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Convolution of Distribution-Valued

Functions. Applications.

Convolución de funciones con valores distribuciones. Aplicaciones.

Christian Bargetza

University of Innsbruck, Innsbruck, Austria

Abstract. In this article we examine products and convolutions of vector-
valued functions. For nuclear normal spaces of distributions Proposition 25
in [31, p. 120] yields a vector-valued product or convolution if there is a con-
tinuous product or convolution mapping in the range of the vector-valued
functions. For specific spaces, we generalize this result to hypocontinuous bi-
linear maps at the expense of generality with respect to the function space. We
consider holomorphic, meromorphic and differentiable vector-valued functions
and state propositions that contain assertions on products and convolutions
of distribution-valued functions in literature as particular cases. Moreover we
consider the general convolution of analytic distribution-valued functions and
give an approach different to [22].
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Resumen. En este art́ıculo se investigan los productos y convoluciones de las
funciones con valores vectoriales. Para espacios nucleares y normales de dis-
tribuciones se obtiene de la Proposition 25 en [31, p. 120] una multiplicación o
una convolución con valores vectoriales si existe una multiplicación o una con-
volución continua en los espacios de las imágenes de las funciones con valores
vectoriales. Para espacios particulares se generaliza este resultado a las apli-
caciones bilineales hipocontinuas a expensas de la generalidad relativo a los
espacios funcionales. Se examinan funciones holomorfas, meromorfas y difer-
enciables con valores vectoriales y se formulan proposiciones que contienen
proposiciones encontradas en la literatura sobre multiplicación y convolución
de funciones con valores distribuciones. Además se contempla la convolución
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general de las funciones anaĺıticas con valores distribuciones y se da un enfoque
distinto del presentado en [22].

Palabras y frases clave. Distribuciones, convolución, multiplicación.

1. Introduction

For classical function spaces K(Ω), as for example H(Ω) or Em(Ω), and Haus-
dorff locally convex topological vector spaces E, F and G we would like to
consider convolution maps (in the notation of [29]) of the form

·
∗ : K(Ω;E)×K(Ω;F )→ K(Ω;G),

(
~f,~g
)
7→
[
x 7→ ~f(x) ∗ ~g(x)

]
.

As for decomposed elements g ⊗ ~e ∈ K(Ω) ⊗ E and h ⊗ ~f ∈ K(Ω) ⊗ F the

property ·
∗ (g⊗~e, h⊗ ~f) = (gh)⊗(~e∗ ~f) is satisfied, these maps are vector-valued

multiplications in the sense of [31], at least in the case of nuclear normal spaces
of distributions, where Proposition 25 in [31, p. 120] yields such a convolution
map if ∗ : E × F → G is continuous. For holomorphic distribution-valued
functions such convolution maps are considered in [9], [10], [16], [22] and [24],
furthermore the convolution of distribution-valued meromorphic functions in
[24].

For concrete spaces K(Ω) we generalize these vector-valued convolution
maps to hypocontinuous convolutions ∗ : E × F → G at the expense of gener-
ality with respect to the choice of the space K(Ω), i.e., we consider hypocon-
tinuous bilinear maps

·
b : K(Ω;E)×K(Ω;F )→ K(Ω;G),

(
~f,~g
)
7→
[
x 7→ b

(
~f(x), ~g(x)

)]
,

for specific non-nuclear or non-normal spaces of distributions K(Ω). We ap-
ply these propositions on hypocontinuous bilinear maps of distribution-valued
functions to products and convolutions considered in literature. By doing so, we
state propositions that contain the corresponding ones given in the literature
as special cases. Moreover we prove the continuity, respectively the hypoconti-
nuity, of these convolution maps which is not observed in the literature cited
above.

Let us recall some notation. Throughout we use the notation of L. Schwartz’
theory of (vector-valued) distributions in [29], [30] and [32]. Let E be a Haus-
dorff locally convex topological vector space, we denote by E′c its dual space
endowed with the topology of uniform convergence on compact absolutely con-
vex subsets of E. In particular we use L. Schwartz’ notation for spaces of dis-
tributions, i.e., we denote by D(Ω) the space of smooth functions with compact
support and by Em(Ω), where m ∈ N0 ∪ {∞}, the space of m times contin-
uously differentiable functions with the topology of uniform convergence on
compact subsets with respect to all differentiations. If we do not specify the

Volumen 45, Número 1, Año 2011



CONVOLUTION OF DISTRIBUTION-VALUED FUNCTIONS. APPLICATIONS. 53

argument of a distribution space it is always Rn or R2n. Let Λ ⊂ Cn be an
open set, we denote by H(Λ) the space of holomorphic functions on Λ. Let M
and N be two separated locally convex topological vector spaces, we denote by
M εN ∼= Lε(M ′c, N) the ε-product defined by L. Schwartz in [30]. For different
topologies on M ⊗N refer to [30], [31] or [11]. If M or N is nuclear we do not
specify the topology of M ⊗ N as the ε- and the π-topology coincide and we
do not consider other topologies on M ⊗ N . M⊗̂εN and M⊗̂πN denote the
completed tensor product of M and N with respect to the ε- and π-topology
whereas M

_

⊗εN denotes the quasi-completion of M ⊗ε N .

2. Distribution-Valued Holomorphic Functions

As we consider vector-valued holomorphic functions we first repeat some im-
portant properties of the spaces H(Λ) of holomorphic functions and H(Λ;E),
E as above, of vector-valued holomorphic functions. For the convenience of the
reader we repeat the definition of the “approximation property” [30, Définition,
p. 5]:

Definition 1. A separated locally convex topological vector space E satisfies
the approximation property, if the identity map id : E → E is adherent to E′⊗E
in the space Lc(E,E) of linear operators on E endowed with the topology of
uniform convergence on compact absolutely convex subsets of E.

If E satisfies the approximation property the identity E⊗̂εF = E εF holds
for every complete separated topological vector space F by Corollary 1 in [30,
p. 47].

Proposition 1. The space H(Λ) of holomorphic functions on an open set
Λ ⊂ Cn is nuclear, satisfies the approximation property and has the ε-property.
For every separated complete locally convex topological vector space it holds

H(Λ;E) ∼= H(Λ)⊗̂E = H(Λ) εE

as topological vector spaces. Hence H(Λ)⊗ E ⊂ H(Λ;E) is a dense subspace.

Proof. H(Λ) is nuclear according to [11, p. II.56] or 8. Corollary in [18, p. 499]
and therefore satisfies the approximation property by Théorème 6 [11, p. II.34].

(1) We now show that H(Λ) satisfies the ε-property [30, p. 53] analogously
to the proof of Proposition 3.2 in [29, p. 10]. H(Λ) ⊂ E(Λ) is a subspace
with the induced topology and E(Λ) satisfies the ε-property [30, p. 55].
Let E be a quasi-complete separated locally convex topological vector
space and ~T ∈ D′(E) where 〈~T, e′〉 ∈ H(Λ) for all e′ ∈ E′. Hence we have

for the transpose t ~T (E′) ⊂ H(Λ) and t ~T : E′c → E(Λ) is continuous. Now
t ~T : E′c → H(Λ) is continuous as H(Λ) ⊂ E(Λ) has the induced topology

and t ~T (E′) ⊂ H(Λ).
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(2) According to [27, p. 106] we have

E(Λ;E) ∼= E(Λ)
_

⊗E = E(Λ) εE,

where E is a quasi-complete locally convex topological vector space. A
function ~f : Λ→ E is holomorphic, i.e., ~f ∈ H(Λ;E) if and only if for all

e′ ∈ E′ it holds 〈~f, e′〉 ∈ H(Λ) according to Théorème 1 in [9, p. 37]. Now

~f ∈ H(Λ;E)⇔ ∀e′ ∈ E′ :
〈
~f, e′

〉
∈ H(Λ)⇔ ~f ∈ H(Λ) εE,

i.e., H(Λ;E) = H(Λ) εE algebraically. The topology of H(Λ) εE is de-
fined by the semi-norms

sup
e′∈H

sup
z∈K

∣∣〈~f(z), e′
〉∣∣,

where H ⊂ E′ is an equicontinuous subset and K ⊂ Λ is compact. For
every equicontinuous subset H there is a continuous semi-norm on E
where the above semi-norm is equivalent to

sup
z∈K

p
(
~f(z)

)
,

as the topology of uniform convergence on equicontinuous subset of E′

coincides with the topology of E by Proposition 7 in [14, p. 200]. Hence we
have H(Λ;E) = H(Λ) εE in the sense of topological vector spaces. �X

2.1. Bilinear Hypocontinuous Maps of Holomorphic Functions

Using the properties of vector-valued holomorphic functions studied above, we
now state two propositions on hypocontinuous maps of holomorphic functions.

Proposition 2. Let E, F and G be three quasi-complete separated locally con-
vex topological vector spaces and

b : E × F → G

a hypocontinuous bilinear map. Let Λ1 ⊂ Cn and Λ2 ⊂ Cm be open subsets.

There is a hypocontinuous bilinear map

⊗
b : H(Λ1;E)×H(Λ2;F )→ H(Λ1 × Λ2;G)

satisfying the consistency property

⊗
b

(
g ⊗ ~e, h⊗ ~f

)
= (g ⊗ h)⊗ b

(
~e, ~f

)
,

if g ∈ H(Λ1), h ∈ H(Λ2), ~e ∈ E and ~f ∈ F . The map ⊗b is given by

⊗
b

(
~f,~g
)

: Λ1 × Λ2 → C, (z, w) 7→ ⊗
b

(
~f,~g
)

(z, w) := b
(
~f(z), ~g(w)

)
.

If E, F and G are complete ⊗b is the unique partially continuous bilinear
map satisfying the above consistency property.
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Proof.

(1) If E, F and G are complete H(Λ1)⊗E and H(Λ2)⊗F are dense subsets
of H(Λ1;E) and H(Λ2;F ), respectively according to Proposition 1. Let
⊗
b 1 and ⊗b 2 be two hypocontinuous bilinear maps fulfilling

⊗
b 1

(
g ⊗ ~e, h⊗ ~f

)
= (g ⊗ h)⊗ b

(
~e, ~f

)
= ⊗

b 2

(
g ⊗ ~e, h⊗ ~f

)
for g ∈ H(Λ1), h ∈ H(Λ2) and (e, f) ∈ E × F . Hence the mappings ⊗b 1

and ⊗b 2 coincide on a dense subset of H(Λ1;E)×H(Λ2;F ). As they are
partially continuous they coincide.

(2) Now we show that the mapping ⊗b is well-defined. Since Λ1×Λ2 is a subset
of Cm+n, holomorphy is equivalent to weak holomorphy by Théorème 1 in
[9, p. 37]. According to Hartogs’ theorem [17, Th. 2.2.8, p. 28] holomorphy
is equivalent to partial holomorphy. Hence we only have to prove that

(z, w) 7→ b
(
~f(z), ~g(w)

)
is weakly partially holomorphic which amounts

to assume G = C without loss of generality.

Let 1 ≤ j ≤ n + m, without restriction let j ≤ n. The j-th partial
derivative is

∂jb
(
~f(z), ~g(w)

)
= lim
h→0

1

h

(
b
(
~f(z + hej), ~g(w)

)
− b
(
~f(z), ~g(w)

))
= lim
h→0

b

(
1

h

(
~f(z + hej)− ~f(z)

)
, ~g(w)

)
= b
(
∂j ~f(z), ~g(w)

)
since b is bilinear and partially continuous and ~f is holomorphic. Hence
⊗
b

(
~f,~g
)

is holomorphic.

(3) Next let us prove that, given a continuous semi-norm rK on the space
H(Λ1 × Λ2;G) and a bounded subset A ⊂ H(Λ2;F ), the map

H(Λ1;E)→ R+, ~f 7→ sup
~g∈A

rK

(
⊗
b

(
~f,~g
))

is a continuous semi-norm on H(Λ1;E). Hence ⊗b is hypocontinuous with
respect to bounded subsets of H(Λ2;F ) according to Proposition 3(c) in
[4, p. III.30].

Let K ⊂ Λ1 × Λ2 be a compact subset. There are compact sets K1 ⊂ Λ1

and K2 ⊂ Λ2 where K ⊂ K1 × K2. The semi-norms on H(Λ1 × Λ2;G)

are of the form rK(~h) = sup(z,w)∈K q
(
~h(z, w)

)
, where q is a continuous
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semi-norm on G.

sup
~g∈A

rK

(
⊗
b

(
~f,~g
))

= sup
~g∈A

sup
(z,w)∈K

q
(
b
(
~f(z), ~g(z)

))
≤ sup
z∈K1

sup
~g∈A

sup
w∈K2

q
(
b
(
~f(z), ~g(z)

))
≤ sup
z∈K1

sup
x∈

⋃
~g∈A

~g(K2)

q
(
b
(
~f(z), x

))
.

Since A ⊂ H(Λ2;F ) is bounded,
⋃
~g∈A ~g(K2) ⊂ F is a bounded subset

of F [10, p. 80]. Hence by Proposition 3(c) in [4, p. III.30] there is a
continuous semi-norm p on E where

sup
x∈

⋃
~g∈A

~g(K2)

q
(
b(y, x)

)
≤ p(y)

for all y ∈ E since b is hypocontinuous with respect to bounded subsets
of F . Consequently

sup
~g∈A

rK

(
⊗
b

(
~f,~g
))
≤ sup
z∈K1

p
(
~f(z)

)
,

i.e., ~f 7→ sup~g∈A rK

(
⊗
b

(
~f,~g
))

is a continuous semi-norm on H(Λ1;E).

This proves the hypocontinuity in the first component with respect to
bounded subsets in the second variable. Analogously it is shown that for
all bounded subsets B ⊂ H(Λ1;E) and all continuous semi-norms rK on
H(Λ1 × Λ2;G) the map

H(Λ2;F )→ R+, ~g 7→ sup
~f∈B

rK

(
⊗
b

(
~f,~g
))

is a continuous semi-norm. Hence ⊗b is hypocontinuous. �X

Remarks 1.

(1) If the bilinear map b : E × F → G is even continuous then so is ⊗b . As b
is continuous, there are continuous semi-norms p on E, and q on F and
K1 ⊂ Λ1, K2 ⊂ Λ2 compact, where K ⊂ K1 ×K2 and a constant C > 0
such that

sup
(z,w)∈K

r
(
b
(
~f(z), ~g(w)

))
≤ C sup

z∈K1

p
(
~f(z)

)
sup
w∈K2

q
(
~g(w)

)
.

Hence ⊗b is continuous.
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(2) Let E, F and G be complete. If we apply Proposition 3 in [31, p. 37] to

⊗ : H(Λ1)×H(Λ2)→ H(Λ1 × Λ2), (g, h) 7→ g ⊗ h

we get a unique continuous bilinear map (in the notation of [31])

⊗π : H(Λ1;E)×H(Λ2;F )→ H(Λ1 × Λ2;E⊗̂πF ),

where ⊗π(g⊗ ~e, h⊗ ~f) = (g⊗ h)⊗ (~e⊗ ~f) for all g ∈ H(Λ1), h ∈ H(Λ2),

~e ∈ E and ~f ∈ F . If b : E ×F → G is a continuous bilinear map, there is
a unique continuous linear map b̃ : E⊗̂πF → G, where b̃(~e⊗ ~f) = b(~e, ~f)

for all ~e ∈ E and ~f ∈ F . Hence the continuous bilinear map

⊗π ◦ b̃ : H(Λ1;E)×H(Λ2;F )→ H(Λ1 × Λ2;G)

satisfies (⊗π ◦ b̃)(g⊗~e, h⊗ ~f) = (g⊗h)⊗ b(~e, ~f) and therefore it coincides
with the map

⊗
b : H(Λ1;E)×H(Λ2;F )→ H(Λ1 × Λ2;G),(

~g,~h
)
7→
[
(z, w) 7→ b

(
~g(z),~h(w)

)]
defined in Proposition 2.

If b is not continuous but hypocontinuous, Proposition 3 in [31, p. 37]
cannot be applied, but Proposition 2 is still valid.

By restricting the map defined in Proposition 2 to the diagonal (z, z) ∈ Λ×Λ
we get the following result, that corresponds to Proposition 25 in [31, p. 120]
as both satisfy the same consistency property for decomposed elements. In our
setting, Proposition 25 in [31, p. 120] cannot be applied, as H(Λ) is not a
normal space of distributions. The main reason to assume that a space should
be a normal space of distributions in [31] is that a multiplication can be defined
as a map that coincides in D(Ω) with the classical multiplication. Hence the
main difference is, as above, that b is assumed to be hypocontinuous and not
necessarily continuous.

Proposition 3. Let E, F and G be three quasi-complete separated locally con-
vex topological vector spaces, b : E × F → G a hypocontinuous bilinear map.
Let Λ ⊂ Cn be an open subset.

The hypocontinuous bilinear map

·
b : H(Λ;E)×H(Λ;F )→ H(Λ;G),

(
~f,~g
)
7→
[
z 7→ b

(
~f(z), ~g(z)

)]
satisfies the consistency property

·
b

(
h(z)~e, g(z)~f

)
= (gh)(z)⊗ b

(
~e, ~f
)
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for decomposed elements g(z)⊗~e ∈ H(Λ)⊗E and h(z)⊗ ~f ∈ H(Λ)⊗F . If E, F
and G are complete ·

b is the uniquely determined partially continuous bilinear
map satisfying the above consistency property.

Proof. According to Proposition 2 there is a unique hypocontinuous bilinear
map

⊗
b : H(Λ;E)×H(Λ;F )→ H(Λ× Λ;G).

Since
Λ→ Λ× Λ, z 7→ (z, z)

is holomorphic and for every continuous semi-norm p it holds

sup
z∈K

p
(
~f(z, z)

)
≤ sup
z∈K

sup
w∈K

p
(
~f(z, w)

)
= sup

(z,w)∈K×K
p
(
~f(z, w)

)
,

the map

H
(
Λ× Λ;G

)
→ H

(
Λ;G

)
, ~f 7→

[
z 7→ ~f(z, z)

]
is well-defined and continuous. Hence the bilinear map

·
b : H(Λ;E)×H(Λ;F )→ H(Λ;G),

(
~f,~g
)
7→
[
z 7→ ⊗

b

(
~f,~g
)

(z, z)
]

is hypocontinuous with respect to bounded subsets of H(Λ, E) and H(Λ, F ),
respectively. As ⊗b satisfies the consistency property, ·

b does. Therefore its
uniqueness is shown analogously to Proposition 2. If b is continuous Remark 1
yields the continuity of ·

b . �X

Remark 2. Comparing Proposition 3 to Remark 4 in [9, p. 40] we see that
the assumptions on the space E and the bilinear map are slightly more general
there but the conclusion is only that the mapping is well-defined. Moreover
Proposition 3 proves the uniqueness and hypocontinuity of the map.

2.2. Application 1: Vector-Valued Products and Convolutions

Now we state propositions on distribution-valued holomorphic functions follow-
ing from Proposition 3 and containing the corresponding propositions in [16]
and [22]. Moreover we prove the hypocontinuity or continuity of the mappings,
a property which in [16] and [22] is missing.

Let K(Ω1), K(Ω2) and K(Ω3) be spaces of scalar-valued functions and
u : K(Ω1) × K(Ω2) → K(Ω3) a hypocontinuous bilinear mapping. Addition-
ally let E, F and G be three complete separated locally convex topological
vector spaces and b : E × F → G a bilinear map. In the following we use the
terminology that the map

u
b :
(
K(Ω1)⊗̂εE

)
×
(
K(Ω2)⊗̂εF

)
→ K(Ω3)⊗̂εG,
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if it exists, satisfies the consistency property for decomposed elements if the
equation

u
b

(
g ⊗ ~e, h⊗ ~f

)
= u(g, h)⊗ b

(
~e, ~f
)
,

holds for all g ∈ K(Ω1), h ∈ K(Ω2), ~e ∈ E and ~f ∈ F .

Proposition 4 (Distributions of Finite Order [16, (2.1.6) Prop. (i), p. 79,
(2.1.9) Prop. (i), p. 81 and (2.1.11) Prop., p. 83]). Let m, s, t ∈ N0 ∪ {∞}.

(1) The continuous multiplication map

·
· : H

(
Λ;D′m(Ω)

)
×H

(
Λ; Em(Ω)

)
→ H

(
Λ;D′m(Ω)

)
,(

~f,~g
)
7→
[
λ 7→ ~f(λ) · ~g(λ)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

In particular the product λ 7→ ~T (λ)~a(λ) of a distribution-valued holo-

morphic function ~T ∈ H
(
Λ;D′m(Ω)

)
and a vector-valued holomorphic

function ~a ∈ H
(
Λ; Em(Ω)

)
is again holomorphic.

(2) The continuous map

·
⊗ : H

(
Λ;D′s(Ξ)

)
×H

(
Λ;D′t(H)

)
→ H

(
Λ;D′s+t(Ξ×H)

)
,(

~f,~g
)
7→
[
λ 7→ ~f(λ)⊗ ~g(λ)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

In particular the tensor product λ 7→ ~S(λ) ⊗ ~T (λ) of two distribution-

valued holomorphic functions ~S ∈ H
(
Λ;D′s(Ξ)

)
, and ~T ∈ H

(
Λ;D′t(H)

)
,

is again holomorphic.

(3) The hypocontinuous convolution map

·
∗ : H

(
Λ; E ′s(Ω)

)
×H

(
Λ;D′t(Ω)

)
→ H

(
Λ;D′s+t(Ω)

)
,(

~f,~g
)
7→
[
λ 7→ ~f(λ) ∗ ~g(λ)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

In particular, the convolution λ 7→ ~S(λ) ∗ ~T (λ) of two distribution-valued

holomorphic functions ~S ∈ H
(
Λ; E ′s(Ω)

)
and ~T ∈ H

(
Λ;D′t(Ω)

)
is again

holomorphic.
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Proof.

(1) D′m(Ω) and Em(Ω) are complete and the multiplication map

D′m(Ω)× Em(Ω)→ D′m(Ω), (T, α) 7→ αT

is continuous by Proposition 6 in [14, p. 362]. Hence Proposition 3 can
be applied.

(2) D′s(Ξ) is complete and the map

D′s(Ξ)×D′t(H)→ D′s+t(Ξ×H), (S, T ) 7→ S ⊗ T

is continuous according to Proposition 7 in [14, p. 377]. Hence Proposition
3 can be applied.

(3) The spaces E ′s(Ω) and D′t(Ω) are complete and the convolution map

E ′s(Ω)×D′t(Ω)→ D′s+t(Ω), (S, T ) 7→ S ∗ T

is hypocontinuous according to Proposition 7 in [14, p. 388]. Hence Propo-
sition 3 can be applied. �X

Proposition 5 (Temperate Distributions [16, (2.1.7), p. 80 and (2.1.12), p. 83]).

(1) The hypocontinuous multiplication map

·
· : H(Λ;S ′)×H(Λ;OM )→ H(Λ;S ′),

(
~f,~g
)
7→
[
λ 7→ ~f(λ) · ~g(λ)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

In particular the product λ 7→ ~T (λ)~a(λ) of a distribution-valued holo-

morphic function ~T ∈ H(Λ;S ′) and a vector-valued holomorphic function
~a ∈ H(Λ;OM ) is again holomorphic.

(2) The hypocontinuous convolution map

·
∗ : H(Λ;S ′)×H(Λ;O′C)→ H(Λ;S ′),

(
~f,~g
)
7→
[
λ 7→ ~f(λ) ∗ ~g(λ)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

In particular the convolution λ 7→ ~S(λ) ∗ ~T (λ) of two distribution-valued

holomorphic functions ~S ∈ H(Λ;S ′) and ~T ∈ H(Λ;O′C) is again holo-
morphic.
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Proof.

(1) S ′ and OM are complete and the multiplication map

S ′ ×OM → S ′, (T, α) 7→ αT

is hypocontinuous according to Théorème X in [32, p. 246]. Hence Propo-
sition 3 can be applied.

(2) S ′ and O′C are complete and the multiplication map

S ′ ×O′C → S ′, (S, T ) 7→ S ∗ T

is hypocontinuous according to Théorème XI in [32, p. 247]. Hence Propo-
sition 3 can be applied. �X

Proposition 6 (p-Integrable Distributions [22, Prop. 4 (i), p. 373]).

(1) The hypocontinuous multiplication map

·
· : H(Λ;DLp)×H(Λ;D′Lq )→ H(Λ;D′Lr ),(

~f,~g
)
7→
[
λ 7→ ~f(λ) · ~g(λ)

]
,

where r ≥ 1 and 1
r ≤

1
q + 1

p , is the uniquely determined partially contin-
uous bilinear map consistent with respect to decomposed elements.

In particular the product λ 7→ ~T (λ)~a(λ) of a distribution-valued holomor-

phic function ~T ∈ H(Λ;D′Lq ) and a vector-valued holomorphic function
~a ∈ H(Λ;DLp) is again holomorphic.

(2) The continuous convolution map

·
∗ : H(Λ;D′Lp)×H(Λ;D′Lq )→ H(Λ;D′Lr ),(

~f,~g
)
7→
[
λ 7→ ~f(λ) ∗ ~g(λ)

]
,

where 1
r = 1

p + 1
q − 1 ≥ 0, is the uniquely determined partially continuous

bilinear map consistent with respect to decomposed elements.

In particular the convolution λ 7→ ~S(λ) ∗ ~T (λ) of two distribution-valued

holomorphic functions ~S ∈ H(Λ;D′Lp) and ~T ∈ H(Λ;D′Lq ) is again holo-
morphic.

Proof.

(1) The spaces DLp and D′Lp are complete and

DLp ×D′Lp → D′Lr , (S, T ) 7→ S · T,

where r ≥ 1 and 1
r ≤

1
q+ 1

p , is hypocontinuous according to Théorème XXV

in [32, p. 201].
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(2) The mapping

D′Lp ×D′Lp → D′Lr , (S, T ) 7→ S ∗ T,

where 1
r = 1

p + 1
q − 1 ≥ 0, is continuous according to Théorème XXV in

[32, p. 201]. �X

Proposition 7 (Distributions With Support in a Cone). Let Γ ⊂ Rn be a closed
convex acute cone with non-empty interior and D′+Γ the space of distributions
with support in a translate of Γ. The hypocontinuous convolution map

⊗
∗ : H(Λ1;D′+Γ)×H(Λ2;D′+Γ)→ H(Λ1 × Λ2;D′+Γ),(

~f,~g
)
7→
[
(λ, µ) 7→ ~f(λ) ∗ ~g(µ)

]
,

is the uniquely determined partially continuous bilinear map consistent with
respect to decomposed elements.

In particular the space of holomorphic D′+Γ-valued functions H(Λ;D′+Γ) is
an algebra with respect to convolution as the second law of composition (which
is hypocontinuous).

Proof. The space D′+Γ is a complete separated ultrabornological Montel-space
by Corollary 3.4 in [26, p. 360] and even nuclear by [34, p. 403]. Hence it is
sufficient to show the partial continuity of the convolution map ∗ : D′+Γ ×
D′+Γ → D′+Γ, since every ultrabornological space is barrelled [14, p. 287]. As
the pre-dual F(Γ+) of D′+Γ is a complete separated locally convex space and
D′+Γ is bornological we only have to show that for fixed S ∈ D′+Γ the mapping
D′+Γ → D′+Γ, T 7→ S ∗ T maps weakly bounded subsets into weakly bounded
subsets according to Theorem 4 and Proposition 1 in [14, p. 210 and p. 220].
Let u ∈ Γ̊ and B ⊂ D′+Γ a weakly bounded subset, i.e., there is k ∈ N such
that supp(T ) ⊂ −k · u + Γ for all T ∈ B and for all ψ ∈ E(Rn), where
supp(ψ)∩(−k·u+Γ) is a relatively compact set, there is a constant Cψ such that
supT∈B

∣∣〈ψ, T 〉∣∣ ≤ Cψ. Let suppS ⊂ −l·u+Γ, then supp(S∗T ) ⊂ −(l+k)·u+Γ
according to [35, p. 64] and −l · u + Γ and −k · u + Γ fulfill condition (Σ) of
Definition 2 [14, p. 384]. Let ψ ∈ E(Rn) where suppψ ∩ (−(l + k) · u + Γ) is
a relatively compact set. Hence there is a compact subset K ⊂ Rn such that
suppψ ∩ (−(l + k) · u+ Γ) ⊂ K. We choose α ∈ D(Rn) where α(x) = 1 for all
x ∈ K. Hence we obtain the equality

sup
T∈B

∣∣〈ψ, S ∗ T 〉∣∣ = sup
T∈B

∣∣〈αψ, S ∗ T 〉∣∣ = sup
T∈B

∣∣〈(αψ)∆, S ⊗ T 〉
∣∣.

Let ρ ∈ D
(
R2n

)
where ρ(x) = 1 for all x ∈ supp(αψ)∆ ∩

(
(−l · u + Γ) ×

(−k · u+ Γ)
)
. Hence

sup
T∈B

∣∣〈ψ, S ∗ T 〉∣∣ = sup
T∈B

∣∣〈ρ(αψ)∆, S ⊗ T 〉
∣∣ = sup

T∈B

∣∣〈〈ρ(αψ)∆, S〉, T
〉∣∣ ≤ Cψ,
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as 〈ρ(αψ)∆, S〉 ∈ D(Rn) ⊂ F(−k · u + Γ) and B is σ
(
D′+Γ,F(Γ+)

)
-bounded.

Therefore D′+Γ ×D′+Γ → D′+Γ, (S, T ) 7→ S ∗ T is hypocontinuous. �X

Remarks 3.

(1) The spaces S ′, O′C and OM are nuclear normal spaces of distributions and
the multiplication map · : H(Λ)×H(Λ)→ H(Λ) is continuous. Hence the
existence of the mappings in Proposition 5 can also be shown by applying
Proposition 25 in [31, p. 120] for the multiplication and Proposition 34 in
[31, p. 151] for the convolution. As D′m, Em, for finite m, DLp and D′Lq
are not nuclear, the Propositions 4 and 6 are not special cases neither of
Proposition 34 nor of Proposition 25 in [31, pp. 151, 120].

(2) Note that the space F(Γ+) is isomorphic to
(
s(N)

)N
according to Theo-

rem 2.3 in [25, p. 418] whereas the space D(Γ+) = D+Γ is isomorphic to(
sN
)(N)

(Corollary 1.1 in [33, p. 315] or [34, p. 403]). This agrees with the
assertion in [25, p. 415]:

“Therefore the strong dual of D(Γ+) is not isomorphic to a
space of type

(
D′(Γ+), β

(
D′(Γ+),F(Γ+)

))
.”

Example 1 (Hyperbolic M. Riesz Kernels [24, Ex. 2.4.1, p. 46] or [32, Ex. 4,
p. 49]). Let f ∈ L1

loc be a locally integrable function. Denoting by (f)α+ the
function x 7→ Y(f(x))(f(x))α, we consider the holomorphic function

Z : {λ ∈ C : Reλ > −2} → D′+Γ

(
Rn+1
x,t

)
∩ L1

loc

(
Rn+1
x,t

)
,

λ 7→ Y(t)

π
n−1
2 2λ−1Γ

(
λ
2

)
Γ
(
λ+1−n

2

)(t2 − |x|2)(λ−n−1)/2

+
.

This function can be extended to an entire function

Z : C→ D′+Γ

(
Rn+1
x,t

)
, λ 7→ Y(t)

π
n−1
2 2λ−1Γ

(
λ
2

)
Γ
(
λ+1−n

2

)(t2 − |x|2)(λ−n−1)/2

+

with values in D′+Γ [32, p. 177], where Γ =
{

(x, t) ∈ Rn+1
∣∣ |x| ≤ t

}
. Hence

Z ∈ H(C;D′+Γ). According to Proposition 7, the convolution of two hyperbolic
M. Riesz kernels is well-defined and holomorphic. A classical result [32, p. 177]
is Z(λ) ∗ Z(µ) = Z(λ+ µ).

2.3. Application 2: Convolvability Conditions for Distribution-Valued
Holomorphic Functions

We aim at giving an approach to the question of holomorphy of convolutions
which is different from that of [22].
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Definition 2 ([28, exposé n◦ 22, p. 1], [13, (1), p. 185], [12, p. 8]). Let ϕ ∈
D(Rn), we define ϕ∆ ∈ B(R2n) by ϕ∆(x, y) := ϕ(x + y). Two distributions
S, T ∈ D′(Rn) are convovable if condition (Γ) is fulfilled:

(Γ) ∀ϕ ∈ D(Rn) : ϕ∆(S ⊗ T ) ∈ D′L1(Rn).

In [22], N. Ortner introduced the condition

(ΓΛ) ∀ϕ ∈ D : Λ→ D′L1 , λ 7→
(
ϕ ∗ Š(λ)

)
T (λ) is weakly continuous.

If (ΓΛ) is satisfied, the distribution-valued convolution mapping Λ → D′, λ 7→
S(λ) ∗ T (λ) is holomorphic by Proposition 3 in [22, p. 373]. Proposition 6 in
[23, p. 330] proves the equivalence of this condition with the more symmetric
one

(Γ′Λ) ∀ϕ ∈ D : Λ→ D′L1 , λ 7→ ϕ∆
(
S(λ)⊗ T (λ)

)
is weakly continuous.

By means of Proposition 3 we give another proof for the sufficiency of
condition (Γ′Λ) for the map Λ→ D′, λ 7→ ~f(λ) ∗ ~g(λ) to be holomorphic.

Definition 3 ([28, exposé n◦ 22, p. 1], [6, p.186]). A sequence (ηk)k∈N ⊂ D(Rn)
is called an approximate unit if

(i) The sequence (ηk)k∈N ⊂
◦
B(Rn) is bounded.

(ii) The sequence (ηk)k∈N converges to 1 in E(Rn).

We now show that for all ψ ∈ B and all approximate units (ηk)k∈N, the
product ψηk converges to ψ if k →∞ in Bc.

Lemma 8. The multiplication map Bc×Bc → Bc, (ψ,ϕ) 7→ ψ ·ϕ is continuous.
In particular if (ηk)k∈N is an approximate unit and ψ ∈ B then ηkψ converges
to ψ in Bc.

Proof. P. Dierolf and S. Dierolf showed in [5], that the topology of Bc(Rn) can
be defined by the family of semi-norms

sup
|α|≤m

∥∥f∂αϕ∥∥∞,
where f ∈ C0(Rn)r{0}. The space B̊(Rn) ⊂ Bc(Rn) is contained as a subspace
with a finer topology and on bounded subsets the topology of Bc(Rn) and the
topology induced by E(Rn) coincide [32, p. 203]. Hence (ηk)k∈N converges to 1
in Bc(Rn). The multiplication in Bc(Rn) is continuous, since

sup
|α|≤m

∥∥f∂α(ϕψ)
∥∥
∞ ≤ C sup

|α|≤m
sup
|β|≤m

sup
x∈Rn

√
|f(x)||(∂αϕ)(x)|

√
|f(x)|

∣∣(∂βψ)(x)
∣∣

≤ C sup
|α|≤m

∥∥g∂αϕ∥∥∞ sup
|β|≤m

∥∥g∂βψ∥∥∞,
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where g(x) :=
√
|f(x)| ∈ C0(Rn). Hence if (ηk)k∈N is an approximate unit the

product ψηk → ψ converges in Bc for all ψ ∈ B. �X

By means of this lemma and the definition of the topology of Bc we ob-
tain the following sufficient criterion for a holomorphic D′-valued function
~f : Λ → D′

(
whose image ~f(Λ) ⊂ D′L1 is a subset of D′L1

)
to be a D′L1 -valued

holomorphic function.

Proposition 9. Let Λ ⊂ Cn be an open subset and ~f : Λ → D′ holomorphic
with ~f(Λ) ⊂ D′L1 . If ~f maps compact subsets of Λ into relatively compact subsets
of D′L1 then it is a D′L1-valued holomorphic function.

Proof. Let (ηk)k∈N an approximate unit and ψ ∈ B, then ψηk → ψ in Bc and
ψηk ∈ D. Hence the map

Λ→ C, z 7→
〈
ψηk, ~f(z)

〉
is holomorphic for all k ∈ N. We now show that this sequence converges to
z 7→ 〈ψ, ~f(z)〉 in C(Λ) = E0(Λ), hence ~f : Λ→ D′L1 is holomorphic. Let K ⊂ Λ
be a compact subset, then

sup
z∈K

∣∣∣〈ψηk, ~f(z)
〉
−
〈
ψ, ~f(z)

〉∣∣∣ = sup
z∈K

∣∣∣〈ψηk − ψ, ~f(z)
〉∣∣∣

≤ sup
S∈K1

∣∣〈ψηk − ψ, S〉∣∣→ 0,

since ψηk → ψ in Bc =
(
D′L1

)′
c

and K1 ⊂ D′L1 compact. �X

Remark 4. As one of the referees pointed out the assertion of Proposition 9
follows from a more abstract result:

Let E be a locally complete space and let ~f : Ω → E be a holomorphic
function on a domain Ω ⊂ Cn. Let F ⊂ E be a dense subset with possibly a
finer locally complete topology. If ~f(Ω) ⊂ F and ~f(K) is bounded in F for each

compact subset K in Ω then ~f is holomorphic as a function with values in F .
A proof can be given using Theorem 1 in [7, p. 399] or the generalization in [1,
p. 237].

Proposition 10 (cf. [22, Prop. 3, p. 372]). Let Λ1 ⊂ Cm and Λ2 ⊂ Cn open

subsets, ~f ∈ H(Λ1;D′) and ~g ∈ H(Λ2;D′) holomorphic distribution-valued
functions. If the mapping

Λ1 × Λ2 → D′L1 , (λ, µ) 7→ ϕ∆
(
~f(λ)⊗ ~g(µ)

)
maps compact subsets of Λ1 × Λ2 into relatively compact subsets of D′L1 then
the distribution-valued convolution

Λ1 × Λ2 → D′, (λ, µ) 7→ ~f(λ) ∗ ~g(µ)

is also holomorphic.
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66 CHRISTIAN BARGETZ

Proof. Since the multiplication maps

D′(Ω1)×D′(Ω2)→ D′(Ω1 × Ω2), (S, T ) 7→ S ⊗ T

and
E(Ω)×D′(Ω)→ D′(Ω), (α, T ) 7→ αT

are continuous, respectively hypocontinuous [32, Th. VI, p. 110, respectively
Th. III, p. 119], the mapping

H
(
Λ1;D′(Rn)

)
×H

(
Λ2;D′(Rn)

)
→ H

(
Λ1 × Λ2;D′(R2n)

)
,(

~f,~g
)
7→
[
(λ, µ) 7→ ϕ∆

(
~f(λ)⊗ ~g(µ)

)]
,

is continuous for all ϕ ∈ D(Rn). Hence

Λ1 × Λ2 → D′, (λ, µ) 7→ ϕ∆
(
~f(λ)⊗ ~g(µ)

)
is holomorphic for all ϕ ∈ D(Rn). Since

Λ1 × Λ2 → D′L1 , (λ, µ) 7→ ϕ∆
(
~f(λ)⊗ ~g(µ)

)
maps compact subsets of Λ1 × Λ2 into relatively compact subsets of D′L1 , it is
holomorphic according to Proposition 9. Hence

Λ1 × Λ2 → D′, (λ, µ) 7→ ~f(λ) ∗ ~g(µ) =
[
ϕ 7→

〈
1, ϕ∆

(
~f(λ)⊗ ~g(µ)

)〉]
is holomorphic. �X

Remarks 5.

(1) The sufficiency of the property

(Γ′Λ) Λ→ D′L1 , λ 7→ ϕ∆
(
~f(λ)⊗ ~g(λ)

)
is weakly continuous.

For the distribution-valued convolution

Λ→ D′, λ 7→ ~f(λ) ∗ ~g(λ)

to be holomorphic in [23] can be shown analogously to Proposition 10.

(2) As the space D′L1 satisfies the Schur-property according to Corollary (3.5)
in [5, p. 71] and every point z ∈ Λ has a countable fundamental system

of neighborhoods, ~f is continuous if and only if it is weakly continuous.

The preceding propositions show, that for a distribution-valued holomor-
phic function ~f : Λ → D′ on an open set Λ ⊂ Cn with ~f(Λ) ⊂ D′L1 , the
following assertions are equivalent:

Volumen 45, Número 1, Año 2011



CONVOLUTION OF DISTRIBUTION-VALUED FUNCTIONS. APPLICATIONS. 67

(a) ~f : Λ→ D′L1 is (weakly) continuous.

(b) ~f maps compact subsets of Λ into relatively compact subsets of D′L1 .

(c) ~f : Λ→ D′L1 is (weakly) holomorphic.

Example 2 ([24, Ex. 2.3.2, p. 42]). Let Λ = C; we consider the “Cauchy-
Riemann-polynomial” z = x1 + ix2 and the “Cauchy-kernel”

C : Λ→ S ′, λ 7→ F−1
(
zλ
)

:= F−1
(

eλ log z
)
,

defined by analytic continuation. According to [24, p. 43 and Ex. 3.4.3, p. 102] it
is an entire distribution-valued function, i.e. C ∈ H(C;S ′) and the convolution
of two Cauchy-kernels C(λ) and C(µ) is well-defined if the real part Re(λ+µ) >
−2. By Proposition 10, the function{

(λ, µ) ∈ C2 | Re(λ+ µ) > −2
}
→ S ′(R2), (λ, µ) 7→ C(λ) ∗ C(µ)

is holomorphic. In [24, p. 103] the equality

C(λ) ∗ C(µ) = C(λ+ µ) for Re (λ+ µ) > −2

is shown.

3. Distribution-Valued Meromorphic Functions

Let us now extend our considerations to distribution-valued meromorphic func-
tions. The locally convex topology on the spaceM(Λ) of meromorphic functions
on a complex domain Λ, discussed in [8], has the disadvantage that, according
to Theorem 5 in [8, p. 296], multiplication is not continuous. Additionally for
a locally convex space E, according to Proposition 6 in [2, p. 357], there are
strong restrictions for the equationM(Λ;E) =M(Λ) εE to hold algebraically;
furthermore, according to Theorem 4.6 in [19, p. 286], the topology ofM(Λ;E)
coincides with the topology of M(Λ) εE if and only if E is finite dimensional.
Therefore we only consider a subspaceM(Λ;D) ⊂M(Λ) with pole restrictions.

We denote by Ĉ the extended complex plane.

Definition 4 ([8, p. 290], [19, p. 275]). Let Λ ⊂ Ĉ be a domain. A positive
divisor is a map

D : Λ→ N0,

where PD = suppD = {α ∈ Λ | D(α) 6= 0} is a discrete subset of Λ. Let

f : Λ → Ĉ be a meromorphic function; we denote by oα(f) the order of the
pole of f in α. Given a positive divisor D, we denote by

M(Λ;D) :=
{
f : Λ→ Ĉ

∣∣ f meromorphic and oα(f) ≤ D(α) for α ∈ Λ
}
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the space of meromorphic functions with poles in PD and oα(f) ≤ D(α). We
considerM(Λ;D) ⊂ H(Λ\PD) as a subspace of the space of holomorphic func-
tions on Λ \ PD carrying the induced topology. Let E be a complete separated
locally convex vector space. We denote by

M(Λ;D,E) :=
{
~f : Λ→ E | ~f meromorphic and oα(~f) ≤ D(α)

}
the space of E-valued meromorphic functions with poles in PD and oα(~f) ≤
D(α). We consider M(Λ;D,E) with the topology of uniform convergence on
compact subsets of Λ \ PD, i.e., with the topology induced by H(Λ \ PD;E).

In Proposition 3.1 in [19, p. 275] E. Jordá showed that for all positive
divisors D on Λ and all complete separated locally convex topological vector
spaces the spacesM(Λ;D,E) andH(Λ;E) are isomorphic as topological vector
spaces. As for concrete calculations there are differences between the case of
holomorphic functions and of meromorphic functions we nevertheless consider
vector-valued meromorphic functions with pole restrictions.

Proposition 11. Let Λ ⊂ C be a complex domain and D a positive divisor.
M(Λ;D) is a nuclear Fréchet space and therefore has the approximation prop-
erty. If E is a complete separated locally convex topological vector space, it
holds

M(Λ;D,E) ∼=M(Λ;D)⊗̂E

in the sense of topological vector spaces.

Proof. The isomorphism H(Λ;E) ∼=M(Λ;D,E) is an isomorphism of topolog-
ical vector spaces for all positive divisors D on Λ according to [19, Prop. 3.1,
p. 275]. Hence M(Λ;D,E) satisfies the properties stated above as H(Λ;E)
does. �X

As oα

([
z 7→ b

(
~f(z), ~g(z)

)])
≤ oα

(
~f
)

+ oα(~g), Proposition 3 is equivalent

to the following one.

Proposition 12. Let E, F and G be complete separated locally convex topo-
logical vector spaces and b : E × F → G a hypocontinuous bilinear map. The
hypocontinuous bilinear map

·
b :M(Λ;D1, E)×M(Λ;D2, F )→M(Λ;D1 +D2;G),(

~f,~g
)
7→
[
z 7→ b

(
~f(z), ~g(z)

)]
is the uniquely determined partially continuous bilinear map consistent with
respect to decomposed elements. If b is even continuous, so is ·

b .
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We now state propositions on multiplication and convolution of distribu-
tion-valued meromorphic functions that are special cases of Proposition 12 and
correspond to propositions given in [24]. Moreover we prove the hypocontinuity,
respectively the continuity, of the bilinear maps which is not considered in [24].
In the following, let Λ ⊂ C be a domain and Ω ⊂ Rn an open set.

Proposition 13 (Distributions of Finite Order, cf. [24, Prop. 1.6.3, p. 28 and
Prop. 1.6.4, p. 29]). Let m, s, t ∈ N0 ∪ {∞}.

(1) The hypocontinuous multiplication map

·
· :M

(
Λ;D1,D′m(Ω)

)
×M

(
Λ;D2, Em(Ω)

)
→M

(
Λ;D1 +D2,D′m(Ω)

)
,(

~f,~g
)
7→
[
z 7→ ~f(z) · ~g(z)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

(2) The hypocontinuous convolution map

·
· :M(Λ;D1,D′s(Ω))×M(Λ;D2, E ′t(Ω))→M(Λ;D1 +D2,D′s+t(Ω)),(

~f,~g
)
7→
[
z 7→ ~f(z) ∗ ~g(z)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

Proposition 14 (Temperate Distributions, cf. [24, Prop. 1.6.3, p. 28 and
Prop. 1.6.4, p. 29]).

(1) The hypocontinuous multiplication map

·
· :M(Λ;D1,S ′)×M(Λ;D2,OM )→M(Λ;D1 +D2,S ′),(

~f,~g
)
7→
[
z 7→ ~f(z) · ~g(z)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.

(2) The hypocontinuous convolution map

·
· :M(Λ;D1,S ′ ×M(Λ;D2,O′C)→M(Λ;D1 +D2,S ′),(

~f,~g
)
7→
[
z 7→ ~f(z) ∗ ~g(z)

]
is the uniquely determined partially continuous bilinear map consistent
with respect to decomposed elements.
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Proposition 15 (p-Integrable Distributions, cf. [24, Prop. 1.6.3, p. 28 and
Prop. 1.6.4, p. 29]).

(1) The hypocontinuous multiplication map

·
· :M(Λ;D1,DLp)×M(Λ;D2,D′Lq )→M(Λ;D1 +D2,D′Lr ),(

~f,~g
)
7→
[
z 7→ ~f(z) · ~g(z)

]
,

where 1
r ≤

1
p + 1

q , is the uniquely determined partially continuous bilinear
map consistent with respect to decomposed elements.

(2) The continuous convolution map

·
· :M(Λ;D1,D′Lp)×M(Λ;D2,D′Lq )→M(Λ;D1 +D2,D′Lr ),(

~f,~g
)
7→
[
z 7→ ~f(z) ∗ ~g(z)

]
,

where 1 + 1
r = 1

p + 1
q , is the uniquely determined partially continuous

bilinear map consistent with respect to decomposed elements.

Let us consider the general convolution of two distribution-valued mero-
morphic functions. We state a condition similar to (Γ′Λ) for the convolution
of the distribution-valued meromorphic functions being again a meromorphic
function. As the spacesM

(
Λ;D,D′(Rn)

)
andH

(
Λ;D′(Rn)

)
are isomorphic, we

can use the propositions on the convolution of distribution-valued holomorphic
functions.

Proposition 16. Let ~f ∈ M(Λ1;D1,D′) and ~g ∈ M(Λ2;D2,D′) two distri-

bution-valued meromorphic functions where ϕ∆
(
~f(λ) ⊗ ~g(µ)

)
∈ D′L1 for all

ϕ ∈ D(Rn) and all (λ, µ) ∈ (Λ1 \ PD1
)× (Λ2 \ PD2

). If additionally

(Λ1 r PD1)× (Λ2 r PD2)→ D′L1 , (λ, µ) 7→ ϕ∆
(
~f(λ)⊗ ~g(µ)

)
maps compact subset of Λ1 r PD1

× Λ2 r PD2
into relatively compact subsets

of D′L1 then the convolution
[
(λ, µ) 7→ ~f(λ) ∗ ~g(µ)

]
∈M(Λ1 ×Λ2;D′) is mero-

morphic with poles possibly in a non-discrete set.

Proof. For the divisors D1 and D2 according to [19, p. 275] there are scalar
valued holomorphic function hi ∈ H(Λi) where for all α ∈ PDi it holds hi(z) =

0, limz→α
hi(z)

(z−α)Di(α) 6= 0 and hi(z) 6= 0 for all z ∈ Λi r PDi . Hence Λ1 × Λ2 →
D′L1 , (λ, µ) 7→ ϕ∆

((
h1
~f
)
(λ)⊗

(
h2~g
)
(µ)
)

is holomorphic for all ϕ ∈ D according
to Proposition 10. Therefore by multiplication with the function 1

h1
⊗ 1

h2
we

get
[
(λ, µ) 7→ ϕ∆

(
~f(λ) ⊗ ~g(µ)

)]
∈ M(Λ1 × Λ2;D′L1), i.e., their convolution[

(λ, µ) 7→ ~f(λ) ∗ ~g(µ)
]
∈M(Λ1 × Λ2; ,D′) is a meromorphic function. �X
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Remark 6. For ~f ∈ M(Λ;D1,D′) and ~g ∈ M(Λ;D2,D′) where for all ϕ ∈
D(Rn) and all λ ∈ Λ r PD1+D2

the image ϕ∆
(
~f(λ) ⊗ ~g(λ)

)
∈ D′L1 is an inte-

grable distribution, the following convolvability condition is shown analogous
to Proposition 16:

If the map

Λ r PD1+D2 → D′L1 , λ 7→ ϕ∆
(
~f(λ)⊗ ~g(λ)

)
maps compact subsets of Λ r PD1+D2 into relatively compact subsets of D′L1

then the distribution-valued convolution[
λ 7→ ~f(λ) ∗ ~g(λ)

]
∈M(Λ;D1 +D2,D′)

is again a meromorphic function.

Example 3 (Elliptic M. Riesz kernels [15, p. 176], [22, p. 369]). We consider
the elliptic M. Riesz kernels Rλ in dimension n. If 0 < Reλ < n, Rλ is defined
by

Rλ =
Γ
(
n−λ

2

)
2λπn/2Γ

(
λ
2

) |x|λ−n ∈ L1
loc.

Let

D : C→ N0, λ 7→

{
0, if λ ∈ Cr {−n− 2N0};
1, if λ ∈ −n− 2N0.

By analytic continuation we get R ∈M(C;D,S ′(Rn)). According to Theorem 6
in [21, p. 31] the mapping

Λ→ D′, (λ, µ) 7→ Rλ ∗Rµ
is well defined if and only if one of the following assumptions is satisfied:

(1) Λ = Λ1 × Λ2 where Λ1 = −2N0 and Λ2 = C or Λ1 = C and Λ2 = −2N0.

(2) Λ =
{

(λ, µ) ∈ C2 | Re (λ+ µ) < n
}

.

In both cases, Proposition 16 is not applicable directly; in the first case one
of the sets is not open, in the second one it has not the form of a Cartesian
product. Exhausting the set Λ in the second case by sets of the type

Λk =
{

(λ, µ) ∈ C2 | Reλ < k,Reµ < n− k
}
, k ∈ N

and applying Proposition 16 to

Λk,1 × Λk,2 → S ′, (λ, µ) 7→ Rλ ∗Rµ,

where Λk,1 = {λ ∈ C | Reλ < k} and Λk,2 = {µ ∈ C | Reµ < n − k}, we
conclude that [

(λ, µ) 7→ Rλ ∗Rµ
]
∈M(Λ;S ′).

Revista Colombiana de Matemáticas



72 CHRISTIAN BARGETZ

Example 4. Let

D : C→ N0, λ 7→

{
0, if λ ∈ Cr {−n− 2N0};
2, if λ ∈ −n− 2N0.

The function
L : C→ S ′(Rn), λ 7→ |x|λ log |x|

is a distribution-valued meromorphic function L ∈ M(C;D,S ′) with second
order poles in −n− 2N0 as it is the derivative of λ 7→ |x|λ with respect to λ.

4. Distribution-Valued Differentiable Functions

L. Schwartz treated in [27] different classes of differentiable distribution-valued
functions (but not holomorphic ones). Therefore we now consider differentiable
vector-valued functions.

We state a proposition on hypocontinuous vector-valued products similar to
Proposition 2 and a proposition similar to Propositions 3 and 12. For m finite,
Em is not nuclear [29, p. 70]. Therefore L. Schwartz’ Theorems on products of
vector-valued distributions in [31] cannot be applied.

Proposition 17. Let E, F and G be three quasi-complete separated locally
convex topological vector spaces, b : E×F → G a hypocontinuous bilinear map,
Ω1 ⊂ Rd and Ω2 ⊂ Rn open subsets and m ∈ N0 ∪ {∞}. The hypocontinuous
bilinear map

⊗
b : Em(Ω1;E)× Em(Ω2;F )→ Em(Ω1 × Ω2;G),(

~f,~g
)
7→
[
(x, y) 7→ b

(
~f(x), ~g(y)

)]
is the only one satisfying the consistency property for decomposed elements. If
b is continuous so is ⊗b .

Proof.

(1) For a quasi-complete separated locally convex topological vector space L
the equality

Em(Ω;L) ∼= Em(Ω)
_

⊗εL

holds according to [27, p. 106]. Em(Ω) satisfies the strict approximation
property according to [30, Cor., p. 10]; hence Em(Ω)⊗εL ⊂ Em(Ω;L) is a
dense subset. Therefore ⊗b is unique, since it is partially continuous and
satisfies the consistency property for decomposed elements.

(2) In order to show that ⊗b is well-defined, we have to prove that ∂α
(
⊗
b

(
~f,~g
))

exists and is a continuous function for |α| ≤ m. (cf. [3, p. 19])
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(a) Let ~f : Ω1 → E and ~g : Ω2 → F be continuous. We show the conti-

nuity of (x, y) 7→ b
(
~f(x), ~g(y)

)
in (x0, y0) ∈ Ω1 × Ω2. As in Ω1 × Ω2

every point has a countable fundamental system of neighborhoods,
it is sufficient to show that the map is sequentially continuous. Let
(xk, yk)k∈N be a sequence converging to (x0, y0). We get

b
(
~f(xk), ~g(yk)

)
− b
(
~f(x0), ~g(y0)

)
=

b
(
~f(xk)− ~f(x0), ~g(yk)

)
+ b
(
~f(x0), ~g(yk)− ~g(x0)

)
.

As (yk)k∈N is a Cauchy-sequence and ~g is continuous, ~g(yk) is a
Cauchy-sequence too and hence bounded. Therefore the right-hand-
side of the above equation converges to zero as b is hypocontinuous.
This proves the continuity of (x, y) 7→ b

(
~f(x), ~g(y)

)
.

(b) Next we show the existence and continuity of (x, y) 7→ ∂jb
(
~f(x), ~g(y)

)
.

Let ~f ∈ E1(Ω1;E) and ~g ∈ E1(Ω2;F ). Without loss of generality we
assume 1 ≤ j ≤ d.

∂jb
(
~f(x), ~g(y)

)
= lim
h→0

1

h

[
b
(
~f(x+ hej), ~g(y)

)
− b
(
~f(x), ~g(y)

)]
= b
(
∂j ~f(x), ~g(y)

)
as b is partially continuous.

As ∂j ~f and ~g are continuous so is

(x, y) 7→ b
((
∂j ~f

)
(x), ~g(y)

)
,

according to 2(a).

(c) Existence and continuity of

(x, y) 7→
(
∂α ⊗b

(
~f,~g
))

(x, y)

for |α| ≤ m follow by induction.

(3) It is easy to check that ⊗b is consistent with respect to decomposed ele-
ments.

(4) Now we show the hypocontinuity of ⊗b .

(a) Let A ⊂ Em(Ω1;E) be a subset. We prove that A is bounded if and
only if for all compact subsets K ⊂ Ω1 the set

BA :=
⋃
~f∈A

⋃
|α|≤m

{(
∂α ~f

)
(x) | x ∈ K

}
⊂ E
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is bounded:

A ⊂ Em(Ω1;E) is bounded if and only if for all continuous semi-
norms p on E and for all compact subsets K ⊂ Ω1 there exists a
constant CA,K,p > 0 such that

sup
x∈K

sup
|α|≤m

p
((
∂α ~f

)
(x)
)
≤ CA,K,p

for all ~f ∈ A. This is equivalent to p(u) ≤ CA,K,p for all u ∈ BA,
i.e., BA ⊂ E is bounded.

(b) Now let A ⊂ Em(Ω1;F ) be a bounded subset and

rK
(
~f
)

= sup
|α|≤m

sup
(x,y)∈K

q
(
~f(x, y)

)
a continuous semi-norm on Em(Ω1 × Ω2;G), where K ⊂ Ω1 × Ω2

is a compact subset and q a continuous semi-norm on G. There are
compact subsets K1 ⊂ Ω1 and K2 ⊂ Ω2 such that K ⊂ K1 × K2.
As b is hypocontinuous and BA is bounded, we obtain

sup
~g∈A

rK

(
⊗
b

(
~f,~g
))

= sup
~g∈A

sup
(x,y)∈K

sup
|α|≤m

q
(
∂αb

(
~f(x), ~g(y)

))
= sup

(x,y)∈K
sup
|α|≤m

sup
~g∈A

q
(
b
((
∂αI ~f

)
(x),

(
∂αII~g

)
(y)
))

≤ sup
x∈K1

sup
y∈K2

sup
|β|≤m

sup
|γ|≤m

sup
~g∈A

q
(
b
((
∂β ~f

)
(x),

(
∂γ~g

)
(y)
))

≤ sup
x∈K1

sup
|β|≤m

sup
z∈BA

q
(
b
((
∂β ~f

)
(x), z

))
≤ C sup

x∈K1

sup
|β|≤m

p
((
∂β ~f

)
(x)
)

= C pK1

(
~f
)
,

where α = (αI , αII) ∈ Nd+n
0 , β ∈ Nd0, γ ∈ Nn0 and p is a continuous

semi-norm on E. Hence

~f 7→ sup
~g∈A

rK

(
⊗
b

(
~f,~g
))

is a continuous semi-norm on Em(Ω1;E).

(c) It can be shown analogously that

~g 7→ sup
~f∈B

rK

(
⊗
b

(
~f,~g
))

is a continuous semi-norm on Em(Ω2;F ) ifB ⊂ Em(Ω1;E) is bounded.
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Hence the map ⊗b is hypocontinuous.

(5) If b is continuous we get

rK

(
⊗
b

(
~f,~g
))

= sup
(x,y)∈K

sup
|α|≤m

r
(
b
((
∂αI ~f

)
(x),

(
∂αII~g

)
(y)
))

≤ sup
(x,y)∈K

sup
|β|≤m

sup
|γ|≤m

r
(
b
((
∂β ~f

)
(x),

(
∂γ~g

)
(y)
))

≤ C sup
x∈K1

sup
|β|≤m

p
((
∂β ~f

)
(x)
)

sup
y∈K2

sup
|γ|≤m

q
((
∂γ~g

)
(y)
)

= C pK1

(
~f
)
qK2

(
~g
)
,

where α = (αI , αII) ∈ Nd+n
0 , β ∈ Nd0 and γ ∈ Nn0 . Hence the map ⊗

b is

continuous. �X

Remark 7. If m =∞, Proposition 17 is a particular case of Proposition 3 in
[31, p. 37].

As in the case of holomorphic functions we obtain a proposition correspond-
ing to Proposition 25 in [31, p. 120] by restricting the map defined above to
the diagonal (x, x) ∈ Ω× Ω.

Proposition 18. Let E, F and G be three quasi-complete separated locally
convex topological vector spaces, b : E×F → G a hypocontinuous bilinear map,
Ω ⊂ Rn an open subset and m ∈ N0 ∪ {∞}. The hypocontinuous bilinear map

·
b : Em(Ω;E)× Em(Ω;F )→ Em(Ω;G),(

~f,~g
)
7→
[
x 7→ b

(
~f(x), ~g(x)

)]
is the only one satisfying the consistency property for decomposed elements. If
b is continuous so is ·

b .

Proof. The map Ω→ Ω× Ω, x 7→ (x, x) is a smooth function. The inequality

sup
x∈K

sup
|α|≤m

q
(
∂α~h(x, x)

)
≤ C sup

(x,y)∈K×K
sup
|α̃|≤m

q
(
∂α̃~h(x, y)

)
= qK×K(~h),

where K ⊂ Ω is a compact subset and α̃ ∈ N2n
0 , yields the continuity of the

map

Em(Ω× Ω;G)→ Em(Ω;G), ~h 7→
[
x 7→ ~h(x, x)

]
.

Hence the map

·
b : Em(Ω;E)× Em(Ω;F )→ Em(Ω;G),(

~f,~g
)
7→
[
x 7→ b

(
~f(x), ~g(x)

)]
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is hypocontinuous, respectively continuous, due to Proposition 17. It is uniquely
determined as it is consistent with respect to decomposed elements and the
space Em(Ω)⊗εL ⊂ Em(Ω;L), where L = E or L = F , is a dense subspace. �X

Proposition 19 (p-Integrable Distributions). Let Ω1 ⊂ Rn, Ω2 ⊂ Rd be open
subsets and m ∈ N0 ∪ {∞}.

(1) The hypocontinuous multiplication map

⊗
· : Em(Ω1;DLp)× Em(Ω2;D′Lq )→ Em(Ω1 × Ω2;D′Lr ),(

~f,~g
)
7→
[
(x, y) 7→ ~f(x) · ~g(y)

]
,

where r ≥ 1 and 1
r ≤

1
q + 1

p , is the uniquely determined partially contin-
uous bilinear map consistent with respect to decomposed elements.

In particular the product (x, y) 7→ ~T (x) ⊗ ~a(y) of a distribution-valued

differentiable function ~T ∈ Em(Ω1;D′Lq ) and a vector-valued differentiable
function ~a ∈ Em(Ω2;DLp) is again m-times continuously differentiable.

(2) The continuous convolution map

⊗
∗ : Em (Ω1;D′Lp)× Em (Ω2;D′Lq )→ Em (Ω1 × Ω2;D′Lr ) ,(

~f,~g
)
7→
[
(x, y) 7→ ~f(x) ∗ ~g(y)

]
,

where 1
r = 1

p + 1
q − 1 ≥ 0, is the uniquely determined partially continuous

bilinear map consistent with respect to decomposed elements.

In particular the convolution (x, y) 7→ ~S(x) ∗ ~T (y) of two distribution-

valued differentiable functions ~S ∈ Em(Ω1;D′Lp) and ~T ∈ Em(Ω2;D′Lq ) is
again differentiable.

Example 5. Let K : Rn× (Rr {0})→ C be a “summability-kernel” fulfilling
the following conditions.

(1) There is a constant A > 0 such that for all y 6= 0 the integral∫
Rn
|K(x, y)| dx ≤ A

is bounded. Hence, in particular K(·, y) ∈ L1(Rn) for all y ∈ Rr {0}.

(2)
∫
Rn K(x, y) dx = 1 for all y 6= 0.

(3) For fixed η > 0, the integral
∫
|x|≥η |K(x, y)| dx converges to 0 as y → 0.

(4) The map Rr {0} → L1(Rn); y 7→ K(·, y) is continuous.
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Then K ∈ E0(R;D′L1) if we set K(·, 0) := δ as K(·, y)→ δ in D′L1 if y → 0
due to Theorem 4 in [20, p. 12].

Proposition 19 shows that the convolution[
(y, z) 7→ K(·, y) ∗K(·, z)

]
∈ E0

(
R;D′L1

)
is again a continuous distribution-valued function.

An example of such a kernel is the Poisson-kernel

P (x, y) =


Γ(n+1

2 )

π
n+1
2

|y|

(|x|2+y2)
n+1
2

, if y 6= 0;

δ, if y = 0;

where P (·, y) ∈ D′L1(Rn) for all y ∈ R. Assumptions 1. – 3. are fulfilled ac-
cording to [20, Ex., p. 12]. Therefore we only have to show the continuity of
Rr {0} → L1(Rn), y 7→ K(·, y). Let y 6= 0 and (yk)k∈N be a sequence converg-
ing to y. As y 6= 0 there are constants ε > 0 and N ∈ N such that for all k ≥ N
it holds

|P (x, yk)| = cn

∣∣∣∣∣∣ yk(
|x|2 + y2

k

)n+1
2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ ε(
|x|2 + ε2

)n+1
2

∣∣∣∣∣∣ ∈ L1
(
Rn
)
.

Hence the mapping Rr {0} → L1(Rn), y 7→ P (·, y) is continuous according to
Lebesgue’s theorem on dominated convergence. Therefore P ∈ E0(R;D′L1).

Another interesting example K ∈ E0
(
[0,∞),D′L1

)
is the heat kernel

K(x, t) =

{
1

(4πt)n/2
e−|x|

2/4t, if t > 0;

δ, if t = 0.
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ful discussions.

References
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Valued Holomorphic and Harmonic Functions, Studia Math. 183 (2007),
no. 3, 225–248.
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Volumen 45, Número 1, Año 2011


