
Revista Colombiana de Matemáticas
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Abstract. We describe several conditions on the minimum number of arcs
ensuring that any two vertices in a strong oriented graph are joining by a
path of length at most a given k, or ensuring that they are contained in a
common cycle.
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Resumen. Damos varias condiciones sobre el número mı́nimo de arcos que
implican la existencia, para todo par de vértices en un digrafo antisimétrico
fuertemente conexo de un camino de longitud a lo más un k dado, que los une
o de un circuito que los contiene.
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1. Terminology and Notations

We determine an upper bound for the length of the shortest path joining any
two vertices with conditions involving connectivity and number of arcs, in
strong oriented graphs. On the other hand we examine if a strong oriented
graph is 2-cyclic, that is to say, if any two of its vertices belong to a common
cycle, under similar hypotheses. More information on 2-cyclic properties can
be found in [2, 5, 8, 9, 10, 12, 11].

The motivation for this paper is its relationship with the problem of hamil-
tonian tournaments. An open problem posed by Bermond and Lovász that we
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also attempt to approach is the following: does there exist a natural number
k such that every k-strongly connected oriented graph D is 2-cyclic? (see [5]).
In [1], Bang-Jansen gave a nice and excellent survey on problems and conjec-
tures in tournaments.

The main notion used here is a new form of diameter, which is useful as
a tool even if its definition does not seem to represent a parameter with a
direct applicability. Our concept is related to the classical notion of diameter
of oriented graphs [4, 6]

We use standard terminology [2, 7]. An oriented graph, D = (V (D), E(D)),
is an oriented graph without loops, multiple arcs or circuits of length two. An
arc with origin x and end y is denoted by xy. If both xy and yx do not exist,
we shall say that the edge (x, y) is missing.

A (x1, xl)-path x1, x2, . . . , xl of length l − 1, is an oriented graph with ver-
tex set {x1, x2, . . . , xl} and arc set {x1x2, x2x3, . . . , xl−1xl}. The cycle C =
x1x2, . . . , xlx1, of length l, is an oriented graph obtained from the path
x1x2, . . . , xl by adding the arc xlx1. We denote by xiCxj the induced path
of C beginning at xi and ending at xj , and by |xiCxj | the length of this path.

An oriented graph D is strongly connected or strong if for any two vertices
x and y, D contains an (x, y)-path and (y, x)-path. An oriented graph D is
2-cyclic if each pair of vertices belongs to a common cycle and it is k strongly
connected (k ≥ 1) if for any set X of at most k− 1 vertices of D, the subgraph
obtained by removing X from D is strongly connected.

The distance d(x, y) between two vertices x, y in an oriented graph D is the
minimum length of the (x, y)-paths.

A tournament T is an orientation of a given complete graph and T [S] de-
noted the induced subgraph for S ⊆ V (T ).

If D′ is a subgraph of D, we denote by |E(D −D′)| the number of arcs in
D that are not in D′

The weak diameter Dw(D) of an oriented graph D is the maximum for all
pairs of vertices x, y of the minimum between distances d(x, y) and d(y, x); i.e.,

Dw(D) = max
x,y∈V (D)

min
{
d(x, y), d(y, x)

}
.

We have the following easy remark:

Remark 1. An oriented graph D has weak diameter Dw(D) if any two vertices
of D are joined by a path of length at most Dw(D).

We shall use the following result:

Theorem 2 ([12]). Let T be a k-strongly connected tournament and A a set
of k − 1 arcs in T . Then T −A is hamiltonian.

The above result was generalized in [3] by Bang-Jensen et. al.
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2. Weak Diameter and Cyclic Properties

Lemma 3. Let T be a tournament, x, y two vertices of T . If there is a (x, y)-
path or a (y, x)-path after deleting arc xy (or arc yx), then the length of a
shortest path joining x and y in T − {(x, y)} (or in T − {(y, x)}) is at most 3.

Proof. Assume there is a path from x to y. Consider a shortest path from
x to y. If this path P is of length greater than 3, then let it be denoted by
xu1u2 · · · y. The arc between x and u2 must be u2x, and between u2 and y it
must be yu2, otherwise P would not be of minimum length. Thus yu2x is a
path of length 2 connecting x and y. �X

Lemma 4. Let D be a a k-strongly connected oriented graph with Dw(D) ≤ k.
Then D is 2-cyclic.

Proof. Since Dw(D) ≤ k then for each two vertices x, y, there exists an (x, y)-
path, say P with at most (k−1)-internally vertices, say A. Since D is k-strongly
connected then D−A is a strongly connected oriented graph. Therefore, there
exists a (y, x)-path Q. Hence, paths P and Q constitute a cycle using x and y,
i.e., D is 2-cyclic. �X

Theorem 5. Let T be a k-strongly connected tournament. If A is a set of k
arcs of T , then Dw(T −A) ≤ 3.

Proof. If k = 1, we have the conditions of Lemma 3. Else consider a pair of
vertices x and y. For each arc of A except arc xy, choose an incident vertex,
different from x and y. Consider the subgraph induced in T by suppressing
the chosen vertices. Since there are at most k − 1 chosen vertices, we can use
Lemma 3. �X

Remark 6. The following example shows that there exist k-strongly connected
tournaments, say T, such that the suppression of an edge leads to a weak
diameter equal to 3.

Let T1 and T2 be two k-strongly connected tournaments. Let V (T ) = {x}∪
V (T1) ∪ V (T2) ∪ {y}. Each vertex of T2 dominates vertices x and y, vertex y
dominates every vertex of T1 ∪{x}, vertex x dominates every vertex of T1. Let
{xi : 1 ≤ i ≤ k − 2} and {yi : 1 ≤ i ≤ k − 2} be any set of vertices included in
T2 and T1 respectively. Then we add the set of arcs Z = {xiyi : 1 ≤ i ≤ k− 2},
and for each couple {x, y}, x ∈ T2, y ∈ T1 such that xy 6∈ Z, we add arc yx.

Theorem 7. Let T be a k-strongly connected tournament and S a set of at
most k+1 of its vertices. Let A be the set of arcs of T [S]. Then Dw(T−A) ≤ 3.

If |S| ≤ k then any two vertices of T are contained in a common cycle that
does not use any arc in A; i.e., T −A is 2-cyclic.
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Proof. Consider two vertices x and y. If one of them is not in S then they are
joined by an arc. Else, consider the subgraph obtained by deleting the vertices
of S except x and y. Then we can use Lemma 3.

Now we shall show that T − A is 2-cyclic, if |S| ≤ k. When k = 2 by
Theorem 2, T −A is hamiltonian. In what follows, we shall assume k ≥ 3 and
prove it by induction on k, assuming it is true for every k′, 3 ≤ k′ ≤ k − 1. If
|S| ≤ k−1 then by the induction hypothesis T−A is 2-cyclic. Now assume that
|S| = k. Let x1, x2, x3 be three vertices in S. Since T − x1 is (k− 1)-connected
we can deduce that (T − A1) − {x1}, with A1 the set of arcs of T [S − x1], is
2-cyclic. By a similar argument we can deduce that (T − Ai) − {xi}, with Ai

the set of arcs of T [S−xi], i = 2, 3 are 2-cycles. Then any pair of vertices y, x1

with y ∈ T −{x1, x2} and the pair of vertices x1, x2, is contained in a common
cycle that does not use any arc of A2 and A3 respectively. Consequently T −A
is 2-cyclic. �X

Theorem 8. Let D be a k-strongly connected oriented graph, with k ≥ 3 and
|E(D)| ≥ 1

2n(n− 1)− 2k(k − 2). Then Dw(D) ≤ k.

Proof. By contradiction, we suppose that there exists a pair {x, y} such that
there are not any (x, y)-path or (y, x)-path of length less or equal to k, therefore
(x, y) is missing.

Since D is k-strongly connected, there exist k-internally disjoint (x, y)-paths
and k-internally disjoint (y, x)-paths. Consequently we can define subgraphs
F 1, F 2 of D, F 1 = ∪ki=1S

1
i , F 2 = ∪ki=1S

2
i with S1

i = xi
1x

i
2 · · ·xi

s1(i), S2
i =

yi1xy
i
2 · · · yis2(i) (x = xi

1 = yis2(i), y = xi
s1(i) = yi1), each Sp

i (p = 1, 2) has the
property of being of length greater than or equal to k and for each v, w with
v < w we have xi

vx
i
w ∈ E(D) and yivy

i
w ∈ E(D) if and only if w = v + 1.

It is easy to see that for each (x, y)-path S1
i (1 ≤ i ≤ k) and v with

2 ≤ v ≤ k− 1, the edge (y, xi
v) or the edge (xi

v, x) is missing; otherwise we will
have the (y, x)-path yxi

vx. Hence there are at least k(k−2) missing edges in F 1

If paths S1
i and S2

i are disjoint for all i, j = 1, . . . , k with i 6= j then there are
at least 2k(k−2) missing edges in F 1∪F 2. Now, if there is a common vertex u
between S1

i and S2
i then we can conclude that edges (x, u) and (u, y) are missing

edges. Moreover, since edge (x, y) is missing then there are 2k(k−2)+1 missing
edges in D. This is a contradiction. �X

Remark 9.

i) In case k = 2, the example of Remark 6 proves that there are 2-strongly
connected oriented graphs D with 1

2n(n− 1)− 1 arcs and Dw(D) = 3.

ii) The following k-strongly connected oriented graph D has 1
2n(n−1)−2k(k−

2) − 1 arcs and Dw(D) = k + 1. This example shows that Theorem 8 is
best possible.
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Let V (D) = ∪ki=1Ti ∪ {x, y} where T [Ti], 1 < i < k are tournaments on
k vertices and T [Ti], i = 1, k are k-strongly connected tournaments of
sufficiently great order to ensure that the oriented graph we are describing
is k-strongly connected. Let V (Ti) = {xi

1, x
i
2, . . . , x

i
k}, 1 < i < k and let

{x1
j : 1 ≤ j ≤ k} and {xk

j : 1 ≤ j ≤ k} be any set of vertices included

in T1 and Tk respectively. We add the k (x1
j , x

k
j )-paths defined by Pj =

(x1
jx

2
j · · ·xk

j ). Then we add all arcs from Ti to Tj when i > j that are not
in any Ps, 1 ≤ s ≤ k. Moreover, each vertex of Tk dominates x, y and
vertices x, y dominate the vertices of T1.

Corollary 10. Let D be a k-strongly connected oriented graph, with k ≥ 3 and
|E(D)| ≥ 1

2n(n− 1)− 2k(k − 2). Then D is 2-cyclic.

Proof. Immediate, since D is k-strongly connected and we can apply Theo-
rem 8 in order to obtain, Dw(D) ≤ k. Therefore by Lemma 4 we have that D
is 2-cyclic. �X

Theorem 11. Let D be a 2-cyclic oriented graph with |E(D)| > 1
2n(n− 1)−

(2p− 1). Then Dw(D) ≤ p.

Proof. We shall prove the following: Let D be a 2-cyclic oriented graph such
that Dw(D) > p. Then |E(D)| < 1

2n(n − 1) − (2p − 1). Using the hypothesis
of this equivalent formulation of our theorem, we can deduce that |E(D)| ≤
1
2n(n− 1)− (2p− 1).

Let C be a cycle of minimum length containing x and y. By hypothesis, C
must verify |xCy| > p, |yCx| > p and moreover, edge (x, y) is missing. Assume
there are arcs from y to xCy, let yu be one of those arcs such that |xCu| is the
minimum possible.

Hence there are |xCu| − 1 missing edges between y and xCu. Now suppose
there is an arc vx from uCy to x. The path yuCvx must be of length at least
p + 1. Then |uCy| > p − 1, so the cardinality of the set of missing edges is at
least |xCu| − 1 + p− 1 ≥ p− 1 or |xCu| − 1 + |uCy| − 1 ≥ p− 1 if there is no
arc from uCy to x. Consequently there are at least p−1 missing edges between
{x, y} and xCy. We can trivially obtain the same conclusion if there is no arc
from y to xCy.

Finally, applying the same argument to yCx, we can see that there are at
least p− 1 missing edges between {x, y} and yCx. Since we did not count any
arc twice, we get the conclusion. �X

Remark 12. The following example shows that there exist 2-cyclic oriented
graphs, say D, with Dw(D) > p and |E(D)| = 1

2n(n− 1)− (2p + 1).

Let D be an oriented graph constituted by cycle

x0x1x2 · · ·xpxp+1 · · ·x2px2p+1x2p+2
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of length 2(p+ 1), with x0 = x2p+2 = x, xp+1 = y and we add to this cycle arc
xixj if one of the following is verified:

i) i = 0 and p + 1 < j < 2p + 1,

ii) 0 < i < p + 1 and p + 1 < j < 2p + 2,

iii) 1 < i < p + 1 and 0 ≤ j < i− 1,

iv) p− 1 < j < 2p and j + 1 < i < 2p + 2.

From this example we can see that between x and y there is no path of
length less than p + 1, and there are exactly 2p− 1 missing arcs.

Acknowledgement. We are indebted to the Laboratoire de Recherche en
Informatique (LRI) Orsay, France; where Oscar Ordaz was working with Pierre
Fraisse.
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