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Abstract. The k−generalized Fibonacci sequence
(
F

(k)
n

)
n

resembles the Fi-
bonacci sequence in that it starts with 0, . . . , 0, 1 (k terms) and each term af-
terwards is the sum of the k preceding terms. In this paper, we are interested
in finding powers of two that appear in k−generalized Fibonacci sequences;
i.e., we study the Diophantine equation F

(k)
n = 2m in positive integers n, k,m

with k ≥ 2.
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Resumen. La sucesión k−generalizada de Fibonacci
(
F

(k)
n

)
n

se asemeja a la
sucesión de Fibonacci, pues comienza con 0, . . . , 0, 1 (k términos) y a par-
tir de ah́ı, cada término de la sucesión es la suma de los k precedentes. El
interés en este art́ıculo es encontrar potencias de dos que aparecen en suce-
siones k−generalizadas de Fibonacci; es decir, se estudia la ecuación Diofántica
F

(k)
n = 2m en enteros positivos n, k,m con k ≥ 2.

Palabras y frases clave. Números de Fibonacci, cotas inferiores para formas
lineales en logaritmos de números algebraicos.
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68 JHON J. BRAVO & FLORIAN LUCA

1. Introduction

Let k ≥ 2 be an integer. We consider a generalization of Fibonacci sequence

called the k−generalized Fibonacci sequence F
(k)
n defined as

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k, (1)

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We call F
(k)
n the nth k−generalized Fibonacci number. For example, if k = 2,

we obtain the classical Fibonacci sequence

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

(Fn)n≥0 = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .}.

If k = 3, the Tribonacci sequence appears

(Tn)n≥0 = {0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, . . .}.

If k = 4, we get the Tetranacci sequence(
F (4)
n

)
n≥0

= {0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, . . .}.

There are many papers in the literature which address Diophantine equa-
tions involving Fibonacci numbers. For example, it is known that 1, 2, 8 are the
only powers of two that appear in our familiar Fibonacci sequence. One proof of
this fact follows from Carmichael’s Primitive Divisor theorem [3], which states
that for n greater than 12, the nth Fibonacci number Fn has at least one prime
factor that is not a factor of any previous Fibonacci number.

We extend the above problem to the k–generalized Fibonacci sequences,
that is, we are interested in finding out which powers of two are k–generalized
Fibonacci numbers; i.e., we determine all the solutions of the Diophantine equa-
tion

F (k)
n = 2m, (2)

in positive integers n, k,m with k ≥ 2.

We begin by noting that the first k+1 non–zero terms in the k−generalized
Fibonacci sequence are powers of two, namely

F
(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1, (3)

while the next term in the above sequence is F
(k)
k+2 = 2k − 1. Hence, the triples

(n, k,m) = (1, k, 0) and (n, k,m) = (t, k, t− 2), (4)

are solutions of equation (2) for all 2 ≤ t ≤ k + 1. Solutions given by (4) will
be called trivial solutions.
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2. Main Result

In this paper, we prove the following theorem.

Theorem 1. The only nontrivial solution of the Diophantine equation (2) in
positive integers n, k,m with k ≥ 2, is (n, k,m) = (6, 2, 3), namely F6 = 8.

Our method is roughly as follows. We use lower bounds for linear forms in
logarithms of algebraic numbers to bound n polynomially in terms of k. When
k is small, the theory of continued fractions suffices to lower such bounds and
complete the calculations. When k is large, we use the fact that the dominant
root of the k−generalized Fibonacci sequence is exponentially close to 2, so we
can replace this root by 2 in our calculations and finish the job.

3. Preliminary Inequalities

It is known that the characteristic polynomial of the k−generalized Fibonacci

numbers
(
F

(k)
n

)
n
, namely

Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle. Through-
out this paper, α := α(k) denotes that single root, which is located between
2(1− 2−k) and 2 (see [7]). To simplify notation, in general we omit the depen-
dence on k of α.

The following “Binet–like” formula for F
(k)
n appears in Dresden [4]:

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i , (5)

where α = α1, . . . , αk are the roots of Ψk(x). It was also proved in [4] that the
contribution of the roots which are inside the unit circle to the formula (5) is
very small, namely that the approximation∣∣∣∣F (k)

n − α− 1

2 + (k + 1)(α− 2)
αn−1

∣∣∣∣ < 1

2
holds for all n ≥ 2− k. (6)

We will use the estimate (6) later. Furthermore, in [1], we proved that

αn−2 ≤ F (k)
n ≤ αn−1 for all n ≥ 1. (7)

The following lemma is a simple result, which is a small variation of the
right–hand side of inequality (7) and will be useful to bound m in terms of n.

Lemma 2. For every positive integer n ≥ 2, we have

F (k)
n ≤ 2n−2. (8)

Moreover, if n ≥ k + 2, then the above inequality is strict.
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Proof. We prove the Lemma 2 by induction on n. Indeed, by recalling (3), we

have that F
(k)
t = 2t−2 for all 2 ≤ t ≤ k + 1, so it is clear that inequality (8) is

true for the first k terms of n. Now, suppose that (8) holds for all terms F
(k)
m

with m ≤ n− 1 for some n ≥ k + 2. It then follows from (1) that

F (k)
n ≤ 2n−3 + 2n−4 + · · ·+ 2n−k−2 = 2n−k−2

(
2k−1 + 2k−2 + · · ·+ 1

)
= 2n−k−2

(
2k − 1

)
< 2n−2.

Thus, inequality (8) holds for all positive integers n ≥ 2. �X

Now assume that we have a nontrivial solution (n, k,m) of equation (2). By
inequality (7) and Lemma 2, we have

αn−2 ≤ F (k)
n = 2m < 2n−2.

So, we get

n ≤ m
(

log 2

logα

)
+ 2 and m < n− 2. (9)

If k ≥ 3, then it is a straightforward exercise to check that 1/ logα < 2 by
using the fact that 2(1 − 2−k) < α. If k = 2, then α is the golden section so
1/ logα = 2.078 . . . < 2.1. In any case, the inequality 1/ logα < 2.1 holds for all
k ≥ 2. Thus, taking into account that log 2/ logα < 2.1 log 2 = 1.45 . . . < 3/2,
it follows immediately from (9) that

m+ 2 < n <
3

2
m+ 2. (10)

We record this estimate for future referencing.

To conclude this section of preliminaries, we consider for an integer s ≥ 2,
the function

fs(x) =
x− 1

2 + (s+ 1)(x− 2)
for x > 2(1− 2−s). (11)

We can easily see that

f ′s(x) =
1− s

(2 + (s+ 1)(x− 2))2
for all x > 2(1− 2−s), (12)

and 2 + (s+ 1)(x− 2) ≥ 1 for all x > 2(1− 2−s) and s ≥ 3. We shall use this
fact later.
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4. An Inequality for n and m in Terms of k

Since the solution to equation (2) is nontrivial, in the remainder of the article,
we may suppose that n ≥ k + 2. So, we get easily that n ≥ 4 and m ≥ 3.

By using (2) and (6), we obtain that∣∣2m − fk(α)αn−1
∣∣ < 1

2
. (13)

Dividing both sides of the above inequality by fk(α)αn−1, which is positive
because α > 1 and 2k > k+ 1, so 2 > (k+ 1)

(
2− (2−2−k+1)

)
> (k+ 1)(2−α),

we obtain the inequality∣∣2m · α−(n−1) · (fk(α))−1 − 1
∣∣ < 2

αn−1
, (14)

where we used the facts 2 + (k + 1)(α − 2) < 2 and 1/(α − 1) ≤ 2, which are
easily seen.

Recall that for an algebraic number η we write h(η) for its logarithmic
height whose formula is

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(

max
{
|η(i)|, 1

}))
,

with d being the degree of η over Q and

f(X) := a0

d∏
i=1

(
X − η(i)

)
∈ Z[X] (15)

being the minimal primitive polynomial over the integers having positive lead-
ing coefficient a0 and η as a root.

With this notation, Matveev (see [6] or Theorem 9.4 in [2]) proved the
following deep theorem.

Theorem 3. Let K be a number field of degree D over Q, γ1, . . . , γt be positive
real numbers of K, and b1, . . . , bt rational integers. Put

B ≥ max
{
|b1|, . . . , |bt|

}
,

and
Λ := γb11 · · · γ

bt
t − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max
{
Dh(γi), | log γi|, 0.16

}
, i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
− 1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)
.
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72 JHON J. BRAVO & FLORIAN LUCA

In order to apply Theorem 3, we take t := 3 and

γ1 := 2, γ2 := α, γ3 := fk(α).

We also take the exponents b1 := m, b2 := −(n− 1) and b3 := −1. Hence,

Λ := γb11 · γ
b2
2 · γ

b3
3 − 1. (16)

Observe that the absolute value of Λ appears in the left–hand side of in-
equality (14). The algebraic number field containing γ1, γ2, γ3 is K := Q(α). As
α is of degree k over Q, it follows that D = [K : Q] = k. To see that Λ 6= 0,
observe that imposing that Λ = 0 yields

2m =
α− 1

2 + (k + 1)(α− 2)
αn−1.

Conjugating the above relation by some automorphism of the Galois group
of the splitting field of Ψk(x) over Q and then taking absolute values, we get
that for any i > 1,

2m =

∣∣∣∣ αi − 1

2 + (k + 1)(αi − 2)
αn−1
i

∣∣∣∣.
But the above relation is not possible since its left–hand side is greater than

or equal to 8, while its right–hand side is smaller than 2/(k − 1) ≤ 2 because
|αi| < 1 and

|2 + (k + 1)(αi − 2)| ≥ (k + 1)|αi − 2| − 2 > k − 1. (17)

Thus, Λ 6= 0.

Since h(γ1) = log 2, it follows that we can take A1 := k log 2. Furthermore,
since h(γ2) = (logα)/k < (log 2)/k = (0.693147 · · · )/k, it follows that we can
take A1 := 0.7.

We now need to estimate h(γ3). First, observe that

h(γ3) = h(fk(α)) = h

(
α− 1

2 + (k + 1)(α− 2)

)
. (18)

Put

gk(x) =

k∏
i=1

(
x− αi − 1

2 + (k + 1)(αi − 2)

)
∈ Q[x].

Then the leading coefficient a0 of the minimal polynomial of

α− 1

2 + (k + 1)(α− 2)
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over the integers (see definition (15)) divides
∏k
i=1(2 + (k + 1)(αi − 2)). But,∣∣∣∣∣

k∏
i=1

(
2 + (k + 1)(αi − 2)

)∣∣∣∣∣ = (k + 1)k

∣∣∣∣∣
k∏
i=1

(
2− 2

k + 1
− αi

)∣∣∣∣∣
= (k + 1)k

∣∣∣∣Ψk

(
2− 2

k + 1

)∣∣∣∣.
Since∣∣Ψk(y)

∣∣ < max
{
yk, 1 + y + · · ·+ yk−1

}
< 2k for all 0 < y < 2,

it follows that

a0 ≤ (k + 1)k
∣∣∣∣Ψk

(
2− 2

k + 1

)∣∣∣∣ < 2k (k + 1)k.

Hence,

h

(
α− 1

2 + (k + 1)(α− 2)

)
=

1

k

(
log a0 +

k∑
i=1

log max

{∣∣∣∣ αi − 1

2 + (k + 1)(αi − 2)

∣∣∣∣, 1})
<

1

k

(
k log 2 + k log(k + 1) + k log 2

)
= log(k + 1) + log 4

< 4 log k. (19)

In the above inequalities, we used the facts log(k + 1) + log 4 < 4 log k for
all k ≥ 2 and ∣∣∣∣ αi − 1

2 + (k + 1)(αi − 2)

∣∣∣∣ < 2 for all 1 ≤ i ≤ k,

which holds because for i > 1,
∣∣2 + (k+ 1)(αi − 2)

∣∣ > k− 1 ≥ 1 (see (17)), and

2 + (k + 1)(α− 2) >
85

100
>

1

2
,

which is a straightforward exercise to check using the fact that 2(1 − 2−k) <
α < 2 and k ≥ 2.

Combining (18) and (19), we obtain that h(γ3) < 4 log k, so we can take
A3 := 4k log k. By recalling that m < n− 1 from (10), we can take B := n− 1.
Applying Theorem 3 to get a lower bound for |Λ| and comparing this with
inequality (14), we get

exp
(
− C(k)×

(
1 + log(n− 1)

)
(k log 2) (0.7) (4k log k)

)
<

2

αn−1
,
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74 JHON J. BRAVO & FLORIAN LUCA

where C(k) := 1.4× 306 × 34.5 × k2 × (1 + log k) < 1.5× 1011 k2 (1 + log k).

Taking logarithms in the above inequality, we have that

(n− 1) logα− log 2 < 3× 1011 k4 log k (1 + log k)
(
1 + log(n− 1)

)
,

which leads to

n− 1 < 3.68× 1012 k4 log2 k log(n− 1),

where we used the facts 1 + log k ≤ 3 log k for all k ≥ 2, 1 + log(n − 1) ≤
2 log(n− 1) for all n ≥ 4 and 1/ logα < 2.1 for all k ≥ 2.

Thus,

n− 1

log(n− 1)
< 3.68× 1012 k4 log2 k. (20)

Since the function x 7→ x/ log x is increasing for all x > e, it is easy to check
that the inequality

x

log x
< A yields x < 2A logA,

whenever A ≥ 3. Indeed, for if not, then we would have x > 2A logA > e,
therefore

x

log x
>

2A logA

log(2A logA)
> A,

where the last inequality follows because 2 logA < A holds for all A ≥ 3. This
is a contradiction.

Thus, taking A := 3.68× 1012 k4 log2 k, inequality (20) yields

n− 1 < 2(3.68× 1012 k4 log2 k) log(3.68× 1012 k4 log2 k)

< (7.36× 1012k4 log2 k) (29 + 4 log k + 2 log log k)

< 3.32× 1014k4 log3 k.

In the last chain of inequalities, we have used that 29+4 log k+2 log log k <
45 log k holds for all k ≥ 2. We record what we have just proved.

Lemma 4. If (n, k,m) is a nontrivial solution in integers of equation (2) with
k ≥ 2, then n ≥ k + 2 and the inequalities

m+ 2 < n < 3.4× 1014 k4 log3 k

hold.
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5. The Case of Small k

We next treat the cases when k ∈ [2, 169]. After finding an upper bound on
n the next step is to reduce it. To do this, we use several times the following
lemma from [1], which is an immediate variation of a result due to Dujella and
Pethö from [5].

Lemma 5. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational γ such that q > 6M , and let A,B, µ be some real
numbers with A > 0 and B > 1. Let ε := ‖µq‖ −M‖γq‖, where ‖ · ‖ denotes
the distance from the nearest integer. If ε > 0, then there is no solution to the
inequality

0 < mγ − n+ µ < AB−k,

in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

In order to apply Lemma 5, we let

z := m log 2− (n− 1) logα− logµ, (21)

where µ := fk(α). Then ez − 1 = Λ, where Λ is given by (16). Therefore, (14)
can be rewritten as

|ez − 1| < 2

αn−1
. (22)

Note that z 6= 0 since Λ 6= 0, so we distinguish the following cases. If z > 0,
then ez − 1 > 0, therefore, from (22), we obtain

0 < z <
2

αn−1
,

where we used the fact that x ≤ ex − 1 for all x ∈ R. Replacing z in the above
inequality by its formula (21) and dividing both sides of the resulting inequality
by logα, we get

0 < m

(
log 2

logα

)
− n+

(
1− logµ

logα

)
< 5 · α−(n−1), (23)

where we have used the fact 1/ logα < 2.1 once again. With

γ :=
log 2

logα
, µ̂ := 1− logµ

logα
, A := 5, and B := α,

the above inequality (23) yields

0 < mγ − n+ µ̂ < AB−(n−1). (24)
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It is clear that γ is an irrational number because α > 1 is a unit in OK, so
α and 2 are multiplicatively independent.

In order to reduce our bound on n, we take M :=
⌊
3.4 × 1014 k4 log3 k

⌋
(upper bound on m from Lemma 4) and we use Lemma 5 on inequality (24)
for each k ∈ [2, 169]. A computer search with Mathematica revealed that the
maximum value of log(Aq/ε)/ logB is 330.42 · · · , which, according to Lemma 5,
is an upper bound on n − 1. Hence, we deduce that the possible solutions
(n, k,m) of the equation (2) for which k is in the range [2, 169] and z > 0, all
have n ∈ [4, 331], and therefore m ∈ [2, 328], since m < n− 2.

Next we treat the case z < 0. First of all, observe that if k ≥ 3, then
one checks easily that 2/αn−1 < 1/2 for all n ≥ 4, by using the fact that
2(1 − 2−k) < α; but the same is true when k = 2, since in this case α is the
golden section. Thus, from (22), we have that |ez − 1| < 1/2 and therefore
e|z| < 2. Since z < 0, we have

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| < 4

αn−1
.

In a similar way as in the case when z > 0, we obtain

0 < (n− 1)γ −m+ µ̂ < AB−(n−1), (25)

where now

γ :=
logα

log 2
, µ̂ :=

logµ

log 2
, A := 6 and B := α.

Here, we also took M :=
⌊
3.4 × 1014 k4 log3 k

⌋
which is an upper bound

on n − 1 by Lemma 4, and we applied Lemma 5 to inequality (25) for each
k ∈ [2, 169]. In this case, with the help of Mathematica, we found that the
maximum value of log(Aq/ε)/ logB is 330.68 · · · . Thus, the possible solutions
(n, k,m) of the equation (2) in the range k ∈ [2, 169] and z < 0, all have
n ∈ [4, 331], so m ∈ [2, 328].

Finally, we used Mathematica to compare F
(k)
n and 2m for the range 4 ≤

n ≤ 331 and 2 ≤ m ≤ 328, with m + 2 < n < 3m/2 + 2 and checked that
the only nontrivial solution of the equation (2) in this range is that given by
Theorem 1. This completes the analysis in the case k ∈ [2, 169].

6. The Case of Large k

From now on, we assume that k > 169. For such k we have

n < 3.4× 1014 k4 log3 k < 2k/2.
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Let λ > 0 be such that α + λ = 2. Since α is located between 2(1 − 2−k)
and 2, we get that λ < 2− 2(1− 2−k) = 1/2k−1, i.e., λ ∈ (0, 1/2k−1). Besides,

αn−1 = (2− λ)n−1

= 2n−1

(
1− λ

2

)n−1

= 2n−1e(n−1) log(1−λ/2) ≥ 2n−1e−λ(n−1),

where we used the fact that log(1−x) ≥ −2x for all x < 1/2. But we also have
that e−x ≥ 1− x for all x ∈ R, so, αn−1 ≥ 2n−1

(
1− λ(n− 1)

)
.

Moreover, λ(n− 1) < (n− 1)/2k−1 < 2k/2/2k−1 = 2/2k/2. Hence,

αn−1 > 2n−1
(
1− 2/2k/2

)
.

It then follows that the following inequalities hold:

2n−1 − 2n

2k/2
< αn−1 < 2n−1 +

2n

2k/2
,

or ∣∣αn−1 − 2n−1
∣∣ < 2n

2k/2
. (26)

We now consider the function fk(x) given by (11). Using the Mean–Value
Theorem, we get that there exists some θ ∈ (α, 2) such that

fk(α) = fk(2) + (α− 2)f ′k(θ).

Observe that when k ≥ 3, we obtain
∣∣f ′k(θ)

∣∣ = (k−1)/
(
2+(k+1)(θ−2)

)2
< k

(see the inequality (12) and the comment following it), and when k = 2, we
have that α is the golden section and therefore

∣∣f ′2(θ)
∣∣ = 1/(3θ − 4)2 < 25/16,

since θ > α > 8/5. In any case, we obtain
∣∣f ′k(θ)

∣∣ < k. Hence,∣∣fk(α)− fk(2)
∣∣ = |α− 2|

∣∣f ′k(θ)
∣∣ = λ

∣∣f ′k(θ)| < 2k

2k
. (27)

Writing

αn−1 = 2n−1 + δ and fk(α) = fk(2) + η,

then inequalities (26) and (27) yield

|δ| < 2n

2k/2
and |η| < 2k

2k
. (28)

Besides, since fk(2) = 1/2, we have

fk(α)αn−1 = 2n−2 +
δ

2
+ 2n−1η + ηδ. (29)
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So, from (13) and the inequalities (28) and (29) above, we get∣∣2m − 2n−2
∣∣ =

∣∣∣∣(2m − fk(α)αn−1
)

+
δ

2
+ 2n−1η + ηδ

∣∣∣∣
<

1

2
+

2n−1

2k/2
+

2nk

2k
+

2n+1k

23k/2
.

Factoring 2n−2 in the right–hand side of the above inequality and taking into
account that 1/2n−1 < 1/2k/2 (because n ≥ k+2 by Lemma 4), 4k/2k < 1/2k/2

and 8k/23k/2 < 1/2k/2 which are all valid for k > 169, we conclude that∣∣2m−n+2 − 1
∣∣ < 5

2k/2
. (30)

By recalling that m < n− 2 (see (9)), we have that m− n+ 2 ≤ −1, then
it follows from (30) that

1

2
≤ 1− 2m−n+2 <

5

2k/2
.

So, 2k/2 < 10, which is impossible since k > 169.

Hence, we have shown that there are no solutions (n, k,m) to equation (2)
with k > 169. Thus, Theorem 1 is proved.
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Volumen 46, Número 1, Año 2012



POWERS OF TWO IN GENERALIZED FIBONACCI SEQUENCES 79

[6] E. M. Matveev, An Explicit Lower Bound for a Homogeneous Rational Lin-
ear Form in the Logarithms of Algebraic Numbers, Izv. Math. 64 (2000),
no. 6, 1217–1269.

[7] D. A. Wolfram, Solving Generalized Fibonacci Recurrences, The Fibonacci
Quarterly 36 (1998), no. 2, 129–145.

(Recibido en noviembre de 2011. Aceptado en marzo de 2012)

Departamento de Matemáticas
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