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Abstract. In this note we provide a different proof of Hill’s criteria of freeness
for abelian groups. Our proof hinges on the construction of suitable G(ℵ0)-
families of subgroups of the links in Hill’s theorem and, ultimately, on the
construction of such a family of pure subgroups of the group itself.
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Resumen. En este trabajo se proporciona una nueva demostración del criterio
de Hill para grupos abelianos libres. La demostración se basa en la construc-
ción de una G(ℵ0)-familia de subgrupos en los eslabones del teorema de Hill
y, prioritariamente, en la construcción de una familia tal de subgrupos puros.
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1. Introduction

In 1934, Lev Pontryagin proved that a countable, torsion-free abelian group
is free if and only if every finite rank, pure subgroup is free [3]. Equivalently,
every properly ascending chain of subgroups of the same finite rank is finite.
From the proof of this criterion, it follows that a torsion-free abelian group G
is free if there exists an ascending chain

0 = G0 < G1 < · · · < Gn < · · · , (n < ω), (1)

consisting of pure subgroups of G whose union is equal to G, such that every
Gn is free and countable. Here, a subgroup H of the abelian group G is pure
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if solubility in G of every equation of the form nx = h ∈ H , with n ∈ Z,
implies its solubility in H . Also, we say that G is torsion-free if n = 0 or g = 0,
whenever n ∈ Z and g ∈ G satisfy ng = 0.

Later, in 1970, Hill established that, in order for an abelian group G to be
free, it is sufficient to prove that it is the union of a countable ascending chain
(1) consisting of free, pure subgroups [1]. In other words, he proved the following
theorem, establishing thus that the countability condition on the cardinality of
the links of the chain was superfluous.

Theorem 1 (Hill’s criterion of freeness). A torsion-free abelian group G is free
if there exists a countable ascending chain

0 = G0 < G1 < · · · < Gn < · · · , (n < ω) (2)

of subgroups of G, such that:

a) every Gn is free,

b) every Gn is a pure subgroup of G, and

c) G =
⋃

n<ω Gn.

In this note, we give a proof of Hill’s criterion different from the one provided
in [1]. Our proof hinges on the construction of suitable classes of subgroups of
the groups Gn and, ultimately, on the construction of such a family consisting
of pure subgroups of G. Section 3 of this work contains the proof of Theorem
1, while Section 2 presents some preliminary results.

2. Preparatory Lemmas

The following is a general result which will be used in the proof of Theorem 1.
We refer to [2] for definitions of the set-theoretical concepts.

Lemma 1. An abelian group G is free if there exists a continuous, well-ordered,
ascending chain

0 = A0 < A1 < · · · < Aγ < Aγ+1 < · · · , (γ < τ) (3)

of subgroups of G, such that:

a) every factor group Aγ+1/Aγ is free, and

b) G =
⋃

γ<τ Aγ .

Proof. The conclusion follows from the fact that G is isomorphic to the direct
sum of the factor groups Aγ+1/Aγ , for γ < τ . �X
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Recall that a G(ℵ0)-family of an abelian group G is a collection B of sub-
groups of G, which satisfies the following properties:

i) 0 and G belong to B,

ii) B is closed under unions of ascending chains, and

iii) for every A0 ∈ B and every countable set H ⊆ G, there exists A ∈ B which
contains both A0 and H , such that A/A0 is countable.

Clearly, every abelian group has a G(ℵ0)-family, namely, the collection of
all its subgroups.

For the rest of this section, we will assume the hypotheses of Theorem 1.
Under these circumstances, we fix a basis Xn of Gn for every n < ω, and let
Bn be the family of all subgroups of Gn generated by subsets of Xn. Clearly,
every member of Gn is a direct summand of Gn and, thus, a pure subgroup of
G.

Lemma 2. The collection B′

n = {A ∈ Bn | A+Gi is pure in G, for every i <
ω} is a G(ℵ0)-family of pure subgroups of Gn, for every n < ω.

Proof. All we need to check is that the countability condition is satisfied, since
the other conditions of a G(ℵ0)-family are obvious. So, let A0 ∈ B′

n, and let H0

be a countable subset of Gn. Moreover, let m < ω, and assume that we have
already constructed a chain

A0 < A1 < · · · < Am (4)

of groups in Bn, such that:

a) H0 is contained in A1,

b) for every j < m, the group Aj+1/Aj is countable, and

c) for every j < m and every i < ω, (Aj+1 + Gi)/(A0 + Gi) contains the
purification of (Aj +Gi)/(A0 +Gi) in G/(A0 +Gi).

To find the next member of (4), for every i < ω, let Vi ⊆ Gn be a complete
set of representatives of the purification of (Am+Gi)/(A0+Gi) in G/(A0+Gi).
The sets Vi are clearly countable, so that Hm+1 = H0 ∪

⋃

i<ω Vi is likewise
countable. Therefore, there exists Am+1 ∈ Bn containing both Am and Hm+1,
such that Am+1/Am is countable. Inductively, we construct a chain

A0 < A1 < · · · < Am < · · · , (m < ω) (5)

of groups in Bn, satisfying properties a), b) and c) above, for every m < ω.
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Evidently, the union A of the links of (5) is a member of Bn, A/A0 is
countable, and our construction guarantees that (A + Gi)/(A0 + Gi) is pure
in G/(A0 + Gi). Thus, A + Gi is pure in G and, consequently, A belongs to
B′

n. �X

Lemma 3. The collection B = {A < G | A ∩ Gn ∈ B′

n, for every n < ω} is a
G(ℵ0)-family of pure subgroups of G.

Proof. Again, only the countability condition merits attention; so, let A0 ∈ B,
and let H ⊆ G be countable. For every k < ω, let A0

k = A0 ∩Gk. Moreover, let
n < ω, and assume that we have already constructed a finite ascending chain

A0 < A1 < · · · < An (6)

of subgroups of G, such that all factor groups Am/A0 are countable, for every
m ≤ n. Furthermore, suppose that each link Am in (6) may be expressed as
the union of a countable ascending chain

0 = Am
0 < Am

1 < · · · < Am
k < · · · , (k < ω) (7)

of subgroups of G, such that:

a) Am
k ∈ B′

k, for every k < ω and every m ≤ n,

b) Am
k is countable over A0 ∩Gk, for every k < ω and every m ≤ n, and

c) Am
k < Am ∩Gk < Am+1

k , for every k < ω and m+ 1 ≤ n.

For every k < ω, the group (An ∩ Gk)/(A0 ∩ Gk) is countable, so we may
fix a countable set of representatives Yk of An∩Gk modulo A0∩Gk. Moreover,
there exists Bk ∈ B′

k containing both A0∩Gk and Yk, such that Bk is countable
over A0 ∩ Gk. Thus, any set of representatives Hk of Bk modulo A0 ∩ Gk is
countable.

In order to construct the next link in (6), assume that the groups in the
ascending chain 0 = An+1

0 < An+1
1 < · · · < An+1

k have been built as needed,
for some k < ω, and let Zk ⊆ Gk be a set of representatives of Am+1

k modulo
A0 ∩ Gk. Then, there exists An+1

k+1 ∈ B′

k+1 which contains A0 ∩ Gk+1 and the

countable set Zk ∪Hk+1 ∪ (H ∩Gk+1), such that An+1
k+1 is countable over A0 ∩

Gk+1.

Clearly, the group A =
⋃

n<ω An contains both A0 and H , and is countable
over A0. Moreover, our construction guarantees that A ∩ Gk ∈ Bk, for every
k < ω. We conclude that A ∈ B. �X

Before we prove our next result, it is important to notice that A + Gn

is a pure subgroup of G, for every A ∈ B and every n < ω. Indeed, that

Volumen 44, Número 1, Año 2010



ANOTHER PROOF OF HILL’S CRITERION 63

(A + Gn) ∩ Gn+1 is pure in G follows from the fact that A ∩ Gn+1 ∈ B′

n+1.
Next, assume that (A + Gn) ∩ Gk is pure in G, for some k > n. It is easy to
check that

(A+Gk) ∩Gk+1

(A+Gn) ∩Gk+1

∼=
Gk

(A+Gn) ∩Gk

, (8)

whence it follows that (A + Gn) ∩ Gk+1 is pure in G. The claim is readily
established after noticing that A+Gn =

⋃

k<ω(A+Gn) ∩Gk.

Lemma 4. For every A ∈ B, finite rank, pure subgroups of G/A are free.

Proof. Let A ∈ B, and let D be a pure subgroup of G containing A, such that
D/A is of finite rank. If S = {d1, . . . , dn} is a complete set of representatives of
a maximal independent system of D modulo A, then there exists k < ω such
that S ⊆ Gk. Then A + (D ∩ Gk) = D ∩ (A + Gk) is a pure subgroup of G
containing S, which lies between A and D. Therefore, D = A+ (D ∩Gk). The
fact that A ∩ Gk ∈ B′

k implies that A ∩ Gk is a summand of Gk. Therefore,
there exists a finite rank, free group B, such that D ∩ Gk = (A ∩ Gk) ⊕ B.
Notice that

D = A+ (D ∩Gk) = A+
(

(A ∩Gk)⊕B
)

= A⊕B, (9)

which implies that D/A is free. �X

3. Proof of the Main Result

Proof of Theorem 1. Let α be any nonzero ordinal, and let

0 = A0 < A1 < · · · < Aγ < Aγ+1 · · · , (γ < α) (10)

be an ascending chain of subgroups in B, such that all factor groups Aγ+1/Aγ

are free. If α is a limit ordinal, then we let Aα =
⋃

γ<αAγ . Otherwise, there
exists an ordinal β such that α = β+1. In this case, if there exists x ∈ G \Aβ,
we let Aβ+1 ∈ B contain both x and Aβ , such that Aβ+1/Aβ be countable.
Lemma 4 implies now that finite rank, pure subgroups of Aβ+1/Aβ are free.
Consequently, Aβ+1/Aβ is free by Pontryagin’s criterion.

Using transfinite induction, we construct a continuous, well-ordered, ascend-
ing chain (3) of subgroups of G satisfying properties (a) and (b) of Lemma 1.
We conclude that G is free. �X
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64 JORGE EDUARDO MAĆıAS-Dı́AZ
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