
Revista Colombiana de Matemáticas
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Resumen. Caracterizamos la compacidad espectral de los anillos regulares de
von Neumann conmutativos. Mostramos que a través de un proceso de ad-
junción de unidad, podemos obtener la compactación de Alexandroff o una
compactación estelar del espectro primo de ciertos anillos regulares de von
Neumann.
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1. Introduction

Throughout this paper the rings considered are commutative, but not nec-
essarily with identity and compact spaces are not necessarily Hausdorff. Von
Neumann regular rings were introduced in 1936 by John von Neumann in [20],
as an algebraic tool for studying certain lattices. These rings have been widely
studied to the point that well-developed theories exist about them (see for
example [3, 4, 8, 10, 14, 18]). Von Neumann regular rings are also known as
absolutely flat rings, because of their characterization in terms of modules. Al-
though a regular ring in von Neumann sense is not necesarily commutative, in
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this paper we will restrict ourselves to commutative rings. We are using the
expression von Neumann regular ring (or simply von Neumann ring) to refer
to a commutative ring such that, given an element a, there exists an element b
such that a = a2b. This is equivalent to every principal ideal being generated
by an idempotent.

Here are some examples of von Neumann rings:

• Every field is a von Neumann ring.

• We say that a ring is an exp-ring if for each element a there exists n(a) ∈
Z+ r {1} such that an(a) = a. Every exp-ring is a von Neumann ring. In
fact, for each a in the ring we can take b = an(a)−2, if n(a) > 2 or b = a,
if n(a) = 2. In [9] and in [13] we can find proofs about the commutativity
of exp-rings.

i) A ring A is a p−ring if it satisfies pa = 0 and ap = a, for each a ∈ A,
where p is a prime number. In particular for p = 2 we obtain the
Boolean rings. Every p−ring is an exp-ring.

ii) The ring Zp := Z/pZ is a p−ring, for each prime p.

iii) The ring Z6 is an exp-ring of characteristic 6 and n(a) = 3, for each
a.

iv) We denote P the set of prime numbers and consider the sub-ring of∏
p∈P Zp whose elements are sequences with finitely many non-zero

terms. This is an exp-ring such that n(a) = 1+
∏m
k=1(pk−1), where

ai1 , ai2 , . . . , aim are the non-zero terms of the sequence a, belonging
to Zp1 , . . . ,Zpm respectively.

• If A is a von Neumann ring and X is a set then AX is a von Neumann
ring.

• Any product of von Neumann rings is a von Neumann ring.

• Every quotient of a von Neumann ring is a von Neumann ring.

The last three items can be checked directly from the definition of von
Neumann ring.

In the second Section we mention some known concepts and existing results
that we will use throughout the paper. Additionally, we establish a special rela-
tionship between star compactifications and the Alexandroff compactification.
In the third Section we show that the prime spectrum of a von Neumann ring
and the prime spectrum of its ring of idempotent elements are homeomorphic.
Furthermore, we see that a von Neumann ring is spectrally compact if and only
if it has identity. Thus we generalize a well known result of Boolean rings. In
the fourth Section we study some relationships between the process of com-
pactification of a von Neumann ring of non-zero characteristic and the process
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of adjunction of identity. These relationships allows us to identify the compact-
ifications of certain von Neumann rings. Finally we use p−rings to illustrate
some of the mentioned results.

2. Some Notions and Notations

In the present section we recall without details some notions and facts that we
use throughout the paper.

2.1. Spectrally Compact Rings

We say that a commutative ring A is spectrally compact if its prime spectrum
Spec(A) is a compact topological space. We use this terminology to avoid con-
fusions with compact topological rings. The prime spectrum of the ring A is
the set of its prime ideals, endowed with the Zariski topology. In that topology
the basic open sets are the sets given by

D(a) := {I : I is a prime ideal of A and a /∈ I},

defined for each a ∈ A. It is known that these basic open sets are compact. If
the ring A has identity then D(1) = Spec(A), therefore its prime spectrum is
compact. The reciprocal of this statement is false, see that 2Z is a ring without
identity and it is spectrally compact because Spec(2Z) = D(2). On the other
hand, we know that a Boolean ring without identity is not spectrally compact.
The interested reader can obtain more information in [1] and [5].

2.2. Adjunction of Identity

We recall the Dorroh’s mechanism of adjunction of identity presented in [7].
This is a standard procedure to include in a natural way, the ring A of char-
acteristic n 6= 0, into a ring with identity and of characteristic n. We consider
the set Un(A) = A× Zn and endow it with the following operations:

(a, α) + (b, β) = (a+ b, α+ β) (1)

(a, α)(b, β) = (ab+ βa+ αb, αβ). (2)

If we identify the ring A with A0 = A × {0} then Un(A) is a ring with
identity (0, 1) that contains the ring A as ideal. This construction satisfies the
following universal property.

Proposition 1. For each unitary ring B of characteristic n and for each ring
homomorphism h : A → B there exists a unique unitary ring homomorphism
h̃ : U(A)→ B such that h̃ ◦ iA = h, where iA : A→ U(A) : iA(a) 7→ (a, 0).

Proof. It is enough to define h̃(a, α) = h(a) + α1, where 1 is the identity of
B. �X
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2.3. Compactifications by Finite Points

We mention two of the most known procedures for the compactification of a
topological space by finite points.

2.3.1. Alexandroff Compactification

Let (X, τ) be a non-compact topological space and let X∗ be the set X ∪
{
ω},

where ω is a point not belonging to X.

Theorem 2. If τ∗ = τ ∪
{

(X rK) ∪ {ω} : K is a closed-compact set of X},
then (X∗, τ∗) is a compactification of (X, τ) by one point.

This compactification is called the Alexandroff compactification of (X, τ)
and is the finest of the compactifications of (X, τ) by one point.

Theorem 3. If (X, τ) is a Hausdorff, locally compact space then (X∗, τ∗) is a
Hausdorff space.

In the context of Hausdorff spaces we mention the compactification by one
point, because the Alexandroff compactification is the unique compactification
of (X, τ) by one point that is a Hausdorff space. See for example [15] for the
proofs of these results.

2.3.2. Star Compactifications

We present the definition of star topology of [16] and the necessary and suf-
ficient conditions for that topology to give a compactification of the original
space. We consider (X, τ) a non-compact topological space, m ∈ N, X] =
X ∪{ω1, . . . , ωm} where ω1, . . . , ωm are m different points not belonging to X.

Proposition 4. If W1, . . . ,Wm are open subsets of X then

B = τ ∪
{

(Wi rK) ∪ {ωi} : K is a closed-compact set of X, i ∈ {1, . . . ,m}
}

is a base for a topology µ on X], which is called the star topology associated
to W1, . . . ,Wm.

Proposition 5. The space (X], µ) is a compactification of (X, τ) if and only
if

i) the set X r
⋃m
i=1Wi is compact, and

ii) for each i ∈ {1, . . . ,m} and for each closed-compact subset K of X, Wi *
K.
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The proofs of these facts can be read in [16]. Observe that the second condi-
tion implies that Wi 6= ∅, for each i ∈ {1, . . . ,m}. Furthermore the Alexandroff
compactification of a topological space is the unique star compactification by
one point of that space, when we take W1 = X. If X is a Hausdorff, locally
compact space then each one of its Hausdorff compactifications by m points
coincides precisely with a star compactification, where the m open associated
sets are pairwise disjoint.

The following result describes a special case of star compactifications.

Theorem 6. If (Xi, τi), i = 1, . . . ,m, are m non-compact topological spaces,
then the sum of its Alexandroff compactifications (X∗i , τ

∗
i ) is an m−points star

compactification of
∐m
i=1Xi.

Proof. Let ω1, . . . , ωm be distinct points not belonging to
∐m
i=1Xi and such

that ωi /∈ Xi for each i. X∗i is the set Xi ∪ {ωi} endowed with the topology

τ∗i = τi ∪
{

(Xi rKi) ∪ {ωi} : Ki is a closed-compact set of Xi

}
,

for each i = 1, . . . ,m. A base for the topology η of
∐m
i=1X

∗
i is

βη =
{
Ai × {i} : Ai ∈ τi, i = 1, . . . ,m

}
∪{[

(Xi rKi) ∪ {ωi}
]
× {i} : Ki is a closed-compact set of Xi, i = 1, . . . ,m

}
.

Notice that
[
(Xi rKi) ∪ {ωi}

]
× {i} =

[
(Xi rKi

)
× {i}

]
∪
{

(ωi, i)
}
.

A base for the topology γ of
∐m
i=1Xi is βγ =

{
Ai × {i} : Ai ∈ τi, i =

1, . . . ,m
}
.

Let us consider the star compactification of
∐m
i=1Xi by m points ωi, i =

1, . . . ,m with associated open sets Wi = Xi × {i}, i = 1, . . . ,m. We denote it

by
(∐m

i=1Xi

)]
and µ its topology. It is very easy to check that Wi; i = 1, . . . ,m

so defined satisfy the conditions of Proposition 5 for
((∐m

i=1Xi

)]
, µ
)

to be a

star compactification of
(∐m

i=1Xi, γ
)

by m points. A base for the topology µ
is

βµ =
{
Ai × {i} : Ai ∈ τi, i = 1, . . . ,m

}
∪{[

(Xi rKi)× {i}
]
∪ {ωi} : Ki is a closed-compact set of Xi, i = 1, . . . ,m

}
.

Consider the function f :
((∐m

i=1Xi

)]
, µ
)
→
(∐m

i=1X
∗
i , η
)

defined by

f(ωi) = (ωi, i) and f(xi, i) = (xi, i) for each xi ∈ Xi and each i = 1, . . . ,m. We
can observe that f is bijective. Furthermore, from the description of the basis
of the topologies µ and η, it follows that f is the required homeomorphism. �X
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3. Homeomorphic Spectra and Spectral Compactness

In the study of p−rings it has been usual to involve Boolean rings (see for
example [11] and [19]). We will consider the ring of idempotent elements of a
von Neumann ring.

For each commutative ring A, we denote by E(A) the set of idempotent
elements of A. Since E(A) is not stable under addition, for b, c ∈ E(A) we
define b ⊕ c = (b − c)2 so,

(
E(A),⊕, ·) is a Boolean ring. In this section we

show that the prime spectrum of a von Neumann ring is homeomorphic to the
prime spectrum of its ring of idempotent elements.

Proposition 7. If A is a von Neumann ring and P is a prime ideal of A, then
P ∩ E(A) is a prime ideal of E(A).

Proof. It is enough to show that P ∩E(A) is a proper subset of E(A), because
the other details can be easily revised.

Let a be an element of A − P . Suppose P ∩ E(A) = E(A). Let b be the
element of A such that a = a2b. Clearly ab ∈ E(A), then ab ∈ P ; but this is a
contradiction. �X

Proposition 8. If A is a von Neumann ring, then

f : Spec(A)→ Spec
(
E(A)

)
P 7→ P ∩ E(A)

is a continuous, open and one to one function.

Proof. For continuity consider e an element of E(A). It is easy to see that
f−1

(
D(e)

)
= D(e).

On the other hand, let a be an element of A and let b be the corresponding
element of A such that a = a2b. As ab is an idempotent element of A and
f
(
D(a)

)
= D(ab), then f is open.

Finally, let P,Q be prime ideals of A such that P ∩E(A) = Q ∩E(A). For
each a ∈ P there exists b ∈ A such that a = a2b. It is clear that ab ∈ P ∩E(A),
so ab ∈ Q ∩ E(A) and ab ∈ Q. Then a = a(ab) ∈ Q. Therefore P ⊆ Q. In a
similar way it can be shown that Q ⊆ P . �X

For each subset X of the ring A we denote by 〈X〉A (or simply 〈X〉 if there
is no confusion) the ideal generated by X in A. To prove that the function f
in the previous proposition is onto, we need the two following facts.

Lemma 9. Let B be a Boolean ring. If b1, . . . , bn are elements of B then there
exist x1, . . . , xn, elements of B such that

i) xixj = 0 if i 6= j, and
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ii) 〈b1, . . . , bn〉 = 〈x1, . . . , xn〉.

Proof. Take x1 = b1, so 〈x1〉 = 〈b1〉.
Suppose we have built x1, . . . , xk such that xixj = 0 if i 6= j and 〈b1, . . . , bk〉 =

〈x1, . . . , xk〉.
Let xk+1 = bk+1 + bk+1(x1 + x2 + · · ·+ xk). For i = 1, . . . , k,

xk+1xi = bk+1xi + bk+1x
2
i + bn+1xi(x1 + x2 + · · ·+ xi−1 + xi+1 + · · ·+ xk) = 0.

On the other hand, it is clear that
〈
{x1, x2, . . . , xk+1}

〉
⊆
〈
{b1, b2, . . . , bk+1}

〉
and furthermore

bk+1 = xk+1 − bk+1(x1 + x2 + · · ·+ xk) ∈
〈
{x1, x2, . . . , xk+1}

〉
;

then
〈
{x1, x2, . . . , xk+1}

〉
=
〈
{b1, b2, . . . , bk+1}

〉
.

Therefore the set {x1, . . . , xn+1} is such that
〈
b1, . . . , bn+1

〉
=
〈
x1, . . . , xn+1

〉
and xixj = 0 if i 6= j. �X

Proposition 10. If A is a von Neumann ring and J is a proper ideal of E(A)
then 〈J〉A is a proper ideal of A.

Proof. Let e ∈ E(A)−J . Suppose that e ∈ 〈J〉A, then there exist b1, . . . , bm ∈
J and a1, . . . , am ∈ A such that e = a1b1 + · · ·+ ambm. By the previous lemma
there exist x1, . . . , xm ∈ J such that xixj = 0 if i 6= j and 〈b1, . . . , bm〉J =
〈x1, . . . , xm〉J . Thus bi = ei1x1 + · · ·+ eimxm, for some ei1, . . . , eim ∈ J , so

e = a1(e11x1 + · · ·+ e1mxm) + · · ·+ am(em1x1 + · · ·+ emmxm)

= (a1e11 + · · ·+ amem1)x1 + · · ·+ (a1e1m + · · ·+ amemm)xm

= c1x1 + · · ·+ cmxm,

with c1, . . . , cm ∈ A. Then exi = cixi for all i and

e = ex1 + · · ·+ exm ∈ J,

but this is absurd. Therefore e /∈ 〈J〉A. �X

Notice that there is no confusion with the additions in E(A) and A, because
u⊕ v = u+ v when uv = 0.

Corollary 11. If A is a von Neumann ring, then the function

Spec(A)→ Spec
(
E(A)

)
P 7→ P ∩ E(A)

is onto.
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Proof. Let J be a prime ideal of E(A). By the previous proposition 〈J〉A
is a proper ideal of A. Let a ∈ A r 〈J〉A. Since A is a von Neumann ring,
then {an : n ∈ Z+} is a multiplicative set, disjoint from 〈J〉A. By the Prime
Ideal Theorem, there exists a prime ideal P of A such that 〈J〉A ⊆ P . Fur-
thermore J ⊆ P ∩ E(A). As the prime ideals of E(A) are maximal, then
J = P ∩ E(A). �X

We summarize the previous results in the following theorem.

Theorem 12. If A is a von Neumann ring, then Spec(A) and Spec
(
E(A)

)
are canonically homeomorphic under the map P 7→ P ∩ E(A).

This result was presented in [17], but the authors, in their proof, use the
hypothesis that the ring A has identity.

Corollary 13. Let A be a von Neumann ring. Then, A is spectrally compact
if and only if E(A) is spectrally compact.

Although the following corollaries mention results already known (see [5]),
they have been obtained in this work in a different way.

Corollary 14. The prime spectrum of a von Neumann ring is a Hausdorff
space.

Corollary 15. The prime ideals of a von Neumann ring are maximal.

In the remainder of this section we characterize the spectral compactness
of von Neumann rings.

Proposition 16. If A is a von Neumann ring, then A has identity if and only
if E(A) has identity.

Proof. Suppose that 1 is the identity of A. As 1 is an idempotent element,
then 1 is the identity of E(A).

On the other hand, let e be the identity of E(A). For a ∈ A there exists
b ∈ A such that a = a2b. Thus a = a(ab) = a

(
(ab)e

)
= (a2b)e = ae. Then e is

the identity of A. �X

The following corollary is immediate.

Corollary 17. Let A be a von Neumann ring. Then, A is spectrally compact
if and only if A has identity.

Example 18. Let A be a von Neumann ring. The ring A(N) of the sequences
with finitely many non-zero elements of A is a von Neumann ring without
identity, thus it is a ring that is not spectrally compact.
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4. On Spectral Compactification of von Neumann Rings

Let A be a von Neumann ring of characteristic n = pα1
1 · · · pαmm , where pi are

different prime numbers. As π : Un(A) → Zn defined by π(a, α) = α is a
homomorphism of unitary rings, then the prime ideals of Un(A) that contain
A0 are precisely the ideals of the form A× piZn, for i = 1, . . . ,m, one for each
prime divisor of n. We denote by D(A0) the subspace of Spec

(
Un(A)

)
whose

elements are the prime ideals of Un(A) that do not contain A0.

Theorem 19. The function ψn : Spec(A)→ D(A0) defined by

ψn(I) =
{

(a, α) ∈ Un(A) : (a, α)A0 ⊆ I × {0}
}
,

is a homeomorphism and its inverse is

ϕ : D(A0)→ Spec(A)

J 7→ J ∩A0.

Proof. Since A0 is an ideal of Un(A), it is easily seen that ψn is well defined
and ψ−1

n = ϕ. On the other hand, if (a, α) ∈ Un(A) then ψ−1
n

(
D(a, α)

)
=⋃

x∈A
D(ax+ αx). Thus, ψn is continuous. Furthermore if b ∈ A, it is clear that

ϕ−1
(
D(b)

)
= D(b) ∩D(A0). Thus ϕ is continuous. �X

Because of this result we can say that the prime spectrum of A is a subspace
of the prime spectrum of Un(A).

Remark 20. From the previous observations we can conclude that if A does
not have identity, then Spec

(
Un(A)

)
contains a compactification of Spec(A) by

at most m points. In particular, if n = pα then Spec
(
Un(A)

)
is a compactifica-

tion of Spec(A) by exactly one point. If B is a Boolean ring without unity then
Spec

(
U2(B)

)
is a compactification by one point of Spec(B). In [2] it is showed

that in this case, Spec
(
U2(B)

)
is precisely the Alexandroff compactification of

Spec(B).

Theorem 21. If A is a von Neumann ring of characteristic n 6= 0, then n is
square free.

Proof. Suppose that n = pα1
1 · · · pαmm and for some i ∈ {1, . . . ,m}, αi > 1. If we

call µ the maximum of the set {α1, . . . , αm}, clearly µ > 1. There exists a ∈ A
such that p1 · · · pma 6= 0, but (p1 · · · pma)µ = 0 because n divides (p1 · · · pm)µ.
Thus, p1 · · · pma is a non-zero nilpotent element of A, but this contradicts that
A is a von Neumann ring. �X

Proposition 22. If A is a von Neumann ring of characteristic n = p, where p
is a prime number, then Spec

(
Un(A)

)
and Spec

(
U2

(
E(A)

))
are homeomorphic.
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Proof. Let η : Spec
(
Un(A)

)
→ Spec

(
U2

(
E(A)

))
be the function defined by

η(A×pZn) = E(A)×{0} and η
(
ψn(P )

)
= ψ2

(
P ∩E(A)

)
, where P ∈ Spec(A).

Clearly η is bijective because if η is restricted to Spec
(
Un(A)

)
r{A×pZn},

it is the homeomorphism ψ2 ◦ f ◦ ϕ onto Spec
(
U2

(
E(A)

))
r {E(A) × {0}};

where f is as in Proposition 8 and the homeomorphisms ψ2 and ϕ are as in
Theorem 19.

Since Spec
(
Un(A)

)
is a compact space and Spec

(
U2

(
E(A)

))
is a Hausdorff

space, we only have to verify the continuity of η. For this purpose it is enough
to consider the basic open sets that contain E(A)× {0}.

Let (a, α) ∈ U2

(
E(A)

)
such that E(A)×{0} ∈ D(a, α), so (a, α) /∈ E(A)×

{0}. Then α = 1.

We see that η−1
(
D(a, 1)

)
is an open set in Spec

(
Un(A)

)
showing that all

its points are interior points.

(1) Since A × pZn ∈ η−1
(
D(a, 1)

)
and (a,−1) /∈ A × pZn, then A × pZn ∈

D(a,−1).

Let J ∈ Spec(A) such that ψn(J) ∈ D(a,−1), so (a,−1) /∈ ψn(J) and
there exists x ∈ A r J such that ax − x /∈ J . As A is a von Neumann
ring then there exists y ∈ A r J such that x = x2y. Take e = xy an
idempotent element that does not belong to J . As ae − e = axy − xy =
(ax − x)y /∈ J and e ⊕ ae = (e − ae)2 = e − ae then e ⊕ ae /∈ J ∩ E(A).
Thus (a, 1) /∈ ψ2

(
J ∩ E(A)

)
and ψ2

(
J ∩ E(A)

)
= η

(
ψn(J)

)
∈ D(a, 1).

Therefore ψn(J) ∈ η−1
(
D(a, 1)

)
.

(2) If ψn(I) ∈ η−1
(
D(a, 1)

)
then ψ2

(
I ∩ E(A)

)
∈ D(a, 1), that is (a, 1) /∈

ψ2

(
I ∩ E(A)

)
. Thus there exists e ∈ E(A) such that ae ⊕ e /∈ I ∩ E(A).

As ae⊕ e = (ae− e)2 = e− ae then e− ae /∈ I, so (e− ae, 0) /∈ ψn(I) and
ψn(I) ∈ D(e−ae, 0). Now we have to see that D(e−ae, 0) ⊆ η−1

(
D(a, 1)

)
.

Let J ∈ Spec(A) such that ψn(J) ∈ D(e−ae, 0); then (e−ae, 0) /∈ ψn(J),
thus e − ae /∈ J . So ae ⊕ e /∈ J ∩ E(A) and (a, 1) /∈ ψ2

(
J ∩ E(A)

)
=

η
(
ψn(J)

)
. Thus η

(
ψn(J)

)
∈ D(a, 1) and ψn(J) ∈ η−1

(
D(a, 1)

)
. �X

We recall that if R is a commutative, unitary ring then Spec(R) is home-
omorphic to Spec

(
R/N(R)

)
, where N(R) is the nilradical of R. Furthermore

Spec(R) is a Hausdorff space if and only if R/N(R) is a von Neumann ring
(see for example [5]). With this observation we obtain the following corollary:

Corollary 23. If A is a von Neumann ring of characteristic n = p, where p
is a prime number, then Un(A) is a von Neumann ring.

Proof. By the previous proposition Spec
(
Un(A)

)
is a Hausdorff space then,

Un(A)/N
(
Un(A)

)
is a von Neumann ring. Take (a, β) ∈ N

(
Un(A)

)
. So βk = 0
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for some positive integer k, but this is only possible if β = 0. Thus (a, β) = (0, 0)
becauseN(A) = 0. ThenN

(
Un(A)

)
= 0 and Un(A) is a von Neumann ring. �X

Proposition 24. If A is a von Neumann ring without identity and of charac-
teristic n = p, where p is a prime number, then Spec

(
Un(A)

)
is the Alexandroff

compactification of Spec(A).

Proof. By Proposition 22 we have that Spec
(
Un(A)

)
is a Hausdorff space.

On the other hand, Spec
(
Un(A)

)
is an one-point compactification of Spec(A).

Then Spec
(
Un(A)

)
is the Alexandroff compactification of Spec(A). �X

The A-spectral spaces were defined in [6]. They are topological spaces such
that its Alexandroff compactification is an spectral space. The spectral spaces
are precisely the prime spectra of commutative unitary rings (see [12]). There-
fore by the earlier proposition we obtain the following fact.

Corollary 25. If A is a von Neumann ring without identity and of prime
characteristic, then Spec(A) is an A-spectral space.

Proposition 26. If A is a von Neumann ring and J is an ideal of A, then J
is a von Neumann ring.

Proof. Let x be an element of J . There exists y ∈ A such that x = x2y. Take
e = xy an idempotent element of J . As x = xe = xe2 = xxyxy = x2(xy2) then
x = x2z, where z = xy2 ∈ J . �X

Every commutative ring of non-zero characteristic with at least two prime
divisors can be decomposed as a product of rings with special characteristics.

Lemma 27. If A is a commutative ring of characteristic n = pα1
1 · · · pαmm , where

the p′is are distinct primes, then there exist commutative rings B1, . . . , Bm such
that A ∼=

∏m
i=1Bi and char(Bi) = pαii , for each i = 1, . . . ,m. In addition this

decomposition is unique up to isomorphism.

Proof. We proceed by induction defining Bi = {x ∈ A : pαii x = 0}, for
each i. �X

We will call this type of decomposition for a commutative ring of non-zero
characteristic the characteristic decomposition of the ring.

Corollary 28. If A is a commutative ring of characteristic n = pα1
1 · · · pαmm ,

where the p′is are distinct primes and
∏m
i=1Ai is the characteristic decomposi-

tion of A, then Ai is an ideal of A, for each i = 1, . . . ,m.

Proposition 29. If A is a commutative ring of characteristic n = pα1
1 · · · pαmm ,

where the p′is are distinct primes, and
∏m
i=1Ai is the characteristic decompo-

sition of A, then
∏m
i=1 Upαii

(Ai) is the characteristic decomposition of Un(A).
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Proof. If we call R =
∏m
i=1 Upαii

(Ai) then ρ : Un(A) → R defined by

ρ
(
(ai)

m
i=1, α

)
=
((
ai, [α]pαii

))m
i=1

is an onto homomorphism of unitary rings.
We see that ρ is also injective.

Take
(
(ai)

m
i=1, α

)
∈ ker ρ, that is,

((
ai, [α]pαii

))m
i=1

=
(
(0, 0)

)m
i=1

. So ai = 0

for each i and [α]pαii
= 0 for each i. Thus α is a multiple of pαii , for each i.

Then α is a multiple of n, so α = 0. �X

Proposition 30. If A is a von Neumann ring of characteristic n 6= 0, then
Un(A) is a von Neumann ring.

Proof. By Theorem 21, suppose that n = p1 · · · pm, a product of different
primes, and let

∏m
i=1Ai be the characteristic decomposition of A. Because Ai

is an ideal of A then, by Proposition 26, Ai is a von Neumann ring for each
i = 1, . . . ,m. As Un(A) ∼=

∏m
i=1 Upi(Ai) where each Upi(Ai) is a von Neumann

ring, then Un(A) is a von Neumann ring. �X

As a consequence of the topological result presented in Theorem 6, we obtain
the following fact related to the compactification of certain von Neumann rings
without identity and of non-zero characteristic.

Theorem 31. If A is a von Neumann ring of characteristic n = p1 · · · pm and
every factor in the characteristic decomposition of A does not have identity,
then Spec

(
Un(A)

)
is a star compactification of Spec(A) by m points.

Proof. Let
∏m
i=1Ai be the characteristic decomposition of A, where each Ai

has no identity. As each Ai is an ideal of A, then each Ai is a von Neumann
ring without identity. Because Un(A) ∼=

∏m
i=1 Upi(Ai) then Spec

(
Un(A)

)
≈∐m

i=1 Spec
(
Upi(Ai)

)
, where each Spec

(
Upi(Ai)

)
is the Alexandroff compactifi-

cation of Spec(Ai). Then by Theorem 6, Spec
(
Un(A)

)
is a star compactification

of Spec(A) by m points. �X

5. Some Examples

Let p be a prime number and let A be a p−ring. By Corollary 23 we know
that Up(A) is a von Neumann ring. The following proposition guarantees that
in particular it is a p−ring.

Proposition 32. The ring Up(A) is a p−ring.

Proof. It is clear that Up(A) is of characteristic p. Let (a, α) ∈ Up(A).

(a, α)p =

(
ap +

p−1∑
k=1

(
p
k

)
αkap−k, αp

)
= (a, α) because

(
p
k

)
is a multiple of p,

for each k = 1, . . . , p− 1. �X

Volumen 46, Número 1, Año 2012



ON SPECTRAL COMPACTNESS OF VON NEUMANN REGULAR RINGS 93

As a consequence of Proposition 24 we know that if A is a p−ring with-
out identity, then the prime spectrum of Up(A) is precisely the Alexandroff
compactification of Spec(A). Therefore Spec(A) is an A-spectral space.

Example 33. The Alexandroff compactification of the prime spectrum of

the non-spectrally compact p−ring Z(N)
p is the prime spectrum of Up

(
Z(N)
p

)
.

Through the universal property of Up (see Proposition 1), we can see that

Up

(
Z(N)
p

)
is the subring of almost constant sequences of ZN

p . Indeed let h be

the inclusion homomorphism from Z(N)
p to ZN

p , i : Z(N)
p → Up

(
Z(N)
p

)
defined by

i(ai) =
(
(ai), 0

)
, so h̃ : Up

(
Z(N)
p

)
→ ZN

p is defined by h̃
(
(ai), α

)
= (ai)+α(1) =

(ai + α.1) = (bi). As ai = 0 for almost all i, then bi = α, for almost all i. The

image of h̃ is the subring of almost constant sequences of ZN
p .

Example 34. If we consider the ring A =
∏m
i=1Ai, where Ai = Z(N)

pi and the
pi are different prime numbers for i = 1, . . . ,m then the prime spectrum of
Un(A) is a star compactification of the spectrum of A by exactly m points.

Question 35. Is it possible to characterize algebraically all the commutative
rings that are spectrally compact if and only if they have identity?
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