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Funciones localmente inyectivas entre
continuos

Locally One to One Maps between Continua
JAVIER CAMARGO?

Universidad Industrial de Santander, Bucaramanga, Colombia

ResuMEN. Una funcién f continua y sobreyectiva definida entre continuos se
dice localmente inyectiva si para cualquier punto x del dominio, existe un
abierto U, con z en U, tal que la restriccién f|u es inyectiva. En este escri-
to, estudiaremos propiedades de las funciones localmente inyectivas definidas
de un continuo sobre él mismo. Ademds, mostraremos condiciones necesa-
rias y suficientes para que un continuo X satisfaga la siguiente afirmacién: Si
f: X — X es localmente inyectiva, entonces f es un homeomorfismo.
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ABsTrRACT. A map f between topological spaces is called locally one to one
provided that for every point = there exists an open set U such that = €
U and f|y is one to one. We study properties of this kind of maps, when
they are defined from a continuum onto itself. Also, we show necesary and
sufficient conditions that a continuum X must satisfy to prove the following:
If f: X — X is locally one to one, then f is a homeomorphism.

Key words and phrases. Maps between continua, Locally one to one maps, Den-
droids, Continua, Local homeomorphisms.

1. Introduccion

En topologia se estudian propiedades de manera local. Por ejemplo, se dice que
un espacio es localmente conexo si para cualquier punto y cualquier vecindad
que tenga al punto, existe un abierto conexo que tiene al punto y esté contenido

2Esta investigacién fué parcialmente soportada por la Vicerrectoria de Investigacién y
Extensién de la Universidad Industrial de Santander, proyecto C-2010-1.
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168 JAVIER CAMARGO

en la vecindad inicial. De manera similar, se definen los espacios localmente
compactos, espacios que, al igual que los localmente conexos, han sido de gran
utilidad en el estudio de la topologia. En cuanto a funciones continuas se han
estudiado propiedades de manera local de la siguiente forma (ver [?, pag. 12]):

Dada A una clase de funciones entre continuos, diremos que f : X — Y
es localmente A, denotado por f € Loc(A), si para cada x € X, existe una
vecindad cerrada N de x tal que f(N) es una vecindad cerrada de f(z) y la
restricciéon f|n estd en A.

Sea f : X — Y una funcién continua y sobreyectiva definida entre continuos.
Observemos que si f es inyectiva, entonces f es una biyeccion definida entre
continuos; es decir, f es un homeomorfismo. De esto, si H es la clase de homeo-
morfismos e Z es la clase de funciones inyectivas, entonces H = Z y por tanto,
de acuerdo con la definicién dada en el parrafo anterior, Loc(H) = Loc(Z).
Las funciones de Loc(H) son abiertas, tienen fibras con la misma cardinalidad
y ademas, preservan propiedades topoldgicas como unicoherencia, irreducibili-
dad e indescomponibilidad [?, (7.1), pdg. 58 y (8.2), pdg. 71]. Por estas razones,
la clase Loc(H) ha sido, por muchos afnios, de gran interés en el estudio de la
topologia, ver por ejemplo [?, pdg. 199].

Por otra parte, en [?, pdg. 15], se dice que f : X — Y una funcién entre
espacios topolégicos es localmente inyectiva si para cada punto = € X, existe
un abierto U de X tal que x € U y la restriccién f|y : U — f(U) es inyectiva.
Es fécil ver que si f es localmente inyectiva en el sentido de [?], entonces f
es localmente inyectiva en el sentido de [?]. Sin embargo, si f : [0,1] — S! es
definida por f(t) = 2™ para cada t € [0,1], donde S es la circunferencia
unitaria en R?, entonces f es localmente inyectiva en el sentido de [?], pero no
en el sentido de [?7].

En [?], se estudia el semigrupo de las funciones localmente inyectivas de S*
sobre S' y se demuestra que éste, es isomorfo a Z* [?, teorema 1, pag. 20,
probando previamente que si f : S' — S' es localmente inyectiva, entonces f
es topolégicamente equivalente a f,, para algtin k € Z*, donde f : St — S*
se define por fi(z) = 2¥, para cada z € S*.

A continuacién, todos nuestros espacios serdan continuos (espacios métricos
no vacios, compactos y conexos) y todas nuestra funciones serdn continuas y
sobreyectivas. Dado un continuo X, consideremos la siguiente afirmacion:

Afirmacion 1. Toda funcién localmente inyectiva f : X — X es un homeo-
morfismo.

En este articulo estudiaremos propiedades de las funciones localmente in-
yectivas definidas de un continuo sobre él mismo, enfocados en dar respuesta a
la siguiente pregunta:

Pregunta 2. ;Qué continuos satisfacen la Afirmacién 17
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2. Definiciones

Un continuo es un espacio métrico compacto, conexo y diferente de vacio.
Denotaremos por S a la circunferencia unitaria en el plano complejo; es decir,
St = {z € C: |z|] = 1}. Ademds, diremos que un continuo Z es una curva
cerrada simple si Z es homeomorfo a S! y diremos que Z es un arco si Z es
homeomorfo a [0, 1]. Diremos que un arco a con puntos finales p y ¢ en un
continuo X es un arco libre, si a \ {p, ¢} es un abierto en X.

Definicién 3. Sea f : X — Y una funcién continua y sobreyectiva definida
entre continuos. Diremos que f es localmente inyectiva si para cada z € X,
existe una abierto U de X tal que z € U y la restriccién f|y : U — f(U) es
inyectiva.

La funcién f : [0,1] — S* definida por f(t) = > es localmente inyectiva.
Observe que f es una funcion cociente donde solo identificamos los puntos 0 y
1 en el intervalo cerrado [0, 1]. De manera mds general, observemos la siguiente
proposicion.

Proposicién 4 (S. Sabogal). Sean X un espacio Ty y ~ una relacidn de
equivalencia sobre X tal que ~ identifica un niumero finito de puntos en un
numero finito de clases. Entonces j : X — X/~ es localmente inyectiva.

Demostracién. Sea v € X, definamos A = {y € X : y £z y j '(j(y)) #
{y}} Note que A es finito y como X es T;, A es cerrado. Sea U = X \ A.
Claramente U es abierto, z € U y jly : U — j(U) es inyectiva. o

Sea k un entero positivo. Definimos f; : S' — S! por fi(z) = z¥, para cada
z € S'. Es facil ver que fi es localmente inyectiva. Ademds, sabemos que si
g: St — St es localmente inyectiva, entonces g es topolégicamente equivalente
a fi, para algin k [?, teorema 1, pig.20]. Esto es, existen homeomorfismos h;
y ho tales que g = hy o f, o ho. Es decir, en cierto modo, las funciones fx son
esencialmente las tinicas funciones localmente inyectivas definidas de S sobre
St

Por otra parte, no es dificil demostrar que el arco satisface la afirmacién 1;
es decir, si f es una funcién localmente inyectiva definida entre arcos, entonces
f tiene que ser un homeomorfismo. Este resultado lo generalizaremos con el
teorema 15.

Ejemplo 5. Sea X = S;US,, donde S1 = {z € C: |z| =1}y S2 = {z €
C : |z — 2| = 1}. Claramente, S; NSy = {1}. As{, X es un continuo. Ahora
definamos f : X — X por:

f(2) = {22, siz € 51

z, siz € 9.

Es facil ver que f es localmente inyectiva.
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De la definicién de funcién localmente inyectiva se sigue lo siguiente:

Observacion 6. Sea f : X — Y una funcién continua entre continuos. Si f
es localmente inyectiva, entonces f|x es localmente inyectiva, para cualquier
subcontinuo K de X.

Los homeomorfismos locales forman una clase importante de funciones muy
estudiada en topologia; por mencionar algtiin ejemplo, toda funcién recubridora
es un homeomorfismo local.

Definicién 7. Una funcién entre continuos f : X — Y se dice un homeomor-
fismo local si para cada punto x en X existe un abierto U tal que = € U, f(U)
es abierto en Y y f|y es un homeomorfismo.

De la definicién 7, es claro que todo homeomorfismo local es localmente
inyectivo. Sin embargo, la funcién dada en el ejemplo 5 es localmente inyectiva
y no un homeomorfismo local. En la tltima seccién de este escrito, estudiamos
algunas propiedades relacionadas con los homeomorfismos locales.

Definicién 8. Un continuo X se dice dnicamente arcoconero si para cada par
de puntos x; y z2 en X, existe un tnico arco en X que tiene como puntos
extremos ri y Ta.

La siguiente observacién nos serd de utilidad mas adelante.

Observacion 9. Un continuo arcoconexo es unicamente arcoconexo si y sélo
si no contiene una curva cerrada simple.

Como todo continuo localmente conexo es arcoconexo [?, teorema 8.23, pag.
130], con la siguiente definicién mostramos una clase de continuos tinicamente
arcoconexos.

Definiciéon 10. Un continuo X es una dendrita si X es localmente conexo y
no contiene una curva cerrada simple.

Dado X un continuo y x € X, la arcocomponente de x en X es el conjunto
de puntos que pueden unirse a x por un arco en X. Una arcocomponente de un
continuo es la arcocomponente de algiin punto.

Definicién 11. Dada una sucesién de cerrados no vacios { A, }nen de un con-
tinuo X, definimos el limite inferior de { A, }nen, denotado por liminf,, o Ay,
y el lémite superior de { Ay }nen, denotado por limsup,,_, ., A, como:

(1) liminf,,. A, = {z € X : para cada abierto U con z € U, existe un
ke N, donde UN A; # @, para cada | > k};

(2) limsup,,_,.o An = {x € X : para cada abierto U con z € U, tenemos
que U N A; # @, para un ndmero infinito de indices}.
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Diremos que lim,, o0 Ay = A si A = liminf,,_,o A, = limsup,,_, . An.

Es conocido que si lim,, . A, = A, entonces A es un cerrado diferente del
vacio [?, (4.11), pdg.26]. Observemos que por la definicién 11, liminf,, o, A, C
limsup,,_, . Ay. De esta manera tenemos lo siguiente:

Observacion 12. Sea {A,},cy una sucesién de cerrados no vacfos de un
continuo X. Entonces lim, oo A, = A si y sélo si limsup,,_,.,An C Ay
A C liminf, _ o Anp.

La siguiente, es una caracterizacién de las funciones abiertas [?].

Teorema 13. Sea f: X — Y wuna funcion continua entre continuos. Entonces,
f es abierta si y sdlo si para cada sucesion {yntnen en'Y con limy, o0 yn = ¥,

tenemos que limy, oo ™1 (yn) = f1(y).

3. Continuos sin curvas cerradas simples

Los ejemplos de continuos que hemos presentado hasta este punto para los
cuales existe una funcion localmente inyectiva que no es un homeomorfismo
contienen una curva cerrada simple (ver ejemplo 5). Por esta razén, empezare-
mos estudiando continuos que no contienen una curva cerrada simple.

Proposicién 14. Sea f : [0,1] — Y wuna funcidn continua y sobreyectiva,
donde Y es una dendrita. Si f es localmente inyectiva, entonces [ es un ho-
meomorfismo.

Demostracion. Supongamos que existen a y b puntos en [0, 1] tales que a < b
y f(a) = f(b). Sea L = f([a,b]). Como Y es una dendritay L C Y, tenemos que
L es una dendrita [?, corolario 10.6, pdg. 167]. Sabemos que todo continuo tiene
al menos dos puntos que no cortan [?, teorema 6.6, pag. 89]. De lo anterior,
podemos tomar y € L tal que L ~\ {y} es conexo y y # f(a). Sea ¢ € ([a,b] ™
{a,b}) tal que f(c) = y. Como f es localmente inyectiva, existe un abierto
U de [0,1] tal que f|y es inyectiva. Asi, existe 6 > 0 tal que [c — §,c+ §] C
(U N la,b]). Como flie—s,c4s) : [c —d,¢+ 0] = f([c — 6, ¢+ d]) es una biyeccion
entre compactos, f|jc—s 44 €8 un homeomorfismo y asi, y es punto de corte de
f([e = 8,¢+ 8]). Entonces, f([c —d,c+ d]) y L~ {y} son conexos en L tales
que f([e—=d,c+d8)NL~{y} = f([c—3dc+]) ~{y} no es conexo. Pero esto
contradice que L es una dendrita [?, teorema 10.10, p4g.169]. De esta manera,
f es inyectiva y, por tanto, un homeomorfismo. o

Con el siguiente teorema mostramos una clase de continuos que satisface la
afirmacion 1.

Teorema 15. St X es un continuo unicamente arcoconexo, entonces toda fun-
cion f: X — X localmente inyectiva es un homeomorfismo.
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Demostracion. Sea f : X — X una funcién localmente inyectiva. Supon-
gamos que existen dos puntos z1 y x2 en X tales que f(z1) = f(x2). Como
X es arcoconexo, existe un arco a de xz7 a x2 en X. De la observacion 6,
fla : @ = f(«@) es localmente inyectiva. Ademds, f(«) es localmente conexo y
no contiene una curva cerrada simple (ver observacién 9); es decir, f(«) es una
dendrita. De esto, f|, es un homeomorfismo, por la proposicién 14. Pero esto
contradice que 21 y z3 estdn en 'y f(z1) = f(x2). Asi, f es un homeomorfis-
mo.

Con el siguiente resultado mostramos que no es necesario que el espacio sea
arcoconexo para que satisfaga la afirmacion 1.

Teorema 16. Si X es un continuo con una cantidad finita de arcocomponentes
que no contiene una curva cerrada simple, entonces toda funcion f: X — X
localmente inyectiva es un homeomorfismo.

Demostracion. Sea f: X — X una funcién localmente inyectiva. Suponga-
mos que existen 1 y z2 en X tales que f(z1) = f(x2). Notemos que si x1 y x2
estan en una misma arcocomponente, entonces existe un arco « que contiene a
los dos puntos 1 y 2. Pero la restriccién f|, contradice la proposicién 14.

Por otra parte, observemos que la imagen de una arcocomponente debe es-
tar contenida en una arcocomponente. Asi, si 1 y x2 son puntos en diferentes
arcocomponentes de X y X tiene un numero finito de arcocomponentes, enton-
ces f no puede ser sobreyectiva, con lo que contradecimos que f es localmente
inyectiva. De esta manera, f es un homeomorfismo. o

Del teorema 16, tenemos por ejemplo que toda compactacién de [0,1) con
residuo un continuo tinicamente arcoconexo, satisface la afirmacién 1. En par-
ticular, si X = Clge ({(az,y) cER?:y = sen(%),() <z < 1}), la curva senoidal
cerrada del topologo, entonces toda funcién f : X — X localmente inyectiva
es un homeomorfismo.

Con el siguiente ejemplo mostramos que el no contener una curva cerrada
simple, no es una condicién suficiente para que la afirmacion 1 sea satisfecha.

Proposicion 17. Ezisten un continuo X que no contiene una curva cerrada
simple y una funcion localmente inyectiva f : X — X tal que f no es un
homeomorfismo.

Demostracion. Sea el solenoide diddico, denotado por X5, el conjunto defi-
nido por:

Yo = {{z}02, € ()N : 22 = 2,1 para cadan € N}.

Es bien conocido que 33 es un continuo con la topologfa de subespacio de (S1)N.
Ademids, Y5 es un continuo indescomponible tal que todo subcontinuo propio
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es un arco; es decir, no contiene una curva cerrada simple [?, 2.1.34, p.83]. Sea
[+ 32 — Y la funcién definida por f({zn}52,) = {z3}22,. También sabemos
que, f es una funcién 3 a 1, esto es, para cada y € X3, |f 1 (y)| =3y f es un
homeomorfismo local [?, proposicién 1, pag. 2145 y proposicién 8, pdg. 2146].
Como todo homeomorfismo local es una funcién localmente inyectiva, tenemos
que f es localmente inyectiva y no es un homeomorfismo. o

Es importante resaltar que ¥4, definido en la proposicién 17, no contiene una
curva cerrada simple y tiene una cantidad no numerable de arcocomponentes.
Con esto, la hipétesis en el teorema 16 que afirma que el continuo tiene un
nimero finito de arcocomponentes no se puede omitir. Sin embargo, no sabemos
si esta condicién se puede cambiar, para pedir que el continuo tenga a lo més
una cantidad numerable de arcocomponentes.

Pregunta 18. Sea X un continuo con una cantidad a lo mas numerable de
arcocomponentes que no contiene una curva cerrada simple, entonces: ;Toda
funcién f : X — X localmente inyectiva es un homeomorfismo?

4. Condiciones de existencia

En esta seccion estudiaremos continuos X, como el mostrado en el ejemplo 5,
para los cuales existe una funcién localmente inyectiva f : X — X tal que f
no es un homeomorfismo.

Teorema 19. Sea X un continuo que contiene una curva cerrada simple. Si
ademds, la curva cerrada simple contiene un arco libre de X, entonces existe
una funcion localmente inyectiva f: X — X que no es un homeomorfismo.

Demostracion. Sean X un continuo, S una curva cerrada simple en X y
a un arco libre de X tal que « € S C X. Sean p y ¢ los puntos finales
de «. Tomemos ag un subarco en « \ {p, ¢}, con puntos finales py y qo. Sea
a1 = Clx(S \ ap). Notemos que S = ag U1 y ap N1 = {po,qo}- Sean
h; : [0,1] — «a; homeomorfismos, para ¢ € {0, 1}, tales que ho(0) = hq1(1) = po
y h1(0) = ho(1) = qo.

Definamos la siguiente relacion sobre X :

x ~ ', siy sélo si,

r=a" o za €S8 yexistete|0,1], tal que {ho(t),h(t)} = {z,2'}.

Es facil ver que ~ es una relacién de equivalencia sobre X. Ademds, Y =
X/~ es un continuo y Y es homeomorfo a X. De esta forma, podemos suponer
sin pérdida de generalidad que la funcién cociente f esta definida de X sobre X.
Como hg y hy son homeomorfismos, observemos que la relacién de equivalencia
sobre S genera una funcién cociente f|g topolégicamente equivalente a fo :
S1 — St definida por fa(z) = 22.

Revista Colombiana de Matematicas



174 JAVIER CAMARGO

Finalmente note que f|xq, €s inyectiva, donde X \ g es un abierto en X.
Ademis, o\ {p, ¢} es abierto en X tal que f|o{p,q} €s localmente inyectiva y
X =(X Nag)U(a~{p,q}). Asi, f es localmente inyectiva. o]

En la siguiente proposicién se muestra la existencia de un continuo que
contiene una curva cerrada simple y satisface la afirmacién 1. Es decir, el no
contener una curva cerrada simple no es una condicién necesaria para que el
continuo satisfaga la afirmacién 1.

Proposicion 20. Eziste un continuo X que contiene una curva cerrada simple
y toda funcion localmente inyectiva f : X — X es un homeomorfismo.

Demostracion. Sea Z = Clgz ({(z,y) € R?* : y = sen(1),0 < < 1}). El
continuo Z es conocido como la curva senoidal cerrada del topélogo. Definamos
X el espacio cociente Z/{(0,—1),(0,1)}. Es facil ver que X es un continuo y
ademds, X es una compactacién de [0, 1) con residuo una curva cerrada simple
S. Asf, escribiremos X = RUS donde R es homeomorfo a [0,1) y S = CI(R)\ R.

Mostremos ahora que X satisface la afirmacion 1.

Sea f : X — X una funcién localmente inyectiva. Observemos que X tiene 2
arcocomponentes. Como f es sobreyectiva, la imagen de cada arcocomponente
debe ser una arcocomponente. Ademds, notemos que f(S) es compacto. Asi,
f(S) no puede ser R. Entonces f(S) =Sy f(R) = R. Supongamos que f no
es un homeomorfismo. Entonces existen dos puntos z1 y x2 de X tales que
f(z1) = f(z2). Como f(S) =Sy f(R) =R, {z1,2z2} C Ro {z1,z2} C S.
Si {x1,22} C Ry « es el arco que une x1 y x2, entonces f|, : @ = f(a) es
una funcién localmente inyectiva, por la observacién 6. Pero esto contradice la
proposicién 14, pues, f(«) C Ry R no contiene una curva cerrada simple. Asf,
f|r es una biyeccién y {z1,z2} C S. Nuevamente, usando la observacién 6,
fls : S = S es localmente inyectiva y, como f|s no es un homemorfismo, f|g
es topolégicamente equivalente a fr : S* — S donde f(z) = 2¥, para algin
k > 1. Sea p el punto {(O, —1), (0, 1)} en el cociente X. Como k > 1, existe un
x € S\ {p} tal que f(x) = p. Como f|s es localmente inyectiva, existe un arco
Jen S tal que z € Ints(J)y fls: J — f(J) es un homeomorfismo, donde
p € Ints(f(J)).

Notemos que podemos construir una sucesién de arcos { A, }52, contenidos
en R tal que lim,, .., A, = J. Esto en el sentido de la definicién 11. Como f es
una funcién continua, entonces lim,, ,~ f(A,) = f(J). Pero esto no es posible,
ya que no existe una sucesién de arcos en R que converja al arco f(J) (ver
figura 1).

Con lo que concluimos que f|s es un homeomorfismo. Asi, f es un homeo-
morfismo. o
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Ay

FicUurA 1. Continuo con una circunferencia que satisface la afirmacion 1.

5. Resultados adicionales

La siguiente es una caracterizacién de los homeomorfismos locales [?, (4.27),
pég. 20].

Teorema 21. Sea f : X — Y wuna funcion continua y sobreyectiva entre
continuos. Entonces f es un homeomorfismo local si y sdlo si f es abierta y
existe un entero positivo n tal que |f~*(y)| = n para cada y €Y.

Es facil ver que si f : X — Y es localmente inyectiva y abierta, entonces
f es un homeomorfismo local. A continuacién daremos una condicién para que
una funcién localmente inyectiva sea abierta.

Teorema 22. Sea f: X — Y una funcion localmente inyectiva. Si existe un
entero positivo k tal que |f~1(y)| = k, para cualquier y € Y, entonces f es
abierta.

Demostracion. Seany € Y y {yn }nen una sucesién en Y tal que lim,, oo ¥, =
y. Mostremos que lim,, o f*(yn) = f~1(y). Como f es continua, tenemos que
limsup,,_, . f~*(yn) C f~1(y). Entonces, por la observacién 12, basta probar
que f~Y(y) C iminf, soo f 1 (yn)-

Supongamos que existe x € f~1(y) \ iminf, ,o, f~(y,). Entonces existe
un abierto W de X y una subsucesion {ny }ren de la sucesion natural N, tal que
r €Wy Wnf(yn,) = @, para cada k € N. Note que limsup,_, ., f~*(yn,) C
(f7'(y) ~ {z}). Como |f~*(y)| = k para cualquier punto y € Y, entonces
existen dos sucesiones {:v,lc}keN y {x%}keN tales que z} # x7, {z}, 27} C
fY(yn,), para cada k € N, y im0 ), = limg_y0o 72 = o, para algin
zo € (f7'(y) ~ {a}). Pero esto claramente contradice que f es localmente
inyectiva en xg. Asi, por el teorema 13, lim, oo [ (yn) = f1(y) v f es
abierta.

Corolario 23. Sea f : X — Y wuna funcién continua entre continuos. Las
siguientes afirmaciones son equivalentes:
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(1) f es localmente inyectiva y abierta;

(2) f es localmente inyectiva y existe un entero positivo k tal que |f~1(y)| =
k, para cada y € Y

(3) [ es un homeomorfismo local.

Demostracion. La equivalencia entre las afirmaciones (1) y (3) se sigue de
las definiciones 3 y 7. Como cada homeomorfismo local es localmente inyectivo,
tenemos que () implica (2), por el teorema 21. Finalmente, si suponemos (2),
f es abierta, por el teorema 22. Usando nuevamente el teorema 21, tenemos
que f es un homeomorfismo local y (2) implica (3)
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