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On the Solvability of Commutative
Power-Associative Nilalgebras of
Nilindex 4

Sobre la solubilidad de nilagebras conmutativas de potencias
asociativas de nilindice 4
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ABsTRACT. Let A be a commutative power-associative nilalgebra. In this paper
we prove that when A (of characteristic # 2) is of dimension < 10 and the
identity 2* = 0 is valid in A, then ((y?)z?)z®> = 0 for all y, = in A and
((A%)*)? = 0. That is, A is solvable.
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RESUMEN. Sea A una nilagebra conmutativa de potencias asociativas. En este
trabajo demostramos que cuando A (de caracteristica # 2) es de dimension
<10 y la identidad z* = 0 es valida en A, entonces ((y*)z*)z* = 0 para todo
y, xen Ay ((A%)?)? = 0. Es decir, A es soluble.

Palabras y frases clave. Conmutativa, potencias asociativas, nilalgebra, soluble,
nilpotente.

1. Preliminaries

In this section A is a commutative algebra over a field K. If x is an element of A,
we define 2! = z and 21! = 2Fz for all k > 1 A is called power-associative, if
the subalgebra of A generated by any element x € A is associative. An element
x € A is called nilpotent, if there is an integer » > 1 such that =" = 0. If
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any element in A is nilpotent, then A is called a nilalgebra. Now A is called a
nilalgebra of nilindex n > 2, if y™ = 0 for all y € A and there is x € A such
that 2”1 # 0.

If B, D are subspaces of A, then BD is the subspace of A spanned by all
products bd with b € B, d € D. Also we define B! = B and B*¥*! = B*B for
all k& > 1. If there exists an integer n > 2 such that B® = 0 and B"~! # 0,
then B is nilpotent of index n.

A is called solvable in case A*) = 0 for some integer k, where A1) = A and
Alntl) — (A("))2 for all n > 1.

A is a Jordan algebra, if it satisfies the Jordan identity 2?(yz) = (22y)x
for all z,y € A. It is known that any Jordan algebra (of characteristic # 2)
is power-associative and also that any finite-dimensional Jordan nilalgebra is
nilpotent (see [9]).

If the identity z® = 0 is valid in A, then A is a Jordan algebra (see
[11, p. 114]). Therefore, if A is a finite dimensional, then A is nilpotente and
hence solvable.

We will denote by {(a1,...,a;) the subspace of A generated over K by the
elements ai,...,a; € A. In the following a greek letter indicates an element of
the field K.

The problem of nilpotence in a commutative power-associative nilalgebra is
known as Albert’s problem [1]: Is every commutative finite dimensional power-
associative nilalgebra nilpotent?

In [10], D. Suttles constructs (as a counterexample to a conjecture due to
A. A. Albert) a commutative power-associative nilalgebra of nilindex 4 and
dimension 5, which is solvable and is not nilpotent. In [4] (Theorem 3.3), we
prove that this algebra is the unique commutative power-associative nilalgebra
of nilindex 4 and dimension 5, which is not Jordan algebra.

At present there exists the following conjecture: Any commutative finite
dimensional power-associative nilalgebra is solvable. The solvability of these
algebras for dimension 4, 5 and 6, are proved in [8], [4] and [2] respectively.

Let A be a commutative power-associative nilalgebra. In [6], is proved that
when A is of nilindex n and dimension < n 4+ 2, then A is solvable. In [5], we
prove that if A is of nilindex 4 and dimension < 8, then A is solvable. In [7], is
proved that if A is of nilindex 5 and dimension 8, then A is solvable. Therefore,
if A is of dimension < 8, then A is solvable.

We will use the following results which we demonstrated in [5]:

Theorem 1. Let A be a commutative power-associative nilalgebra (of charac-
teristic # 2,3) such that z* = 0 for all x in A.

a) If exist elements y, x € A such that (yz*)z? # 0, then y,yz, (yz)z, ((yz)z)z,

(yx?)a®, x, 2%, 2%, yx? are linearly independent.
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. . . 2 . .
b) If A is of dimension < 8, then ((AQ)Q) = 0. That is, A is solvable.
2. Solvability

In this section, A is a commutative power-associative algebra over a field K
with characteristic # 2, 3 such that the identity x% = 0 is valid in A. Linearizing
the identities (22)2 = 0 and z* = 0, we obtain that for all y,z, z,v € A:

(yz)z* =0, 2(xy)? +2%y* =0 (1)
(yz)z? + 2(yx)(zz) = 0, (yz?)(va?) = 0 (2)
(zy)(20) + (22)(yv) + (2v)(y2z) = 0 (3)
2((yx)z)z + (ya?)z + ya® =0 (4)
2((y517):c)z + 2((2:0):17)y + 2((yz):1:):c + (yaz?)z+
(z2°)y +2((yz)2)z + 2((z2)y)z =0 (5)

It is known that the following identities are valid in A:

4(((yz)z) )z = (yz?)a? = —2(yx)a® (6)

(((yz)z)z)2)r =0 (7)

((...(yxmt)...)xmz)xml =0 (8)

where mq,..., m; are positive integers such that mq + --- + m; > 5. This last

identity is proved in [3].

Lemma 1. If there exist elements y,x € A such that (y3z%)x? # 0, then A is
of dimension > 11.

Proof. We consider the subspace U of A generated by y*, y3z, (y*z)z, ((y3z)z)z,
(y32?)2?, x, 22, 23, y32%. By Theorem 1(a), U is a subspace of dimension 9.

Using (8) and (6) we get that (Uz)x is generated by (y3z)z, ((y3z)z)z,
(y3a?)z?, 23, ((y3a?))a.

We observe that using (2), (1) and (8) we get
(yo)2) (o)) = — 5 () )a? = 1Pa)?,
((w)o)) (o) = 3 ((way?)a)a? =0,
((52)2) ((P)2) = 7(7%)a? =0,
())2) (o)) = 1 (Pa?)a)a? =0,
((y:vQ)x2):v3 =0 and
((*)2)) ((6P0)2) = 7 (5 )52)a%) 2 =0
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Using the previous relations, we obtain that ((Uz)z) ((y?z)z) is generated
by ((y°2?)2?) ((°w)).

Let ay + Byxr € U. We will prove that a« = 8 = 0.

For this we see that (((ay + Byz)z)z)((y?z)z) € ((Uz)z)((y*z)z) and
hence a((y;v) ) (y*2)z)+8(((yz)z)z) ((y*x)z) = v((y*2?)x?) ((y*z)z). There-
fore Ta(y*z?)a? = ’7((y3$2).’[:2) ((y*z)z). If we suppose that « # 0, then v # 0
and so we obtain that uv = lay~'u where u = (y32%)2? and v = (y%z)z.
Using (7), we get that (+ay~1)5u = 0, which is a contradiction. Therefore
a=0.

We have now that Byz € U and hence fyr = a1y® + azyr + as(y®z)r +
au((yPz)z)z+as(y3a?)2? + asr+ ara® + agz® + agy®x?. Multiplying by % and
using (1) we obtain ayy31? + agz® + ag(y32?)z? = 0, which implies that a; =
ag = ag = 0. Therefore Syz = aoy®z+as(y3r)r+ s ((Y3z)2) 2+ as(yPa?)a? +
arz? + agr® and so B(yz)z = az(yPz)r + a3 ((y3z)z)z + Jaa(y®2?)a? + ara®.
Multiplying by (y*z)z, we get that 13(y*z?)a? = Jou((y32?)2?) ((y*x)z). Us-
ing the same argument earlier we conclude that 5 = 0 and therefore
dimg(A) > 11. o

Theorem 2. If A is of dimension < 10, then (y?x?)x? = 0 is an identity in A.

Proof. Suppose that there exist y,x € A such that (y?2?)2? # 0. By Lemma 1
we can suppose that (y3 2):1: = O and Theorem 1(a) implies that y?, y2x, (y?z)z,
((y*z)z)z, (y2a?)x?, z, 22, 23, y*2? are linearly independent.

Let ayz+ B(yz)r = a1y® + asy?e +az(yPe)z + au ((y°2)x) o+ as (y®2?)a® +
agT + arz? + agr® + agy?x?. Multiplying by 22 we obtain aiy?x? 4+ aga® +
ag(y?z?)x? = 0, which implies a; = ag = ag = 0.

Now we have ayz+8(yz)r = asyz+az(y?z)z+as ((y*z)z) a+as (y2z?)2?
azz? + agz®. Multiplying by = we get a(yz)z + B((yz)z)r = a(yz)x

.

a3 ((y*z)z)z + au(((y*x)z)x)z 4+ arz® and therefore (a(yac)x — s y2x)x
(—=B((yz)z)z+as((y?z)z) w+ou (((y2x)z)x )a:—!—ow:z: ) Using the identitie s( )
(2) and (8), we obtain $a?(y%z?)z? — Laas(y?z?)2? = 0. Since (y32%)z? = 0,
then o = 0.

Now B(yz)r = asy’r + az(y?z)r + 044((y2:17)3:)3: + as(y?2?)2? + arza? +
asz®. Multiplying three times by z we obtain that az = 0. Now (8(yz)z —
a3(y2x):v)2 = (ou((yPx)z)z + as(y?2?)2? + ara® + a8x3)2 = (s ((y?2)z)z +
das(((y2z)z) )z + ara? + agz®)?, implies that 152(y?2?)z? = 0 and so 8 = 0.
Therefore dimension of A > 11, which is a contradiction. 4]

Lemma 2. If (y*22)2® = 0 for all x,y € A, then the following identities are
valid in A:

2 ((22)(yu)) + (z2)((yu)2?) =0,  (yz)® =0 (9)
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(2y)) (wo)® =0, (((zy)(wv))(u ))(Iy) =0 (11
(zy))(wo)* =0, (((zy)(w)?)(uv))(zy)* = 0.

Proof. Linearizing the identity (y*z?)z? = 0 we obtain that z?((x2)(yu))
(zz)((yu)x?) = 0. Substituting z by y, u by y and using (1), we obtain (yx)?
0. So we obtain (9).

Replacing z by (uv)?, y by (zy)?, z by 22 in (5) and usmg (1
we get the next expressions (((zy)?(uwv)?)z?)(uv)? = — (22 (uv)?(zy)
3 (2 (u0)?) (#29?) (uv)? = 0.

Replacing = by (zy)?, y by (uv)?, z by wv in (5) and using (1) we get
that (((zy)?(uv)?)(w))(zy)? = —(((2y)*(uv)) (uv)?)(zy)? = 0. Therefore, we
get (10).

Replacing = by wv, z by zy, u by x in (9) and using (2) and (9), we get
that (((zy)(uwv))(zy))(wv)* = —((zy)(w))((zy)(wv)?) = 3(2y)*(w)® = 0.
Similarly, we prove that (((zy)(uv))(uv))(zy)? = 0.

Replacing = by (uv)?, y by y and z by xy in (5), we get the next expression

(((@y) (uv)?) (zy)) (uv)? = 0.

I+

11

) and
?) (u )

A
| >

Replacing z by xy, z by (uv)?, y by v in 9) nd using (3), (1) and (9), we ob-
tain the next expression (((zy)( uv)Q) (w)) (zy)? = —((xy)(uv)2)( uvz)))(xy)z) =
((z9) (w0)) ((29)* (u0)?) = =2((2y) (w0)) ((2y)(uwv))” = —2((zy)(uv))* = 0. So,
we prove (11). o

Lemma 3. If the identity (y*x?)x? = 0 is valid in A and ((A2)2)2 # 0, then
there exist elements y, x,u,v € A such that 2%, y*, xy, (vy)?, u?, v2, wv, (uv)?,

(ry)?(uv)? are linearly independent. Therefore, A is of dimension > 9.

Proof. Since ((A2)2)2 # 0, then there exist elements y,z,u,v € A such that

(22y?)(u?v?) # 0. From (1), (22y%)(u?v?) = d(wy)?(uv)? = —8((zy)(uv))” # 0.

We will prove first that 22, y2, zy, (zy)?, u?, v?, uv, (uv)2 are linearly inde-

pendent. Let ax? + By? + vry + d(xy)? + apu® + ﬁov + Youv + 6o(uv)? = 0.
Multiplying by y?, afterwards by u?v? = —2(uv)? and using (1), (2) we obtain
a(z?y?)(u?v?) = 0, which implies o = 0. Similarly, we get 3 = ag = By = 0.
Now we have yay + &(zy)? = —(youv + §o(uv)?). Using (9), (yay + 6(;vy)2)2 =
(- (vouv+5o(uv)2))2 implies v%(zy)? = ¥¢ (uv)?. Since (ry)?, (uv)? are linearly
independent, then v =~y = 0. NOW §(zy)? = —Jo(uv)? implies § = Jp = 0. We

conclude that 22, % 2y, (vy)?, u?, v?, uv, (uv)? are linearly independent.
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2

Now we will prove that 22, y2, xy, (zy)?, u?, v2, uv, (uv)?, (zy)?(uv)? are lin-

early independent.

Suppose that (zy)?(uv)? = ax? + By? +yzy +6(2y)? + apu? + Bov? +youv +
do(uv)?. Multiplying by 22, afterwards by (uv)? = —1u?v? and using (10), we
obtain B(2?y?)(uwv)? = —28(xy)?(uv)? = 0 and hence 3 = 0. Using the same
argument and the Identities (10), it is possible to demonstrate that o = ag =
Bo = 0.

Now we have that (zy)?(uv)? = vy + 6 (zy)? + youv + do(uv)?. Multiplying
by zy, afterwards by (uv)? and using (10), we get v(zy)?(uv)? = 0. Therefore
~v = 0. Similarly we prove that vy = 0.

Now (zy)?(uv)? = §(zy)?+do(uv)?. Multiplying by (uv)? (also by (zy)?), we
obtain that 6 = §p = 0, which is a contradiction. This completes the proof.

Lemma 4. If the identity (y*x?)a?® = 0 is valid in A and ((A2)2)2 # 0, then
there exist elements y,x,u,v in A such that x%,y?, zy, (xy)?,u?,v2, v, (uv)?,
(xy)?(uv)?, (zy)(uv) are linearly independent or x%,y?, zy, (zy)?,u?, v?, wo,
(uv)?, (xy)?(uv)?, (wy)(uv)? are linearly independent. Therefore A is of dimen-
sion > 10.

Proof. By Lemma 3, we know that there exist z,y,u,v in A such that the
subspace U of A generated by 22, y?, zy, (xy)?, u?,v?, uv, (uv)?, (zy)?(uv)? has
dimension 9.

We will prove that (xy)(uv) ¢ U or (zy)(uv)? ¢ U. Suppose that (zy)(uv)
and (zy)(uv)? are elements in U. Then

(a) (zy)(wv) = arz? + aoy? + azzy + fru? + B2v? + Buv + z where z =
as(zy)? + Ba(uv)? + A1 (zy)? (wv)?, and

(b) (zy)(uv)? = 2% + 72y + Y32y + 61u? 4 d20* + Szuv + ya(zy)? + da(uv)® +
Ao(zy)? (uv)?.

Multiplying (a) by 2y and afterwards by (uv)? = —1u?v? and using (1), (2),
(9) and (10), we obtain that as(xy)?(uv)? = 0 and therefore az = 0. Similarly,
multiplying (a) by uv and afterwards by (zy)? = —3z%y?, we obtain 3 = 0.

Now in (a) we have (zy)(uv) — 2z = ay2? + agy? + B1u? + B2v? and hence
((zy)(uv) — 2)2 = (12?2 + aoy? + Bru? + Bov?)2. Thus 2au4B4(zy)? (uv)? +
((wy)(uv))2 = 2a10022y? + 201 f12%u? + 201 fox?v? 4 2000 81 Y7 u? + 202 B2y 0% +
21 B2u?v?, which implies (multiplying by (uwv)? = —1u?v?, multiplying by
(zy)?) that ajas = 0 and (132 = 0. Therefore in (a) we may have the possi-
bilities following:

(i) (zy)(uww) = ar2® + Bru® + ca(zy)® + Ba(uv)? + A (zy)? (uv)?,
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(i) (zy)(uv) = 2?4+ Bov? + cu(ay)? + Ba(uv)® + A (2y)* (uv)?,
(i) (zy)(uwv) = o2y® + Bru® + au(zy)? + Ba(w)? + A1 (2y)? (uv)?,
(iv) (zy)(uv) = a2y® + B2v? + au(zy)® + Ba(uv)® + M (zy)* (wv)*.

We will prove that actually 181 # 0 in (i). If we suppose that «; = 0,
then (zy)(uv) — as(zy)? — A (zy)?(uww)? = Bru? + Ba(uv)?. Now ((zy)(ww) —
ay(zy)? — /\1(a:y)2(uv)2)2 = (Bru® + ﬂ4(uv)2)2 implies that ((:zry)(uv))2 =0,
which is a contradiction. Similarly, we obtain that a;82 # 0 in (ii), asB; # 0
in (iii) and @ B2 # 0 in (iv).

Multiplying (b) by zy and afterwards by (uv)? = —iu?v? and using (11)
and (10) we obtain that y3(zy)?(uv)? = 0 and therefore 3 = 0. Similarly,

multiplying (b) by wv and afterwards by (zy)? = —1a%y?, we obtain that
d3 = 0.
Multiplying (b) by v? afterwards by (zy)?> = —32?y® we obtain

an
= 61 (u?v?)(zy)? = —201(uv)?(2y)?. Replacing in
, y by v, u by v and using (3), we obtain that

that (((zy)(uv)?)v 2)<wy>)2

()7wbyxya2b (U‘U2
(o) (w0)?)0?) @) = — (o) (w0)?) (P (@9)?) = ((25)0?) ((29)*(u0)?) and
hence ((zy)v )(( y)?(uv)?) = —261(uv)?(xy)?. Replacing = by (xy)v? and y
by (xy)?(uv)? in (7), we obtain that —3207 = 0 and so 6; = 0. Similarly,
multiplying (b) by u? and afterwards by (zy)?, we obtain 3 = 0.

In (b), we have (zy)(uv)? = v122 + 72y + 74 (2y)? + 04 (uv)? + Ao (2y)? (uv)?.
Multiplying by (zy)?, we get d4(uv)?(xy)? = 0 and so 64 = 0. Therefore

(¢) (zy)(uv)® = m1a? + y2u® 4+ ya(xy)? + Aa(zy)? (ww)? with 192 = 0.

In fact, ((zy)(uwv)? — va(zy)? — )\g(xy)2(uv)2)2 = (ma?+ 723/2)2 implies
that v1y22%y? = 0.

Suppose the case (i), that is,
(zy)(uv) = ara® + Bru® + aa(zy)? + Ba(uv)? + M (zy)* (uv)?

with 181 # 0. Multiplying (i) by y? and afterwards by (uv)?, we obtain
that (((zy)(w))y?)(wv)® = a1(2?y?)(w)? = —2a;(zy)?*(w)?. But,
() (0)2) (1) = — () (o)) (5 (@0)?) = () (w0)?) ((w0)y?) and there-
fore ((zy)(uv)?) ((uv)y®) = =201 (zy)* (wv)?.

Multlplylng ) by (uv)y?, we get that ((zy)(uv)?) ((wv)y? ) Y122 ((uv)y?)+

(c
A2 ((zy)? (uv)?) ((wv )andthereforele ((u0)y?)+ A2 ((zy)* (uv)?) (uv)y?) =
—2a1(xy) ( v)2. If we suppose that y; = O then as a; # 0, we get that Ay #0

(

and so ((zy)?(uv)? (( 0)y?) = —2a1A; ( y)?(uv)?. Replacing z by (uv)y?
and y by (uv)?(zy)? in (7), we obtain that (—2a;\;)® = 0, which is a contra-
diction. Therefore 77 # 0 and so 72 = 0. Now we have in (c),

(zy)(uv)® = ma® + yu(zy)® + Ao (zy)? (wv)?.
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So we obtain 1 (xy)(uv) — a1 (zy)(uv)? = v B1u? + (Y104 — a1vy4)(x )
MBa(uv)® + (A — arde)(zy)?*(ww)?. Since (1 (zy)(w) — ai(wy)(uv)®
(M —a17a) (@y)? = (1 h — a1 do) (2y)2 (uv)?)* = (718102 +71[34(W)2) then
7%((:63/)(111)))2 = —19}(2y)*(uv)? = 0, a contradiction.

Considering the same argument, it is possible to obtain contradictions in
the cases (ii), (iii) and (iv). o

Corollary 1. If A is of dimension < 9, then ((A2)2)2 = 0. That is, A is
solvable.

Theorem 3. If A is of dimension < 10, then ((A2)2)2 = 0. That is, A 1is

solvable.

Proof. Theorem 2, implies that (y?z%)z? = 0 is an identity in A. Suppose
that ((A42)2 ) # 0. By Lemma (4), there exist elements y, z,u,v in A and w €
{(zy)(wv), (zy)(uv)?} such that {z%, 32, (zy), (xy)?, u?, v?, uv, (uv)2, (zy)? (uv)?,
w} is a basis of A. This implies that A% = A.

Since A? = A, then using the identities (1), (2), (9) and the Theorem (2),
we obtain that A is generated also by the elements (zy)?, (zu)?, (z ) (u ,

)
22 (w)?, 22 ((zy)?(uv)?), 2?w, (yu)?, (y)?, y*(w), y*(uv)?, y( 2
)

yPw, (zy)u®, (zy)v?, (wy)(uv), (zy) (w)?, ( )(( y)° (uv) ), (zy)w, ( y)
(zy)*v?, (zy)?(w), (zy)*(uv)?, (uv)?, u2( v)?), wrw, v*((zy)*(ww)?),
V2w, (w) ((zy)? (uwv)?), (w)w.

Now using the identities of Lemma 2, we obtain that (zy)2A is generated
by (zy)?(w)?, (zy)* (u?w), (wy)?(v*w) and (uv)®A is generated by (zy)*(uv)?,
(w)?(zw), (uv)*(y*w).

We will prove that ((zy)?A)((uv)?A4) = 0.

If w = (zy)(uv), then w? = — % (zy)*(uv)? and ((zy)? (v?w)) ((w)? (z?w)) =
—((2y)?(w)?) (vw)(z*w)) = —w?((u?2?*)w?) = 0. In a similar way we prove
that the other products are zero.

Now, if w = (xy)(uv)?, then w? = 0 and hence ((zy)?(uv?w)) ((uv)?(z*w)) =

—((zy)?(w)?) (vPw)(z*w)) = 3 ((zy)?(uwv)?) ((u?z?)w?) = 0. In a similar way
we prove that the other products are zero.

We will prove that ((zy)?(uv)?)A = 0. Observe that it is sufficient to prove
that ((zy)*(uv)?)(z122) = 0 for all 21,22 € A. Now ((zy)*(uv)?)(z122) =

—((zy)?21) ((wv)?22) — ((zy)?22) ((uv)?2z1) = 0. Therefore J = ((zy)?(uv)?)
is an ideal of A. Now A = A/J is a commutative power-associative in which

2z* = 0 for all  in A. Corollary 1 and dim (Z) = 9 imply that A is solvable.
Thus dim (Zz) < 9. Finally we conclude that A~ = A%)J = A/J = A, which
is a contradiction. Therefore ((AQ)Q)2 =0, as desired. ™
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