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Blow-up for a Nonlocal Nonlinear

Diffusion Equation with Source

Explosión para una ecuación no lineal de difusión no local con
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Abstract. We study the initial-value problem prescribing Neumann bound-
ary conditions for a nonlocal nonlinear diffusion operator with source, in a
bounded domain in RN with a smooth boundary. We prove existence, unique-
ness of solutions and we give a comparison principle for its solutions. The
blow-up phenomenon is analyzed. Finally, the blow up rate is given for some
particular sources.
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Resumen. Se estudia el problema de valor inicial con condiciones de Neumann
para un operador no lineal de difusión no local con fuente, en un dominio
acotado en RN con frontera suave. Se demuestra la existencia y unicidad de
las soluciones y se da un principio de comparación para las soluciones. Se
analiza el fenómeno de explosión. La razón de explosión es dada para algunas
fuentes particulares.

Palabras y frases clave. Difusión no local, condiciones de Neumann, explosión.

1. Introduction

Let J : RN → R be a non-negative, smooth, radially symmetric and strictly
decreasing function, with

∫
RN J(x) dx = 1. Assume out that J is supported in

the unit ball. Equations of the form

ut(x, t) = J ∗ u− u(x, t) =

∫
RN

J(x− y)u(y, t) dy − u(x, t), (1)
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and variations of it, have been widely used in the last decade to model diffusion
processes (see [10, 6]). As stated in [6] if u(x, t) is thought as a density at the
point x at time t, and J(x − y) is thought as the probability distribution of
jumping from location y to location x, then (J ∗ u)(x, t) is the rate at which
individuals are arriving to position x from all other places and −u(x, t) =

−
∫ N
R J(y − x)u(x, t) dy is the rate at which they are leaving location x to

travel to all other sites. This consideration, in the absence of external sources,
leads immediately to the fact that the density u satisfies equation (1). This
equation is called nonlocal diffusion equation since the diffusion of the density
u at a point x and time t does not only depend on u(x, t), but also on all the
values of u in a neighborhood of x through the convolution term J ∗ u. This
equation shares many properties with the classical heat equation ut = ∆u such
as: a maximum principle holds for both of them and, even if J is compactly
supported, perturbations propagate with infinite speed.

A classical equation that has been used to model diffusion is the well known
porous medium equation, ut = ∆um with m > 1, which shares several proper-
ties with the heat equation. However, there exists a fundamental difference: if
the initial data u(·, 0) is compactly supported, then u(·, t) has compact sup-
port for all t > 0. Some properties of solutions for the porous medium equation
have been largely studied over the past few years. See for example [2, 11] and
the bibliography therein.

Related to the porous medium equation, a simple nonlocal nonlinear model
in one dimension where the diffusion at a point depends on the density, was
introduced in [4]. In this model if u(x, t) is thought as a density at the point x at
time t and the probability distribution of jumping from location y to location

x is given by J

(
x− y
u(y, t)

)
1

u(y, t)
when u(y, t) > 0 and 0 otherwise, then the

rate at which individuals are arriving to position x from all other places is

given by

∫
R
J

(
x− y
u(y, t)

)
dy and the rate at which they are leaving location x to

travel to all other sites is given by −u(x, t) = −
∫
R
J

(
y − x
u(x, t)

)
dy. As before, in

absence of external sources, this leads immediately to the fact that the density
u satisfies the equation

ut(x, t) =

∫
R
J

(
x− y
u(y, t)

)
dy − u(x, t). (2)

It is proved in [4] that this problem, as well as the porous medium equation,
have the finite speed propagation property. Compactly supported initial data
develops a free boundary and the support covers the whole R.

Bogoya in [3] extend this model to higher space dimensions. In this model
the probability distribution of jumping from location y to location x is given
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by J
(

x−y
uα(y,t)

)
1

uNα(y,t)
for all 0 < α ≤ 1

N and N ≥ 1, when u(y, t) > 0 and 0

otherwise. In the same way that in previous cases, this consideration absence
of external sources leads immediately to the fact that the density u satisfies
the equation

ut(x, t) =

∫
RN

J

(
x− y
uα(y, t)

)
u1−Nα(y, t) dy − u(x, t). (3)

In the case that the initial data u(·, 0) ∈ L1
(
RN
)
∩ L∞

(
RN
)
, by technical

reasons it is better consider a slightly more general set of initial conditions:

ut(x, t) =

∫
RN

J

(
x− y
uα(y, t)

)
u1−Nα(y, t) dy − u(x, t) in RN × [0,∞),

u(x, 0) = d+ w0(x) on RN ,
(4)

where d ≥ 0, w0 ∈ L1
(
RN
)

and w0 ≥ 0.

It is proved in [3] that this problem shares with the porous medium equa-
tion the finite speed propagation property. Compactly supported initial data
develops a free boundary. Furthermore, the Neumann problem is studied as
well as the Dirichlet problem for this model in a smooth domain Ω ⊆ RN . For
the Neumann problem, it is proved that solutions exist globally and stabilize
to the mean value of the initial data as t → ∞. On the other hand, for the
Dirichlet problem, it is proved the globally existence of solutions. In the same
way, it is proved that it stabilizes to zero as t→∞.

One of the most remarkable properties that can be present in nonlinear
evolution problems is the possibility of having solutions that become unbounded
in finite time. Such phenomenon is known as Blow-up in the literature, and can
be described as follows: there exists a time 0 < T <∞, called the blow-up time,
such that the solution is well defined for all 0 < t < T , while supx∈Ω u(x, t)→
∞ as t→ T−. This means that the solution blows up at finite time T .

For general references on blow-up problems see [5, 8, 9, 1].

The Neumann Problem. We study the problem for x ∈ Ω

ut(x, t) =

∫
Ω

J

(
x− y
uα(y, t)

)
u1−Nα(y, t) dy

−
∫

Ω

J

(
x− y
uα(x, t)

)
u1−Nα(x, t) dy + f

(
u(x, t)

)
u(x, 0) = u0(x)

(5)

where u0 ∈ C(Ω) is a non-negative function and Ω ⊆ RN is a bounded and
smooth domain. In this model it is assumed that no individual can jump from
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the interior towards the outside (and viceversa) of the domain Ω. Therefore the
integrals are considered in Ω, and f(u) is a function of u representing reaction
(source).

We considered the following hypothesis on f :

(H1): f : [0,∞) −→ [0,∞), increasing function, convex, f(0) ≥ 0, f(s) > 0 for
all s > 0.

(H2):

∫ ∞ 1

f(s)
ds <∞.

We will address in this paper the questions of existence, uniqueness and
comparison principles for solutions of (5). Moreover, we study the blow up
phenomenon for solutions of (5). We will study in the near future further
questions such as the blow up set, the Cauchy problem, the Dirichlet Problem,
and the discrete model.

2. The Neumann Problem

2.1. Existence and Uniqueness

In this section, we use the ideas developed in [3]. First, we show existence and
uniqueness for u0 ∈ L1(Ω) and a Lipschitz nonlinearity of f . The existence
and uniqueness of solution to (5) it is a consequence of Banach’s fixed point
theorem. Fix t0 > 0 and we consider the Banach space X = C

(
[0, t0] : L1(Ω)

)
with the norm ∣∣‖w‖∣∣ = max

0≤t≤t0
‖w(·, t)‖L1(Ω).

Let Xt0 =
{
w ∈ C

(
[0, t0] : L1(Ω)

)
: w ≥ 0

}
which is a closed subset of

C
(
[0, t0];L1(Ω)

)
. The solution will be obtained as the fixed point of operator

Tw0 : Xt0 −→ Xt0 defined by

Tw0,f (w)(x, t) =

∫ t

0

∫
Ω

J

(
x− y
w(y, s)α

)
w(y, s)1−Nα dy ds

−
∫ t

0

∫
Ω

J

(
x− y
w(x, s)α

)
w(x, s)1−Nα dy ds+

∫ t

0

f
(
w(x, s)

)
ds+ w0(x),

In what follows, we study the problem (5) for a Lipschitz function f and
then, by convergence we extend our results to a function f satisfying H1.

The following Lemma is very important for our study:

Lemma 1. Let f be a Lipschitz function with Lipschitz’s constant K > 0, w0, z0

non negative functions such that w0, z0 ∈ L1(Ω) and w, z ∈ Xt0 . Then, there
exists a constant C = (2 +K)t0 > 0 such that∣∣‖Tw0,f − Tz0,f‖

∣∣ ≤ C∣∣‖w − z‖∣∣+ ‖w0 − z0‖L1(Ω)
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Proof. Let w, z ∈ Xt0 . We have∫
Ω

∣∣Tw0,f (w)(x, t)− Tz0,f (z)(x, t)
∣∣ dx ≤∫ t

0

∫
Ω

∣∣∣∣ ∫
Ω

(
J

(
x− y
wα(y, s)

)
w1−Nα(y, s)− J

(
x− y
zα(y, s)

)
z1−Nα(y, s)

)
dy

∣∣∣∣ dx ds
+

∫ t

0

∫
Ω

∣∣∣∣ ∫
Ω

(
J

(
x− y
wα(x, s)

)
w1−Nα(x, s)−J

(
x− y
zα(x, s)

)
z1−Nα(x, s)

)
dy

∣∣∣∣ dx ds
+

∫ t

0

∫
Ω

∣∣f(w(x, s))− f(z(x, s))
∣∣ dx ds+

∫
Ω

∣∣w0 − z0

∣∣(x) dx

= I1 + I2 + I3 + ‖w0 − z0‖L1(Ω).

For the term I1, we consider

A+(s) =
{
y ∈ Ω : w(y, s) ≥ z(y, s)

}
and A−(s) =

{
y ∈ Ω : w(y, s) < z(y, s)

}
.

We have∫
Ω

∣∣∣∣ ∫
Ω

(
J

(
x− y
wα(y, s)

)
w1−Nα(y, s)− J

(
x− y
zα(y, s)

)
z1−Nα(y, s)

)
dy

∣∣∣∣ dx
≤
∫

Ω

∫
A+(s)

(
J

(
x− y
wα(y, s)

)
w1−Nα(y, s)− J

(
x− y
zα(y, s)

)
z1−Nα(y, s)

)
dy dx

−
∫

Ω

∫
A−(s)

(
J

(
x− y
wα(y, s)

)
w1−Nα(y, s)− J

(
x− y
zα(y, s)

)
z1−Nα(y, s)

)
dy dx.

Since J is a strictly decreasing radial function, the expression under the
integrand sign is nonnegative and therefore we can apply the Fubini’s theorem
to obtain∫

Ω

∫
A+(s)

(
J

(
x− y
wα(y, s)

)
w1−Nα(y, s)− J

(
x− y
zα(y, s)

)
z1−Nα(y, s)

)
dy dx

≤
∫
A+(s)

(
w(y, s)− z(y, s)

)
dy.

and∫
Ω

∫
A−(s)

(
J

(
x− y
zα(y, s)

)
z1−Nα(y, s)− J

(
x− y
wα(y, s)

)
w1−Nα(y, s)

)
dy dx

≤
∫
A−(s)

(
z(y, s)− w(y, s)

)
dy.
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In summary for I1, we have that

I1 ≤
∫ t

0

∫
Ω

∣∣w(y, s)− z(y, s)
∣∣ dy dt.

The term I2 is analysed in a similar way. Therefore we have that

I2 ≤
∫ t

0

∫
Ω

∣∣w(x, s)− z(x, s)
∣∣ dx dt.

For the term I3, as f is a Lipschitz function with Lipschitz’s constant K > 0,
we have

I3 ≤ K
∫ t

0

∫
Ω

∣∣w(x, s)− z(x, s)
∣∣ dx ds.

Finally we have∫
Ω

∣∣Tw0,f (w)(x, t)− Tz0,f (z)(x, t)
∣∣ dx

≤ (2 +K)

∫ t

0

∫
Ω

∣∣w(y, s)− z(y, s)
∣∣dy ds+ ‖w0 − z0‖L1(Ω).

Therefore, we obtain∣∣‖Tw0
(w)− Tz0(z)‖

∣∣ ≤ C∣∣‖w − z‖∣∣+ ‖w0 − z0‖L1(Ω),

with C = (2 +K)t0, as desired. �X

Next, we study a theorem of existence and uniqueness of solutions.

Theorem 2. If f is a Lipschitz function with Lipschitz’s constant K > 0,
w0 ∈ L1(Ω) a non-negative function, then there exist a unique solution u to (5)
such that u ∈ C

(
[0, t0] : L1(Ω)

)
.

Proof. With z0 ≡ 0 and z ≡ 0 in Lemma 1 we get Tu0,f ∈ C
(
[0, t0] : L1(Ω)

)
.

Moreover, if z0 ≡ w0 in Lemma 1 and C = (2+K)t0 < 1 with t0 small enough,
we obtain that Tw0

is a strict contraction in Xt0 ; therefore there exists a unique
fixed point of Tu0 in Xt0 by the Banach’s fixed point theorem. The existence
and uniqueness of solution to (5) in [0, t0] is proved. �X

Remark 3. The solutions of (5) depend continuously on the initial data. In
fact, if u and v are solutions to (5) with initial data u0 and v0 respectively,

then there exists a constant C̃ = C̃(t0,K) such that∣∣‖u(·, t)− v(·, t)‖∣∣ ≤ C̃‖u0 − v0‖L1(Ω).
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Remark 4. The function u is a solution to (5) if and only if

u(x, t) =

∫ t

0

∫
Ω

J

(
x− y
u(y, s)α

)
u(y, s)1−Nα dy ds

−
∫ t

0

∫
Ω

J

(
x− y
u(x, s)α

)
u(x, s)1−Nαdy ds+

∫ t

0

f
(
u(x, s)

)
ds+ u0(x).

Remark 5. If u is a solution of (5) with initial data u0, then the mass verifies∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx+

∫ t

0

∫
Ω

f
(
u(x, s)

)
dx ds.

For a continuous initial data we have the following result

Theorem 6. Let f be a Lipschitz function with Lipschitz’s constant K > 0,
u0 ∈ C

(
Ω
)

a non-negative function. Then, there exists an unique solution

u ∈ C(Ω× [0, t0]) of (5).

Proof. The proof is similar to the one of Theorem 2 and hence we omit the
details. �X

Next, we study a Comparison Principle.

Theorem 7 (Comparison Principle). Let u and v be continuous solutions of
(5) with initial data u0 and v0 respectively. If u(x, 0) ≤ v(x, 0) for all x ∈ Ω,
then

u(x, t) ≤ v(x, t) for all (x, t) ∈ Ω× [0, T ).

Proof. First, we assume that u(x, 0) + δ < v(x, 0) for all x ∈ Ω, and that
u(x, 0) and v(x, 0) are in C1. Let us argue by contradiction and suppose that
there exists a time t0 > 0 and a point x0 ∈ Ω such that u(x0, t0) = v(x0, t0)
and u(x, t) ≤ v(x, t) for t < t0 for all x ∈ Ω.

Let us consider the set G =
{
x ∈ Ω : u(x, t0) = v(x, t0)

}
. Clearly G is

closed and not empty. Let x1 ∈ G. Then we have then

0 ≤ (u− v)t(x1, t0) =∫
Ω

(
J

(
x1 − y
uα(y, t0)

)
u1−Nα(y, t0)− J

(
x1 − y
vα(y, t0)

)
v1−Nα(y, t0)

)
dy

−
∫

Ω

(
J

(
x1 − y

uα(x1, t0)

)
u1−Nα(x1, t0)− J

(
x1 − y

vα(x1, t0)

)
v1−Nα(x1, t0)

)
dy

+
(
f
(
u(x1, t0)

)
− f

(
v(x1, t0)

))
≤ 0,
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therefore, there exists r > 0 such that u(y, t0) = v(y, t0) for all y ∈ B(x1, r), so
that G is open, and then G = Ω. We have obtained a contradiction.

Now, if u(x, 0) and v(x, 0) are continuous functions, we consider the de-
creasing sequences of functions un(x, 0) and vn(x, 0) in C1 such that un(x, 0)↘
u(x, 0), vn(x, 0)↘ v(x, 0) in L1(Ω) as n→∞, and un(x, 0) ≤ vn(x, 0). Let un
and vn the respective solutions to (5) with initial data un(x, 0) and vn(x, 0) re-
spectively. By previous argument, we have un ≤ vn. We obtain the result letting
n→∞ in view of Remark 4 and the monotone convergence theorem. �X

Remark 8. The Comparison principle is valid in L1.

Next, we will prove the local existence and uniqueness of solutions to prob-
lem (5) in the case f satisfies (H1).

Theorem 9. For all u0 ∈ C(Ω) non-negative function and f that satisfies
(H1), there exists a time T > 0 and a unique solution u of (5) such that
u ∈ C

(
Ω× [0, T )

)
.

Proof. Let (fn)n be a increasing sequence of Lipschitz functions such that
fn ≤ fn+1. Assume that fn(s) = f(s) in [0, n]. Let un be the unique solution
of (5) with source fn and initial data u(x, 0).

By Comparison Principle (Theorem 7), we have that un(x, t) ≤ un+1(x, t);
hence there exists u, which can be∞ in some points, such that limn→∞ un = u.

Let T = sup

{
t : sup

x∈Ω
u(x, t) < ‖u0‖∞ + 1

}
. It is easy to prove that T > 0.

Like before, if in the integral equation of Remark 4 we let n → ∞, then
after an application of the monotone convergence theorem, it follows that u is
a unique solution of (5) in Ω× [0, T ) with initial data u(x, 0) and source f(u).
This proves the theorem. �X

In a similar way we obtain the Comparison Principle Theorem for functions
f satisfying H1.

Theorem 10 (Comparison Principle). Let f be a function that satisfies as-
sumption H1, u and v be continuous solutions of (5) with initial data u0 and
v0 respectively. If u(x, 0) ≤ v(x, 0) for all x ∈ Ω, then

u(x, t) ≤ v(x, t) for all (x, t) ∈ Ω× [0, T ).

2.2. Blow-up Analysis

In this section, we study the blow-up phenomenon for solutions of (5). We use
some ideas of [7]. We have the following theorem:

Volumen 46, Número 1, Año 2012



BLOW-UP FOR A NONLOCAL NONLINEAR DIFFUSION EQUATION WITH SOURCE 9

Theorem 11. Suppose that f satisfies (H1) and (H2). Let u be a solution of
(5) with initial data u0 ∈ C(Ω) such that

∫
Ω
u0(x) dx > 0, then u blows up in

finite time.

Proof. Let u be a solution of (5). We define M(t) for t > 0 by

M(t) =
1

|Ω|

∫
Ω

u(x, t) dx. (6)

Taking into account (H1) we obtain

M ′(t) =
1

|Ω|

∫
Ω

f
(
u(x, t)

)
dx ≥ f

(
1

|Ω|

∫
Ω

u(x, t) dx

)
≥ f

(
M(t)

)
,

therefore
M ′(t) ≥ f

(
M(t)

)
. (7)

Since M(0) > 0 and f(u) > 0 for u > 0 we have M ′(t) > 0, so that M(t) > 0
for all t > 0.

Integrating (7) on [0, t] we obtain∫ t

0

M ′(s)

f(M(s))
ds ≥ t,

therefore ∫ M(t)

M(0)

ds

f(s)
≥ t. (8)

Let

F (u) =

∫ ∞
u

ds

f(s)
. (9)

Since f satisfies (H2), by (8) we have that

F (M(0))− F (M(t)) ≥ t.

We can conclude that the solution u of (5) blows up in finite time, as
desired. �X

Corollary 12. If u is a solution to (5) with f(u) = up, p > 1; f(u) = eu;
f(u) = (1 + u) lnp(1 + u), p > 1, then u blows up in finite time.

The blow up rate of the solution of (5) for particular cases in that f is given
in the previous corollary will be analysed.

With this end, let

U(t) = max
Ω

u(x, t), for all t ∈ [0, T ),

where u is a solution to (5) that blow up in finite time T > 0.
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Proposition 13. U(t) is locally Lipschtiz continuous function. Furthermore,

U ′(t) ≤ f
(
U(t)

)
a.e. (10)

and

U ′(t) ≥ −U(t) + f
(
U(t)

)
a.e. (11)

Proof. Let

U(t1) = max
Ω

u(x, t1) = u(x1, t1)

U(t2) = max
Ω

u(x, t2) = u(x2, t2).

Since J is a smooth function, we have that for h = t2 − t1,

U(t2)− U(t1) ≥ u(x1, t2)− u(x1, t1) = hut(x1, t1) + o(h),

U(t2)− U(t1) ≤ u(x2, t2)− u(x2, t1) = hut(x2, t1) + o(h),

from which it follows that U(t) is locally Lipschtiz continuous function.

Next, we show that (10) is true. For t2 > t1 we have

U(t2)− U(t1)

t2 − t1
≤ ut(x2, t2) + o(1).

On the other hand,

ut(x2, t2) =

∫
Ω

J

(
x2 − y
uα(y, t2)

)
u1−Nα(y, t2) dy

−
∫

Ω

J

(
x2 − y

uα(x2, t2)

)
u1−Nα(x2, t2) dy + f

(
u(x2, t2)

)
.

Since u(x2, t2) ≥ u(y, t2) we obtain

ut(x2, t2) ≤ f
(
u(x2, t2)

)
and therefore, we get

U ′(t) ≤ f(U(t)). a.e.

With the aim to show that (11) is true, let t2 > t1. Then

U(t2)− U(t1)

t2 − t1
≥ ut(x1, t1) + o(1).
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On the other hand

ut(x1, t1) =

∫
Ω

J

(
x1 − y
uα(y, t1)

)
u1−Nα(y, t1) dy − u(x1, t1)+∫

RN\Ω
J

(
x1 − y

uα(x1, t1)

)
u1−Nα(x1, t1) dy + f

(
u(x1, t1)

)
≥

− u(x1, t1) + f
(
u(x1, t1)

)
.

Therefore
U ′(t) ≥ −U(t) + f

(
U(t)

)
a.e.

The proposition is proved. �X

As a consequence of the previous proposition, from (10) we obtain

U ′(t)

f
(
U(t)

) ≤ 1,

and taking into account (9) we get

−
(
F (U)

)
t
≤ 1.

Integrating on [t, T ) for t > 0, we obtain

F
(
U(t)

)
≤ T − t. (12)

Taking into account (H2), we obtain that f(s)/s→∞ as s→∞, and then,
from (11), it follows that U ′(t) ≥ 1

2f
(
U(t)

)
for t near T .

As a consequence of previous the analysis, we have the following theorem.

Theorem 14. Let u be a solution to (5) that bows up in finite time T > 0,
and the source term in given by f(u).

1) If f(u) = up with p > 1, then

max
Ω

u(x, t) ∼ 1

(T − t)
1
p−1

for t ∈ (0, T ).

2) If f(u) = eu, then

max
Ω

u(x, t) ∼ − ln(T − t) for t ∈ (0, T ).

3) If f(u) = (1 + u) lnp(1 + u) with p > 1, then

max
Ω

u(x, t) ∼ e(T−t)1/(1−p) − 1 for t ∈ (0, T ).

The notation f ∼ g means that there exist finite positive constants c1 and
c2 such that c1g ≤ f ≤ c2g.

Revista Colombiana de Matemáticas



12 MAURICIO BOGOYA

Acknowledgement. The author wants to express sincere thanks to Professor
Julio D. Rossi for his enthusiastic guidance and help.

References

[1] D. G. Aronson, The Porous Medium Equation, Lecture Notes in Math
(A. Fasano and M. Primicerio, eds.), vol. 1224, Springer Verlag, 1986.

[2] M. Bogoya, A Nonlocal Nonlinear Diffusion Equation in Higher Space Di-
mensions, J. Math. Anal. Appl 344 (2008), 601–615.
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Universidad Nacional de Colombia

Carrera 30, Calle 45

Ciudad Universitaria
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