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Resumen. Una función f continua y sobreyectiva definida entre continuos se
dice localmente inyectiva si para cualquier punto x del dominio, existe un
abierto U , con x en U , tal que la restricción f |U es inyectiva. En este escri-
to, estudiaremos propiedades de las funciones localmente inyectivas definidas
de un continuo sobre él mismo. Además, mostraremos condiciones necesa-
rias y suficientes para que un continuo X satisfaga la siguiente afirmación: Si
f : X → X es localmente inyectiva, entonces f es un homeomorfismo.
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tivas, dendroides, continuos, homeomorfismos locales.
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Abstract. A map f between topological spaces is called locally one to one
provided that for every point x there exists an open set U such that x ∈
U and f |U is one to one. We study properties of this kind of maps, when
they are defined from a continuum onto itself. Also, we show necesary and
sufficient conditions that a continuum X must satisfy to prove the following:
If f : X → X is locally one to one, then f is a homeomorphism.

Key words and phrases. Maps between continua, Locally one to one maps, Den-
droids, Continua, Local homeomorphisms.

1. Introducción

En topoloǵıa se estudian propiedades de manera local. Por ejemplo, se dice que
un espacio es localmente conexo si para cualquier punto y cualquier vecindad
que tenga al punto, existe un abierto conexo que tiene al punto y está contenido

aEsta investigación fué parcialmente soportada por la Vicerrectoŕıa de Investigación y
Extensión de la Universidad Industrial de Santander, proyecto C-2010-1.
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en la vecindad inicial. De manera similar, se definen los espacios localmente
compactos, espacios que, al igual que los localmente conexos, han sido de gran
utilidad en el estudio de la topoloǵıa. En cuanto a funciones continuas se han
estudiado propiedades de manera local de la siguiente forma (ver [?, pág. 12]):

Dada A una clase de funciones entre continuos, diremos que f : X → Y
es localmente A, denotado por f ∈ Loc(A), si para cada x ∈ X , existe una
vecindad cerrada N de x tal que f(N) es una vecindad cerrada de f(x) y la
restricción f |N está en A.

Sea f : X → Y una función continua y sobreyectiva definida entre continuos.
Observemos que si f es inyectiva, entonces f es una biyección definida entre
continuos; es decir, f es un homeomorfismo. De esto, si H es la clase de homeo-
morfismos e I es la clase de funciones inyectivas, entonces H = I y por tanto,
de acuerdo con la definición dada en el párrafo anterior, Loc(H) = Loc(I).
Las funciones de Loc(H) son abiertas, tienen fibras con la misma cardinalidad
y además, preservan propiedades topológicas como unicoherencia, irreducibili-
dad e indescomponibilidad [?, (7.1), pág. 58 y (8.2), pág. 71]. Por estas razones,
la clase Loc(H) ha sido, por muchos años, de gran interés en el estudio de la
topoloǵıa, ver por ejemplo [?, pág. 199].

Por otra parte, en [?, pág. 15], se dice que f : X → Y una función entre
espacios topológicos es localmente inyectiva si para cada punto x ∈ X , existe
un abierto U de X tal que x ∈ U y la restricción f |U : U → f(U) es inyectiva.
Es fácil ver que si f es localmente inyectiva en el sentido de [?], entonces f
es localmente inyectiva en el sentido de [?]. Sin embargo, si f : [0, 1] → S1 es
definida por f(t) = e2πit, para cada t ∈ [0, 1], donde S1 es la circunferencia
unitaria en R

2, entonces f es localmente inyectiva en el sentido de [?], pero no
en el sentido de [?].

En [?], se estudia el semigrupo de las funciones localmente inyectivas de S1

sobre S1 y se demuestra que éste, es isomorfo a Z+ [?, teorema 1, pág. 20],
probando previamente que si f : S1 → S1 es localmente inyectiva, entonces f
es topológicamente equivalente a fk, para algún k ∈ Z+, donde fk : S1 → S1

se define por fk(z) = zk, para cada z ∈ S1.

A continuación, todos nuestros espacios serán continuos (espacios métricos
no vaćıos, compactos y conexos) y todas nuestra funciones serán continuas y
sobreyectivas. Dado un continuo X , consideremos la siguiente afirmación:

Afirmación 1. Toda función localmente inyectiva f : X → X es un homeo-
morfismo.

En este art́ıculo estudiaremos propiedades de las funciones localmente in-
yectivas definidas de un continuo sobre él mismo, enfocados en dar respuesta a
la siguiente pregunta:

Pregunta 2. ¿Qué continuos satisfacen la Afirmación 1?
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2. Definiciones

Un continuo es un espacio métrico compacto, conexo y diferente de vaćıo.
Denotaremos por S1 a la circunferencia unitaria en el plano complejo; es decir,
S1 = {z ∈ C : |z| = 1}. Además, diremos que un continuo Z es una curva
cerrada simple si Z es homeomorfo a S1 y diremos que Z es un arco si Z es
homeomorfo a [0, 1]. Diremos que un arco α con puntos finales p y q en un
continuo X es un arco libre, si αr {p, q} es un abierto en X .

Definición 3. Sea f : X → Y una función continua y sobreyectiva definida
entre continuos. Diremos que f es localmente inyectiva si para cada x ∈ X ,
existe una abierto U de X tal que x ∈ U y la restricción f |U : U → f(U) es
inyectiva.

La función f : [0, 1] → S1 definida por f(t) = e2πit es localmente inyectiva.
Observe que f es una función cociente donde solo identificamos los puntos 0 y
1 en el intervalo cerrado [0, 1]. De manera más general, observemos la siguiente
proposición.

Proposición 4 (S. Sabogal). Sean X un espacio T1 y ∼ una relación de
equivalencia sobre X tal que ∼ identifica un número finito de puntos en un
número finito de clases. Entonces j : X → X/∼ es localmente inyectiva.

Demostración. Sea x ∈ X , definamos A =
{

y ∈ X : y 6= x y j−1(j(y)) 6=

{y}
}

. Note que A es finito y como X es T1, A es cerrado. Sea U = X r A.

Claramente U es abierto, x ∈ U y j|U : U → j(U) es inyectiva. �X

Sea k un entero positivo. Definimos fk : S1 → S1 por fk(z) = zk, para cada
z ∈ S1. Es fácil ver que fk es localmente inyectiva. Además, sabemos que si
g : S1 → S1 es localmente inyectiva, entonces g es topológicamente equivalente
a fk, para algún k [?, teorema 1, pág.20]. Esto es, existen homeomorfismos h1

y h2 tales que g = h1 ◦ fk ◦ h2. Es decir, en cierto modo, las funciones fk son
esencialmente las únicas funciones localmente inyectivas definidas de S1 sobre
S1.

Por otra parte, no es dif́ıcil demostrar que el arco satisface la afirmación 1;
es decir, si f es una función localmente inyectiva definida entre arcos, entonces
f tiene que ser un homeomorfismo. Este resultado lo generalizaremos con el
teorema 15.

Ejemplo 5. Sea X = S1 ∪ S2, donde S1 = {z ∈ C : |z| = 1} y S2 = {z ∈
C : |z − 2| = 1}. Claramente, S1 ∩ S2 = {1}. Aśı, X es un continuo. Ahora
definamos f : X → X por:

f(z) =

{

z2, si z ∈ S1;

z, si z ∈ S2.

Es fácil ver que f es localmente inyectiva.
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De la definición de función localmente inyectiva se sigue lo siguiente:

Observación 6. Sea f : X → Y una función continua entre continuos. Si f
es localmente inyectiva, entonces f |K es localmente inyectiva, para cualquier
subcontinuo K de X .

Los homeomorfismos locales forman una clase importante de funciones muy
estudiada en topoloǵıa; por mencionar algún ejemplo, toda función recubridora
es un homeomorfismo local.

Definición 7. Una función entre continuos f : X → Y se dice un homeomor-
fismo local si para cada punto x en X existe un abierto U tal que x ∈ U, f(U)
es abierto en Y y f |U es un homeomorfismo.

De la definición 7, es claro que todo homeomorfismo local es localmente
inyectivo. Sin embargo, la función dada en el ejemplo 5 es localmente inyectiva
y no un homeomorfismo local. En la última sección de este escrito, estudiamos
algunas propiedades relacionadas con los homeomorfismos locales.

Definición 8. Un continuo X se dice únicamente arcoconexo si para cada par
de puntos x1 y x2 en X , existe un único arco en X que tiene como puntos
extremos x1 y x2.

La siguiente observación nos será de utilidad más adelante.

Observación 9. Un continuo arcoconexo es únicamente arcoconexo si y sólo
si no contiene una curva cerrada simple.

Como todo continuo localmente conexo es arcoconexo [?, teorema 8.23, pág.
130], con la siguiente definición mostramos una clase de continuos únicamente
arcoconexos.

Definición 10. Un continuo X es una dendrita si X es localmente conexo y
no contiene una curva cerrada simple.

Dado X un continuo y x ∈ X , la arcocomponente de x en X es el conjunto
de puntos que pueden unirse a x por un arco en X . Una arcocomponente de un
continuo es la arcocomponente de algún punto.

Definición 11. Dada una sucesión de cerrados no vaćıos {An}n∈N de un con-
tinuo X , definimos el ĺımite inferior de {An}n∈N, denotado por ĺım infn→∞ An,
y el ĺımite superior de {An}n∈N, denotado por ĺım supn→∞ An, como:

(1) ĺım infn→∞ An = {x ∈ X : para cada abierto U con x ∈ U, existe un
k ∈ N, donde U ∩ Al 6= ∅, para cada l ≥ k};

(2) ĺım supn→∞ An = {x ∈ X : para cada abierto U con x ∈ U, tenemos
que U ∩ Al 6= ∅, para un número infinito de ı́ndices}.
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Diremos que ĺımn→∞ An = A si A = ĺım infn→∞ An = ĺım supn→∞ An.

Es conocido que si ĺımn→∞ An = A, entonces A es un cerrado diferente del
vaćıo [?, (4.11), pág.26]. Observemos que por la definición 11, ĺım infn→∞ An ⊂
ĺım supn→∞ An. De esta manera tenemos lo siguiente:

Observación 12. Sea {An}n∈N una sucesión de cerrados no vaćıos de un
continuo X . Entonces ĺımn→∞ An = A si y sólo si ĺım supn→∞ An ⊂ A y
A ⊂ ĺım infn→∞ An.

La siguiente, es una caracterización de las funciones abiertas [?].

Teorema 13. Sea f : X → Y una función continua entre continuos. Entonces,
f es abierta si y sólo si para cada sucesión {yn}n∈N en Y con ĺımn→∞ yn = y,
tenemos que ĺımn→∞ f−1(yn) = f−1(y).

3. Continuos sin curvas cerradas simples

Los ejemplos de continuos que hemos presentado hasta este punto para los
cuales existe una función localmente inyectiva que no es un homeomorfismo
contienen una curva cerrada simple (ver ejemplo 5). Por esta razón, empezare-
mos estudiando continuos que no contienen una curva cerrada simple.

Proposición 14. Sea f : [0, 1] → Y una función continua y sobreyectiva,
donde Y es una dendrita. Si f es localmente inyectiva, entonces f es un ho-
meomorfismo.

Demostración. Supongamos que existen a y b puntos en [0, 1] tales que a < b
y f(a) = f(b). Sea L = f([a, b]). Como Y es una dendrita y L ⊂ Y , tenemos que
L es una dendrita [?, corolario 10.6, pág. 167]. Sabemos que todo continuo tiene
al menos dos puntos que no cortan [?, teorema 6.6, pág. 89]. De lo anterior,
podemos tomar y ∈ L tal que L r {y} es conexo y y 6= f(a). Sea c ∈ ([a, b] r
{a, b}) tal que f(c) = y. Como f es localmente inyectiva, existe un abierto
U de [0, 1] tal que f |U es inyectiva. Aśı, existe δ > 0 tal que [c − δ, c + δ] ⊂
(U ∩ [a, b]). Como f |[c−δ,c+δ] : [c− δ, c+ δ] → f([c− δ, c+ δ]) es una biyección
entre compactos, f |[c−δ,c+δ] es un homeomorfismo y aśı, y es punto de corte de
f([c − δ, c + δ]). Entonces, f([c − δ, c + δ]) y L r {y} son conexos en L tales
que f([c− δ, c+ δ]) ∩ Lr {y} = f([c− δ, c+ δ])r {y} no es conexo. Pero esto
contradice que L es una dendrita [?, teorema 10.10, pág.169]. De esta manera,
f es inyectiva y, por tanto, un homeomorfismo. �X

Con el siguiente teorema mostramos una clase de continuos que satisface la
afirmación 1.

Teorema 15. Si X es un continuo únicamente arcoconexo, entonces toda fun-
ción f : X → X localmente inyectiva es un homeomorfismo.
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Demostración. Sea f : X → X una función localmente inyectiva. Supon-
gamos que existen dos puntos x1 y x2 en X tales que f(x1) = f(x2). Como
X es arcoconexo, existe un arco α de x1 a x2 en X . De la observación 6,
f |α : α → f(α) es localmente inyectiva. Además, f(α) es localmente conexo y
no contiene una curva cerrada simple (ver observación 9); es decir, f(α) es una
dendrita. De esto, f |α es un homeomorfismo, por la proposición 14. Pero esto
contradice que x1 y x2 están en α y f(x1) = f(x2). Aśı, f es un homeomorfis-
mo. �X

Con el siguiente resultado mostramos que no es necesario que el espacio sea
arcoconexo para que satisfaga la afirmación 1.

Teorema 16. Si X es un continuo con una cantidad finita de arcocomponentes
que no contiene una curva cerrada simple, entonces toda función f : X → X
localmente inyectiva es un homeomorfismo.

Demostración. Sea f : X → X una función localmente inyectiva. Suponga-
mos que existen x1 y x2 en X tales que f(x1) = f(x2). Notemos que si x1 y x2

están en una misma arcocomponente, entonces existe un arco α que contiene a
los dos puntos x1 y x2. Pero la restricción f |α contradice la proposición 14.

Por otra parte, observemos que la imagen de una arcocomponente debe es-
tar contenida en una arcocomponente. Aśı, si x1 y x2 son puntos en diferentes
arcocomponentes de X y X tiene un número finito de arcocomponentes, enton-
ces f no puede ser sobreyectiva, con lo que contradecimos que f es localmente
inyectiva. De esta manera, f es un homeomorfismo. �X

Del teorema 16, tenemos por ejemplo que toda compactación de [0, 1) con
residuo un continuo únicamente arcoconexo, satisface la afirmación 1. En par-
ticular, si X = ClR2

({

(x, y) ∈ R2 : y = sen( 1
x
), 0 < x ≤ 1

})

, la curva senoidal
cerrada del topólogo, entonces toda función f : X → X localmente inyectiva
es un homeomorfismo.

Con el siguiente ejemplo mostramos que el no contener una curva cerrada
simple, no es una condición suficiente para que la afirmación 1 sea satisfecha.

Proposición 17. Existen un continuo X que no contiene una curva cerrada
simple y una función localmente inyectiva f : X → X tal que f no es un
homeomorfismo.

Demostración. Sea el solenoide diádico, denotado por Σ2, el conjunto defi-
nido por:

Σ2 =
{

{zn}
∞
n=1 ∈ (S1)N : z2n = zn−1 para cada n ∈ N

}

.

Es bien conocido que Σ2 es un continuo con la topoloǵıa de subespacio de (S1)N.
Además, Σ2 es un continuo indescomponible tal que todo subcontinuo propio
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es un arco; es decir, no contiene una curva cerrada simple [?, 2.1.34, p.83]. Sea
f : Σ2 → Σ2 la función definida por f

(

{zn}
∞
n=1

)

= {z3n}
∞
n=1. También sabemos

que, f es una función 3 a 1, esto es, para cada y ∈ Σ3, |f
−1(y)| = 3 y f es un

homeomorfismo local [?, proposición 1, pág. 2145 y proposición 8, pág. 2146].
Como todo homeomorfismo local es una función localmente inyectiva, tenemos
que f es localmente inyectiva y no es un homeomorfismo. �X

Es importante resaltar que Σ2, definido en la proposición 17, no contiene una
curva cerrada simple y tiene una cantidad no numerable de arcocomponentes.
Con esto, la hipótesis en el teorema 16 que afirma que el continuo tiene un
número finito de arcocomponentes no se puede omitir. Sin embargo, no sabemos
si esta condición se puede cambiar, para pedir que el continuo tenga a lo más
una cantidad numerable de arcocomponentes.

Pregunta 18. Sea X un continuo con una cantidad a lo más numerable de
arcocomponentes que no contiene una curva cerrada simple, entonces: ¿Toda
función f : X → X localmente inyectiva es un homeomorfismo?

4. Condiciones de existencia

En esta sección estudiaremos continuos X , como el mostrado en el ejemplo 5,
para los cuales existe una función localmente inyectiva f : X → X tal que f
no es un homeomorfismo.

Teorema 19. Sea X un continuo que contiene una curva cerrada simple. Si
además, la curva cerrada simple contiene un arco libre de X, entonces existe
una función localmente inyectiva f : X → X que no es un homeomorfismo.

Demostración. Sean X un continuo, S una curva cerrada simple en X y
α un arco libre de X tal que α ⊂ S ⊂ X . Sean p y q los puntos finales
de α. Tomemos α0 un subarco en α r {p, q}, con puntos finales p0 y q0. Sea
α1 = ClX(S r α0). Notemos que S = α0 ∪ α1 y α0 ∩ α1 = {p0, q0}. Sean
hi : [0, 1] → αi homeomorfismos, para i ∈ {0, 1}, tales que h0(0) = h1(1) = p0
y h1(0) = h0(1) = q0.

Definamos la siguiente relación sobre X :

x ∼ x′, si y sólo si,

x = x′ o x, x′ ∈ S y existe t ∈ [0, 1], tal que
{

h0(t), h1(t)
}

= {x, x′}.

Es fácil ver que ∼ es una relación de equivalencia sobre X . Además, Y =
X/∼ es un continuo y Y es homeomorfo a X . De esta forma, podemos suponer
sin pérdida de generalidad que la función cociente f está definida de X sobreX .
Como h0 y h1 son homeomorfismos, observemos que la relación de equivalencia
sobre S genera una función cociente f |S topológicamente equivalente a f2 :
S1 → S1 definida por f2(z) = z2.
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Finalmente note que f |Xrα0
es inyectiva, donde Xrα0 es un abierto en X .

Además, αr {p, q} es abierto en X tal que f |αr{p,q} es localmente inyectiva y

X = (X r α0) ∪ (αr {p, q}). Aśı, f es localmente inyectiva. �X

En la siguiente proposición se muestra la existencia de un continuo que
contiene una curva cerrada simple y satisface la afirmación 1. Es decir, el no
contener una curva cerrada simple no es una condición necesaria para que el
continuo satisfaga la afirmación 1.

Proposición 20. Existe un continuo X que contiene una curva cerrada simple
y toda función localmente inyectiva f : X → X es un homeomorfismo.

Demostración. Sea Z = ClR2

(

{(x, y) ∈ R2 : y = sen( 1
x
), 0 < x ≤ 1}

)

. El
continuo Z es conocido como la curva senoidal cerrada del topólogo. Definamos
X el espacio cociente Z/{(0,−1), (0, 1)}. Es fácil ver que X es un continuo y
además, X es una compactación de [0, 1) con residuo una curva cerrada simple
S. Aśı, escribiremosX = R∪S donde R es homeomorfo a [0, 1) y S = Cl(R)rR.
Mostremos ahora que X satisface la afirmación 1.

Sea f : X → X una función localmente inyectiva. Observemos queX tiene 2
arcocomponentes. Como f es sobreyectiva, la imagen de cada arcocomponente
debe ser una arcocomponente. Además, notemos que f(S) es compacto. Aśı,
f(S) no puede ser R. Entonces f(S) = S y f(R) = R. Supongamos que f no
es un homeomorfismo. Entonces existen dos puntos x1 y x2 de X tales que
f(x1) = f(x2). Como f(S) = S y f(R) = R, {x1, x2} ⊂ R o {x1, x2} ⊂ S.
Si {x1, x2} ⊂ R y α es el arco que une x1 y x2, entonces f |α : α → f(α) es
una función localmente inyectiva, por la observación 6. Pero esto contradice la
proposición 14, pues, f(α) ⊂ R y R no contiene una curva cerrada simple. Aśı,
f |R es una biyección y {x1, x2} ⊂ S. Nuevamente, usando la observación 6,
f |S : S → S es localmente inyectiva y, como f |S no es un homemorfismo, f |S
es topológicamente equivalente a fk : S1 → S1 donde fk(z) = zk, para algún
k > 1. Sea p el punto

{

(0,−1), (0, 1)
}

en el cociente X . Como k > 1, existe un
x ∈ Sr {p} tal que f(x) = p. Como f |S es localmente inyectiva, existe un arco
J en S tal que x ∈ IntS(J) y f |J : J → f(J) es un homeomorfismo, donde
p ∈ IntS(f(J)).

Notemos que podemos construir una sucesión de arcos {An}
∞
n=1 contenidos

en R tal que ĺımn→∞ An = J . Esto en el sentido de la definición 11. Como f es
una función continua, entonces ĺımn→∞ f(An) = f(J). Pero esto no es posible,
ya que no existe una sucesión de arcos en R que converja al arco f(J) (ver
figura 1).

Con lo que concluimos que f |S es un homeomorfismo. Aśı, f es un homeo-
morfismo. �X
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b

b

p

x
J

f(J)

A1

Figura 1. Continuo con una circunferencia que satisface la afirmación 1.

5. Resultados adicionales

La siguiente es una caracterización de los homeomorfismos locales [?, (4.27),
pág. 20].

Teorema 21. Sea f : X → Y una función continua y sobreyectiva entre
continuos. Entonces f es un homeomorfismo local si y sólo si f es abierta y
existe un entero positivo n tal que |f−1(y)| = n para cada y ∈ Y .

Es fácil ver que si f : X → Y es localmente inyectiva y abierta, entonces
f es un homeomorfismo local. A continuación daremos una condición para que
una función localmente inyectiva sea abierta.

Teorema 22. Sea f : X → Y una función localmente inyectiva. Si existe un
entero positivo k tal que |f−1(y)| = k, para cualquier y ∈ Y , entonces f es
abierta.

Demostración. Sean y ∈ Y y {yn}n∈N una sucesión en Y tal que ĺımn→∞ yn =
y. Mostremos que ĺımn→∞ f−1(yn) = f−1(y). Como f es continua, tenemos que
ĺım supn→∞ f−1(yn) ⊂ f−1(y). Entonces, por la observación 12, basta probar
que f−1(y) ⊂ ĺım infn→∞ f−1(yn).

Supongamos que existe x ∈ f−1(y) r ĺım infn→∞ f−1(yn). Entonces existe
un abierto W de X y una subsucesión {nk}k∈N de la sucesión natural N, tal que
x ∈ W yW∩f−1(ynk

) = ∅, para cada k ∈ N. Note que ĺım supk→∞ f−1(ynk
) ⊂

(

f−1(y) r {x}
)

. Como |f−1(y)| = k para cualquier punto y ∈ Y , entonces

existen dos sucesiones
{

x1
k

}

k∈N
y

{

x2
k

}

k∈N
tales que x1

k 6= x2
k,

{

x1
k, x

2
k

}

⊂

f−1(ynk
), para cada k ∈ N, y ĺımk→∞ x1

k = ĺımk→∞ x2
k = x0, para algún

x0 ∈
(

f−1(y) r {x}
)

. Pero esto claramente contradice que f es localmente
inyectiva en x0. Aśı, por el teorema 13, ĺımn→∞ f−1(yn) = f−1(y) y f es
abierta. �X

Corolario 23. Sea f : X → Y una función continua entre continuos. Las
siguientes afirmaciones son equivalentes:

Revista Colombiana de Matemáticas
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(1) f es localmente inyectiva y abierta;

(2) f es localmente inyectiva y existe un entero positivo k tal que |f−1(y)| =
k, para cada y ∈ Y ;

(3) f es un homeomorfismo local.

Demostración. La equivalencia entre las afirmaciones (1) y (3) se sigue de
las definiciones 3 y 7. Como cada homeomorfismo local es localmente inyectivo,
tenemos que (3) implica (2), por el teorema 21. Finalmente, si suponemos (2),
f es abierta, por el teorema 22. Usando nuevamente el teorema 21, tenemos
que f es un homeomorfismo local y (2) implica (3) �X
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de Matemáticas de la Universidad Industrial de Santander. Especialmente a
los profesores Sonia Sabogal y Rafael Isaacs por sus comentarios y discusiones
durante la elaboración de este art́ıculo.

Referencias

[1] J. J. Charatonik and P. Pellicer-Covarrubias, On Covering Mappings on
Solenoids, Proc. Amer. Math. Soc. 130 (2001), 2145–2154.

[2] A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and Recent Ad-
vances, vol. 216, Pure and Applied Mathematics, New York, United States,
1999.
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