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ABsTrRACT. In this paper we make some further generalization of well known
Hilbert’s inequality and its equivalent form in two dimensional case. Many
other results of this type in recent years follows as a special case of our results.
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REsUMEN. En este articulo se hace una generalizacion de la conocida desigual-
dad de Hilbert y su forma equivalente en el caso de dos dimensiones. Otros

resultados de este tipo de anos recientes, se siguen como un caso especial de
los resultados aqui presentados.

Palabras y frases clave. Desigualdad de Hardy-Hilbert, mejor constante, de-
sigualdad de Holder, desigualdad integral de Minkowski.

1. Introduction
Hilbert’s classic inequality
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and variants and generalizations of it found application in theory of number,
specially in connection with the large sieve (method of analytic number theory).
During the past century Hilbert’s inequality was generalized in many different
directions. Similar inequalities, in operator form, appear in harmonic analysis
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where one investigate properties of such operators. Next, we recall the Hilbert
inequality and the Hardy—Hilbert inequality. If f, g are real functions such that
0< [;° f2(z)dx < oo, and [;~ g*(x) dz < oo, then we have (see [4])

% fx)g(x)
/0 /0 Tjuydxdy<7f|\f|\2|\g||z, (1)

where the constant factor 7 is the best possible. Inequality (1) is the well
known Hilbert’s inequality. Inequality (1) had been generalized by Hardy—Riesz
(see [3]) in 1920 as:

If f, g are non-negative real functions such that 0 < fooo fP(x)dr < oo and
157 9%(x) dz < oo, then

[ ) T
/0 / s < s lal @)

where the constant factor m is the best possible. When p = ¢ = 2, (2)

reduces to (1). Under the same conditions of (1) and (2) inequalities (1) and
(2) are equivalent to the following two inequalities

/OOO[ Om&dxrdy<7r2/ooof2(x)dx, (3)

r+vy

where the constant factors 72 and are the best possible (see [4]).
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In recent years a lot of results with generalization of the Hardy-Hilbert
integral inequality were obtained (see [1, 2, 6, 8, 9]). Let us mention some
of them which take our attention. Li Wu and He [7] obtained the following
inequality.

Theorem 1. If f, g are non-negative real functions such that

0< / fA(z)dr < 0o and / g*(r)dx < oo,
0 0

then we have
/ / f(z)g(y) dr dy <
o Jo =+y+max{z,y}

C(/Ooon(:v)d:v>2(/OOOgQ(:v)d:v>%, (5)

where the constant factor C' = 1.7408 - - - is the best possible.
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B. He, Y. Li and Y. Qian (see [5]) obtained the following inequality:

Theorem 2. If f, g are real functions such that 0 < fooo f?(z)dxr < oo, and
0< [;° g*(x)dx < co. Then we have

s /m'mj;jyﬁ@mw><

A(/OOO 2(z) d:v)

where A = 7.3277 - -+ is the best possible.
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Recently B. He, Y. Li and Y. Qian [5] obtained the following inequality.

Theorem 3. If f, g are real functions such that 0 < fooo f2(x)dr < oo and
0< fo x)dx < co. Then we have

[ |lnz —Iny|
/0 /0 x+y+min{x,y}f(“’>9(y) <

A([ Pwa)

where A = 6.88947 - - - is the best possible.
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2. Main Results

To proof our main result, we use the standard methods of [2] section 6.3.

Theorem 4. Suppose K is Lebesque measurable function on (0,00) x (0, 00)
such that

a) KAz, \y) = X" K (z,y), for all A\ >0 (homogeneous of degree —1).

b) [ |K(:v,1)|x%71 dr = A < 00, where 1 < p < 0o and q is the conjugate
exponent to p. If f € L,(0,00) and g € Ly(0,00), then

[T K st drds] < A1l )

Proof. For fixed y, setting x = zy, and putting into the integral below, we have.

/ / |dxdy_/ / (zy,9)f (zy)g(y)| dz dy
:/0 /0 K (2,1)f(y2)g(y)| d= dy
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therefore, Fubini’s theorem, Holder’s inequality and a suitable change of vari-
able gives

| [ e i@t dsdy
B /0°° /000 K (2,1)f(y2)g(y)| d=dy
B /OOO /OOO K (=, Df (wyg(2) 7| dz du
< [ e (s () )

= ([T i a1l

[T K@@ dea < Aol o)

hence

Note that equality in (9) can only occur if f or g is null or both are effectively
proportional.

The first possibility would contradict one of the hypotheses; the second
possibility implies that for almost all z and all y there exist constants ¢ and d
they are not all zero, without loss of generality, suppose ¢ # 0, and

1 1
cK (z,y)f (@)Par " = dK (z,y)[g(y)] 7y,
i.e. in (0,00) x (0,00). Then we have obtain
elf @) a3t = dlg(y))ys " = constant,
i.e. in (0,00) x (0,00). Thus,

& const [ dx
f(@))Pdz = / —_,
A

which contradict the fact that f € L,(0,00). Hence (9) takes the form of strict
inequality, so we have (8). This completes the proof of Theorem 4. o

Theorem 5. Suppose K is a Lebesgue measurable function on (0,00) x (0, 00)
such that

a) KAz, \y) = A\ K(z,y) for all A\ >0, and

b) fooo | K (, 1)|x% dx = C < 00, where 1 <p < oo. If f € L,, then

I \ | K as
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Proof. The proof goes line by line the same as the proof of Theorem (4), but
in place of Holder’s inequality we use the Minkowski inequality for integral

(see [2]).

Theorem 6. Inequality (8) is equivalent to (10).

Proof. Suppose that inequality (8) holds, then we let g(y) = fooo K(z,y)f(x)dx.
By Theorem (5) we see that g?~! € L,. Then

/0 o) dy = / o) lg@)P dy

- ‘ | K@i

< / h / T IK @) F (@) o) P dedy

<a [Tiswr ) '

lg(y)[P~" dy

-l

(/Ooo Ig(y)l”dy> §

/0 lg(y)|P dy < A”/O |f(x)|P da.

Conversely if inequality(10) holds, then

thus,

| [ EGas@atldeds = [ 0K @s@ldnlow)l dy
0 0 0

= </oOO (/OOO |K(:C,y)f(:v)|dx)pdy>% (/Ooo o)) dy)%

< Al fllpllgllq;
as we claimed. o

Remark 1.

a) If K(z,y) = ﬁy and p = ¢ = 2 then (1) follows as special case of (8).

b) Also, for K(z,y) = ﬁ and for any 1 < p < ¢ < oo such that %—l—%: 1,

(2) follows as special case of (8).

c) If K(z,y) = m and p = ¢ = 2 from (8) we have (5) as special
. _ |lnz—Iny|
case, the same happen if K(z,y) = —y
d) Finally, if K(z,y) = % and p = ¢ = 2 from (8) we have (7).
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