,C〉 ∼= D5 ∗Z5

A5

and we say that K is of type (4).

Volumen 44, Número 1, Año 2010



MAXIMAL VIRTUAL SCHOTTKY GROUPS: EXPLICIT CONSTRUCTIONS 49

(b) Each of the above constructed groups is a maximal virtual Schottky
group.

(c) Two maximal virtual Schottky groups of different type are non-isomorphic
as abstract groups.

(d) Two maximal virtual Schottky groups are algebraically isomorphic if
and only if they are topologically (and also quasiconformally) equivalent
if and only if they are of the same type.

The following rigidity property holds at the level of maximal virtual Schot-
tky groups.

Corollary 1 ([10]). If two maximal virtual Schottky groups K1 and K2

contain a common Schottky group Γ of rank g ≥ 2 as a normal subgroup of
index 12(g − 1), then K1 = K2.

Proof. As Γ is of finite index and is a normal subgroup of Kj (for j = 1, 2),
it follows that Γ has finite index and is a normal subgroup ofK = 〈K1,K2〉.
It follows that, if K1 6= K2, then K is a virtual Schottky group containing
the Schottky group Γ as a normal subgroup of index greater than 12(g−1),
a contradiction. �X

The proof of Theorem 3 done in [10] was obtained as follows. Let K be
a maximal virtual Schottky group and let Γ be a Schottky group of rank
g ≥ 2 which is a finite index normal subgroup of K and of index 12(g− 1).
Let Ω be the region of discontinuity of K (the same as for Γ). We first
consider a certain minimal collection F of pairwise disjoint simple loops on
S = Ω/Γ which is invariant under the action of H = K/Γ, so that S − F
consists of planar surfaces and with the property that every loop in F lifts
to simple loops on Ω. Secondly, we consider the collection G of simple loops
in Ω obtained by the lifting of all the loops in F . Finally, we proceed with
a careful study of the K-stabilizers of each of the loops in G and of each of
the connected components of Ω− G.
In Section 4 we provide explicit constructions of maximal virtual Schottky
groups and corresponding explicit Schottky normal subgroups of rank g ≥ 2
of lowest rank and index 12(g−1). It can be seen directly from Theorem 3,
that every maximal Schottky extension Schottky group is quasiconformally
conjugate to one of these explicit examples. In this way, the results of this
paper give a more constructive approach to Theorem 3. These construc-
tions may also be of help in understanding the Klein-Maskit combinations
theorems in an explicit way.

3.2 Let us fix a Schottky group Γ of rank g ≥ 2 and let Λ be its limit set. We
consider Q(Γ) as a fixed model for the Schottky space of rank g. Let us
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also fix three different limit points a, b, c ∈ Λ. Next, we proceed to describe
the Schottky strata in this fixed model.

If µ ∈ L∞

1 (Γ) and Wµ : Ĉ → Ĉ is the µ-quasiconformal homeomorphism
normalized by Wµ(a) = a, Wµ(b) = b and Wµ(c) = c, then Γµ = WµΓW

−1
µ

is a Schottky group of rank g. If ν, µ ∈ L∞

1 (Γ) are equivalent, then Γν

and Γµ are conjugate by a suitable Möbius transformation. In particular, if
Γµ is a finite index normal subgroup of some virtual Schottky group, then
Γν is also a finite index normal subgroup of some other virtual Schottky
group (with the same index). This observation permits to give the following
description of the Schottky strata.

The Schottky extension strata Eg ⊂ Sg in the model Q(Γ) is defined as
the sublocus of points [µ] ∈ Q(Γ) for which Γµ is contained (strictly) as a
finite index normal subgroup in some virtual Schottky group. Similarly, the
maximal Schottky extension strata MEg ⊂ Sg is defined as the sublocus of
those points [µ] ∈ Q(Γ) for which Γµ is contained as a normal subgroup of
index 12(g − 1) in some virtual Schottky group.

Corollary 2. The Schottky extension strata, in Schottky space of rank
g ≥ 2, is a union of quasiconformal deformations spaces (embedded ones)
of virtual Schottky groups (different from Schottky groups of rank g). More-
over, MEg is the disjoint union of such embeddings.

Proof. Let us fix a Schottky group Γ of rank g ≥ 2 and let Λ its limit set.
We consider Q(Γ) as a fixed model for the Schottky space of rank g. Let
us also fix three different limit points a, b, c ∈ Λ. For each µ ∈ L∞

1 (Γ) we

consider the normalized µ-quasiconformal homeomorphism Wµ : Ĉ → Ĉ

( Wµ(a) = a, Wµ(b) = b and Wµ(c) = c) and the Schottky group Γµ =
WµΓW

−1
µ . For each p ∈ Sg, we fix some µ ∈ L∞

1 (Γ) with [µ] = p, and set
Γp = Γµ. With this fixed objects, we have the corresponding (maximal)
Schottky strata in Q(Γ) as seen previously.

If [µ] ∈ Eg, then there is natural holomorphic embedding φ : Q(Kµ) → Sg

so that φ([0]) = [µ]. Clearly, φ(Q(Kµ)) ⊂ Eg.
As a consequence of Corollary 1, if [µ] ∈ MEg and K1 and K2 are maximal
Schottky extension groups so that Γ[µ]�Kj and [Kj : Γ[µ]] = 12(g−1), then
K1 = K2. We denote by K[µ] such a maximal Schottky extension group.

This provides the disjoint condition, for the maximal Schottky strata. �X

3.3 In terms of hyperbolic structures on handlebodies, Schottky strata is the
locus of points (in Teichmüller space of a handlebody) corresponding to
those admitting non-trivial symmetries.

Let M be a handlebody of genus g, M0 be its interior and let S its bound-
ary. Each complete hyperbolic structure on M0 is provided by a Kleinian
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group isomorphic to a free group and, conversely, every Kleinian group
isomorphic to a free group of rank g provides a complete hyperbolic struc-
ture on M0; this is a consequence of the Marden conjecture (or tame ends
conjecture), recently proved by Agol [1] and Calegari-Gabai [7]. Schottky
groups are exactly those Kleinian groups producing complete geometrically
finite hyperbolic structures on M0 with injectivity radius bounded away
from zero (in this case, S = Ω/Γ is the conformal boundary).

A marking ofM is a pair (NΓ, f), where NΓ = H3/Γ, Γ a Schottky group of
rank g, and f : M → NΓ is an orientation preserving diffeomorphism. Two
markings (N1, f1) and (N2, f2) are said to be Teichmüller equivalent if there
is a conformal diffeomorphism h : N1 → N2 so that f−1

2 ◦h◦f1 is isotopic to
the identity. The Teichmüller space T (M) is the set of equivalence classes
of markings of M . There is a natural identification of T (M) with Sg; seen
as the space that parametrizes (marked) complete hyperbolic structures,
with injectivity radius bounded away from zero, on M0.

Theorem 4. Let Γ0 be a Schottky group of rank g. Then T (M) can be
naturally identified with Q(Γ0).

Proof. Let πΓ0
: H3∪Ω(Γ0) → M0 be a universal covering with Γ0 as Deck

group. It is not difficult to see that T (M) and T (M0) can be identified by
a homeomorphism.

Let (NΓ, f) be a marking of M0 and let πΓ : H3∪Ω(Γ) → NΓ be a universal
covering with Γ as Deck group. We may lift the diffeomorphism f to a
diffeomorphism f̂ : H3 ∪ Ω(Γ0) → H3 ∪ Ω(Γ) satisfying that, for every

k ∈ Γ0, f̂ ◦k = θ(k)◦ f̂ , where θ : Γ0 → Γ is an isomorphism of groups. The

restriction f̂ : Ω(Γ0) → Ω(Γ) is a quasiconformal diffeomorphism. It follows
from Marden’s isomorphism theorem [14] that we may assume it to be a
quasiconformal homeomorphism of the Riemann sphere that conjugates Γ0

onto Γ.

Conversely, again as a consequence of Marden’s isomorphism theorem [14],

each quasiconformal diffeomorphism h : Ĉ → Ĉ so that hΓ0h
−1 = Γ,

extends to an orientation preserving diffeomorphism ĥ : H3 ∪ Ω(Γ0) →
H3 ∪ Ω(Γ) keeping the conjugacy property. It follows that ĥ induces a
marking of M0 making the above two process inverse of each other. �X

The modular group of M is Mod+(M) = Diff+(M)/Diff0(M), where
Diff+(M) is the group of orientation preserving diffeomorphisms of M and
Diff0(M) its normal subgroup of diffeomorphisms isotopic to the identity.
Earle [9] proved that Mod+(M) is isomorphic to the group of outer auto-
morphisms of the free group of rank g.

An element [h] ∈ Mod+(M) acts on T (M) by the following rule: [h]([N, f ]) =
[N, fh−1]. Themoduli space ofM is defined byM(M) = T (M)/Mod+(M).
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The moduli space ofM can be identified to the space of unmarked Schottky
groups of rank g, that is, the space of conjugacy classes (in M) of Schottky
groups of rank g.

The natural projection π : T (M) → M(M) fails to be a covering map
exactly at those points in T (M) with no-trivial stabilizer in Mod+(M).
These points correspond exactly to those Schottky groups of rank g so
that there is a virtual Schottky extension group K containing Γ as a finite
index normal subgroup of index bigger than one. In this way, the Schottky
strata Eg is exactly the locus of critical points of π.

4. Explicit Construction of Maximal Virtual Schottky Groups

In this section we provide explicit examples of maximal virtual Schottky groups.
We also construct explicitly, in each case, a Schottky group of some rank g ≥ 2
as a normal subgroup of index 12(g−1). In these examples we find the examples
with low values of g. We believe these are the lowest possible ranks. The con-
structions are explicit applications of the Klein-Maskit combination theorems.

Case (1) Let

H1 =

〈
X(z) = e2πi/3z, Z(z) =

1

z

〉
∼= D3.

Choose a point p0 ∈
(
1, 2 +

√
3
)
(for instance, p0 = 3) and let Σ the circle

through the point p0 and orthogonal to the unit circle. If Y is the elliptic
involution with fixed points being p0 and 1/p0, then

K =
〈
X,Y, Z : X3 = Y 2 = Z2 = (ZX)2 = (ZY )2 = 1

〉 ∼= D3 ∗Z2
Z
2
2,

where

D3 =
〈
X,Z : X3 = Z2 = (ZY )2 = 1

〉

Z
2
2 =

〈
Y, Z : Y 2 = Z2 = (ZY )2 = 1

〉

Z2 =
〈
Z
〉
.

A fundamental domain for K is provided in Figure 1. We consider the
following circles

Σ1 = X(Σ), Σ′

1 = Y (Σ1), Σ2 = X−1(Σ), Σ′

2 = Y (Σ2).

The circle Σ1 is invariant under the involution XYX−1 and the circle Σ2

is invariant under the involution X−1Y X . Let Q be the common domain
bounded by the circles Σ1, Σ2, Σ

′

1 and Σ′

2.

Set A1 = Y XYX−1 and A2 = Y X−1Y X . Then clearly, A1(Σ1) = Σ′

1,
A2(Σ2) = Σ′

2 and A1(Q) ∩ Q = A2(Q) ∩ Q = ∅. It follows that G =

Volumen 44, Número 1, Año 2010



MAXIMAL VIRTUAL SCHOTTKY GROUPS: EXPLICIT CONSTRUCTIONS 53

0. .. −1 0 1 0 XYpZ ..1/p

Figure 1.

〈
Y XYX−1, Y X−1Y X

〉
is a classical Schottky group of rank g = 2 and

of index 12 in K. Direct computations permit to see that G is in fact a
normal subgroup of K.

Case (2) In this case, we consider

H1 =

〈
X(z) = e2πi/3z, Z(z) =

z +
√
3− 1(

1 +
√
3
)
z − 1

〉
∼= A4.

Set q0 =
(
1−

√
3
)
/
(
1 +

√
3
)
and choose a point p0 ∈ (0,−q0). In this

case we take as Σ the circle with center at 0 and radius p0. If Y is the
elliptic involution with fixed points being ±p0, then

K =
〈
X,Y, Z : X3 = Y 2 = Z2 = (ZX)3 = (XY )2 = 1

〉 ∼= D3 ∗Z2
Z
2
2,

where

D3 =
〈
X,Y : X3 = Y 2 = (XY )2 = 1

〉

A4 =
〈
X,Z : X3 = Z2 = (XZ)3 = 1

〉

Z3 =
〈
X
〉
.

A fundamental domain can be seen in Figure 2. We consider the following
circles

Σ1 = Z(Σ), Σ′

1 = Y (Σ1), Σ2 = X−1(Σ1),

Σ′

2 = Y (Σ2), Σ3 = X(Σ1), Σ′

3 = Y (Σ3).

The circle Σ1 is invariant under the involution ZY Z, the circle Σ2 is
invariant under the involution X−1ZY ZX and the circle Σ3 is invariant
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1

ZY
X

q0
p0

p
0

0

Figure 2.

under the involution XZY ZX−1. Let Q be the common domain bounded
by the circles Σ1, Σ2, Σ3, Σ

′

1, Σ
′

2 and Σ′

3.

Set A1 = (Y Z)2, A2 = Y X−1ZY ZX and A3 = Y XZY ZX−1. Then
clearly, A1(Σ1) = Σ′

1, A2(Σ2) = Σ′

2, A3(Σ3) = Σ′

3 and
A1(Q) ∩ Q = A2(Q) ∩ Q = A3(Q) ∩ Q = ∅. It follows that G =〈
(Y Z)2, Y X−1ZY ZX, Y XZY ZX−1

〉
is a classical Schottky group of

rank g = 3 and of index 24 in K. Direct computations permit to see
that G is in fact a normal subgroup of K.

Case (3) In this case, we consider

H1 =

〈
X(z) = e2πi/5z, Z(z) =

2z +
√

10− 2
√
5− 2

(√
10− 2

√
5 + 2

)
z − 2

〉
∼= A5.

Set q0 =
(
2−

√
10− 2

√
5
)
/
(
2 +

√
10− 2

√
5
)
and choose a point p0 ∈

(0,−q0). In this case we take as Σ the circle with center at 0 and radius
p0. If Y is the elliptic involution with fixed points being ±p0, then

K =
〈
X,Y, Z : X5 = Y 2 = Z2 = (ZX)3 = (XY )2 = 1

〉 ∼= D3 ∗Z2
Z
2
2,

where

D5 =
〈
X,Y : X5 = Y 2 = (XY )2 = 1

〉

A5 =
〈
X,Z : X5 = Z2 = (XZ)3 = 1

〉

Z5 =
〈
X
〉
.

A fundamental domain can be seen in Figure 2. Let us consider the circles
Σ1,. . . , Σ11 (all of them different from Σ) we obtain by following the orbit
of Σ under the action of H1. For each j = 1, . . . , 11, take Tj ∈ H1 so that
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Σj = Tj(Σ). Clearly, Σj is invariant under the involution TjY T−1
j . We set

Σ′

j = Y (Σj) and Aj = Y TjY T−1
j . Then, Aj(Σj) = Σ′

j and Aj(Q) ∩ Q =
∅, for every j, where Q is the common domain bounded by all the circles
Σ1, Σ

′

1,. . . , Σ11, Σ
′

11. It follows that G = 〈A1, . . . , A11〉 = 〈〈(ZY )2〉〉 is a
Schottky group of rank 11 and index 120. It can be seen that G is also
normal in K.

Case (4) In this case, we consider

H1 =

〈
X(z) = eπi/2z, Z(z) =

z
√
2 +

√
6 + 2

√
2−

√
2(√

6 + 2
√
2 +

√
2
)
z −

√
2

〉
∼= S4.

Set q0 =
(√

2−
√
6 + 2

√
2
)
/
(√

2 +
√
6 + 2

√
2
)

and choose a point

p0 ∈ (0, q0). In this case we take as Σ the circle with center at 0 and
radius p0. If Y is the elliptic involution with fixed points being ±p0, then

K =
〈
X,Y, Z : X4 = Y 2 = Z2 = (ZX)3 = (XY )2 = 1

〉 ∼= D3 ∗Z2
Z
2
2,

where

D4 =
〈
X,Y : X4 = Y 2 = (XY )2 = 1

〉

S4 =
〈
X,Z : X4 = Z2 = (XZ)3 = 1

〉

Z4 =
〈
X
〉
.

A fundamental domain can be seen in Figure 2. Let us consider the circles
Σ1,. . . , Σ5 (all of them different from Σ) we obtain by following the orbit
of Σ under the action of H1. For each j = 1, . . . , 5, take Tj ∈ H1 so that

Σj = Tj(Σ). Clearly, Σj is invariant under the involution TjY T−1
j . We set

Σ′

j = Y (Σj) and Aj = Y TjY T−1
j . Then, Aj(Σj) = Σ′

j and Aj(Q) ∩ Q =
∅, for every j, where Q is the common domain bounded by all the circles
Σ1, Σ

′

1,. . . , Σ5, Σ
′

5. It follows that

G = 〈A1, . . . , A5〉 =
〈

(Y Z)2, Y XZY ZX
−1

, Y X
2
ZY ZX

2
, Y X

−1
ZY ZX, Y ZX

2
ZY ZX

2
Z
〉

=
〈〈

(ZY )2
〉〉

is a Schottky group of rank 5 and index 48. It can be seen that G is also
normal in K.
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