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ABstracT. Let SL(2, ¢) be the group of 2 x 2 matrices with determinant one
over a finite field F of size q. We prove that if ¢ is even, then the product of
any two noncentral conjugacy classes of SL(2, ¢) is the union of at least ¢ — 1
distinct conjugacy classes of SL(2, ¢). On the other hand, if ¢ > 3 is odd, then
the product of any two noncentral conjugacy classes of SL(2,¢q) is the union
of at least % distinct conjugacy classes of SL(2, q).
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RESUMEN. Sea SL(2,q) el grupo de las matrices 2 x 2 con determinante uno
sobre un campo finito F de tamano ¢. Se prueba que si ¢ es par, entonces el
producto de cualesquiera dos clases conjugadas no centrales de SL(2,q) es la
unién de al menos ¢ — 1 distintas clases conjugadas de SL(2, ¢). Por otro lado,
si ¢ > 3 es impar, entonces el producto de cualesquiera dos clases conjugadas
no centrales de SL(2, ¢) es la unién de al menos q—f’ distintas clases conjugadas
de SL(2, q).

Palabras y frases clave. Clases conjugadas, matrices sobre un campo finito,
producto de clases conjugadas, grupo especial lineal.

1. Introduction

Let G be a finite group, A € G and A9 = {AB :B e g} be the conjugacy class
of Ain G. Let X be a G-invariant subset of G, i.e. X4 = {BA :Be X} = X for
all A € G. Then & can be expressed as a union of n distinct conjugacy classes
of G, for some integer n > 0. Set n(X) = n.
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98 EDITH ADAN-BANTE & JOHN M. HARRIS

Given any conjugacy classes A9, BY in G, we can check that the product
A9BY = {XY : X € Ag,Y S Bg} is a G-invariant subset and thus A9 BY is
the union of n(Ang) distinct conjugacy classes of G.

It is proved in [2] that for any integer n > 5, given any nontrivial conjugacy
classes a” and B9 of the symmetric group S, of n letters, that is a, 3 €
S, ~{e}, if n is a multiple of two or of three, the product a®» 3% is the union
of at least two distinct conjugacy classes, i.e. n(aSn BS") > 2, otherwise the
product a3 is the union of at least three distinct conjugacy classes, i.e.
n(a® B5) > 3. A similar result is proved for the alternating group A, in [1].

Fix a prime p and an integer m > 0. Let F = F(q) be a field with ¢ = p™
elements and S = SL(2, q) = SL(2, F) be the special linear group, i.e. the group
of 2 x 2 invertible matrices over F with determinant 1. Given any non-central
conjugacy classes A°, BS in S, is there any relationship between n(ASB‘S) and
q?

Arad and Herzog conjectured in [3] that the product of two nontrivial con-
jugacy classes is never a conjugacy class in a finite nonabelian simple group.
Thus, when ¢ > 4 is even we have that & = SL(2, ¢) = PSL(2, ¢) is simple and
so we must have that n(ASBS) > 1 unless A = I or B = I. In what follows,
we expand and refine this statement.

Theorem 1. Fix a positive integer m. Let A and B be matrices in S =
SL(2,2™). Then exactly one of the following holds:

(i) ASB® = (AB)® and at least one of A, B is a scalar matriz.

(ii) ASBS is the union of at least 2™ — 1 distinct conjugacy classes, i.e.
n(ASBS) > 2m — 1.

Theorem 2. Fix an odd prime p and an integer m > 0 such that ¢ = p™ > 3.
Let A and B be matrices in S = SL(2,q). Then ezactly one of the following
holds:

(i) A°B® = (AB)® and at least one of A, B is a scalar matriz.

(ii) ASBS is the union of at least % distinct conjugacy classes, i.e.
n(ASBS) > 2.

Given any group G, denote by min(G) the smallest integer in the set
{n(a“b%) : a,b € G \ Z(G)}. In Proposition 12, given any integer m > 0, we
present matrices 4, B in SL(2,2™) such that n(ASH(22™) BSL227)) = 9m _ 1
and thus Theorem 1 is optimal. Also, given any ¢ = p"™ > 3, where p is an odd
prime and m is a positive integer, in Proposition 18 we prove that Theorem 1
is optimal by presenting matrices where min (SL(Q, q)) is attained. Also, using
GAP [5], we can check that min (SL(2,3)) = 2 and thus Theorem 2 cannot
apply when ¢ = 3.
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When ¢ is even, SL(2,q) = PSL(2, q) is a simple group of Lie type of char-
acteristic two. Hence, if we require that both A and B are not involutions in
Theorem 1, the conclusion of Theorem 1 follows from Theorem 2 of [4]. We
thank Rod Gow for pointing this out to us.

2. Proofs

Notation. We will denote with uppercase letters the matrices and with low-
ercase letters the elements in F.

Remark 3. We can describe matrix representatives of conjugacy classes in
S = SL(2,F) by four families or types ([6]):

0
(i) L where r € F and r? = 1.
r

(ii) 0 2,Where r,s € Fand rs = 1.

s u] .
, where s € F, s> = 1 and w is either 1 or a non-square element of

(iii)

s
F, i.e.ue}"\{xZ:zG}-} .
[0
-1
is a quadratic extension of F.

, where w = r + 19 and 1 = 79 for some r € £ \. F, where £

(iv)

That is, any conjugacy class AS of S must contain one of the above matrices.

Remark 4. By Lemma 3 of [2], we have that ASBS = BSAS. Thus if we
want to prove that given any non-central conjugacy classes AS and B® of S,
n(AS BS) > n for some integer n, it suffices to prove that the statement holds
for each of the six combinations of conjugacy classes containing matrices of

type (ii), (iii) and (iv).
Remark 5. Two matrices in the same conjugacy class have the same trace.

Thus, if the matrices do not have the same trace, then they belong to distinct
conjugacy classes.

a b

Lemma 6. Let C = [c } €S and A= B f] € S. Then

d h

a(de — bg) + c(df — bh) b(de — bg) + d(df — bh)

AC _ 71A _
cmAC [a(ce +ag) + c(—cf +ah) b(—ce+ag) +d(—cf +ah)|’

and therefore
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r OC_ adr —bes  bd(r —s)
0 s| |—ac(r—s) ads—ber]’

(ii)

s uC_ s+ ued ud?
0 s| | —uc? s—wedl|’

0 119 [ab+e(d—bw) b +d®—bdw
|—a? - tacw —ab+d(—c+aw)|’

(iii)

-1 w

Proof. Observe that C~1 = [_dc _ab} Hence
1~ [a —=blfe fl]a b
e AC= |—¢ a]l|lg h||lc d

[ de — bg df —bh | |a b
|—ce+ag —cf + ah} L d}

a(de — bg) + c(df — bh) b(de — bg) + d(df — bh)
la(—ce + ag) + c(—cf +ah) b(—ce+ ag) +d(—cf +ah)|"

Lemma 7. Let C = [a
c d

b} € S. Then

- O
(i) Trace ( g 2 g 2} ) =ad(r — s)(u —v) + (us +or).
_ c -
(ii) Trace ( 0 0 (t) 1;] ) =t(r+s) — ac(r — s)u.
019 [0 1
(11i) Trace 0 s oWl ] (ac+bd)(s — r) + w(ads — ber).
, rou] Tt w 9
(iv) Trace 0 r 0 ¢ = 2rt — uwc
_ _C -
r 0 1
T = —ud?® — uc? — ucd).
(v) race( o0 e |1 s]) ud?® — uc® 4 s(r — ucd)
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c
0 1 0 1
) T
(vi) Trace ( [_1 w} [_1 v} >
=—a’—b* - — d* + bdw + acw + v( — ab+ d(—c + aw)).
Proof. The result follows by Lemma 6 and 6(i)

(i) Trace<[6 ﬂc B SD :Tra“eqj;i(;fcj) sjﬁr__bﬂ B SD

(adr — bes) + v(ads — ber)

u
ad(ur + vs) — be(us + vr)
a
a

d(ur + vs) + (1 — ad)(us + vr)
d(ur +vs —us — vr) + (us + or)
d(u(r —s) —v(r —s)) + (us + vr)
d(u —v)(r —s) + (us + vr).

(ii) Trace < K ﬂ : {(t) 1:] ) = Trace ( {_GZZ(;EC; szg—_bi” {(t) 1;] >

= t(adr — bes) — ac(r — s)u + t(ads — ber)
= ad(rt + st) — be(st + rt) — ac(r — s)u
= (ad — be)t(r + s) — ac(r — s)

=1t(r —s) — ac(r — s)u.

@ (5[4 2])

= Trace ( {_aj;(rfcz) s(ciit(sr—bzﬂ {—01 ﬂ )

= —bd(r — s) — ac(r — s) +w(ads — ber)
= (ac+bd)(s — ) + w(ads — ber).

(I
2 2

(o]

(iv)  Trace < [g Z] [8 ﬂ > = Trace ( [T:;égd 7 2djcd] [8 ﬂ )

= t(r + ued) +w( — uc®) + t(r — ucd)

= 2rt — uwc?.

o (T[4 )-me ([ LT )

= —ud?® — uc® + s(r — ucd).
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C

o ([ 2)

ab + ¢(d — bw) b + d? — bdw 0 1
= Trace 9 o
—a* —c*+acw —ab+d(—c+aw)| |[-1 v

=—b>—d* +bdw — a® — ¢ + acw + v( — ab+ d(—c + aw)) v

Remark 8. For any a,b € F such that a # 0, we have that {az+b: 2 € F} =
F.

r
0
in S, i.e. of type (ii), (¥i) or (iv) in Remark 3. Given any f € F, there
exists a matriz D in the product AS BS such that Trace(D) = f. In particular,
n(ASBS) > q for any non-central matriz B.

0
Lemma 9. Let A = [ ] where 1 # s, and B be any non-central matriz
s

1 1—1
1 1
i € F. Fix u,v in F such that uv = 1. By Lemma 7(i), we have that

r 0
T
race ( [0 s]

By Lemma 7(ii) we have that

r 0
T
race ( {O s]

Now let E(i) = [1 ’

Proof. Given i € F, set C(i) = { } Observe that C(i) € S for all

1610

[tot SD = (r— s)(u—v)i+ (us+or). 1)

C(3)

B ﬂ ) — —(r — s)ui + t(r + 5). )

0 1
i € F. Then by Lemma 7(iii), we have that

Trace([g ﬂ {0 1D:(s—r)i+ws. (3)

-1 w
Since (r — s)(u —v) # 0, (r — s)u # 0, and s — r # 0, the result follows from
(1), (2),(3), Remark 3, Remark 5 and Remark 8. o

] for i € F. As before, observe that E(i) € S for any

B(i)

Lemma 10. Let F be a field with 2™ elements for some integer m and a € F
with a # 0. Given any H C F, the set {ai® + c :i € H} has |H| elements. In
particular, if H = F, then the set {ai®> + c:i € H} has q elements.
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Proof. Observe that
[{ai® + c:ie H}| = [{ai® :i e H}| = [{i® i € H}|.

Since F is a field of characteristic two, the map = — 2 is an automorphism of
F and thus |[{i®:i e H}| = |H]. ]

Lemma 11. Let F be a field with g = 2™ elements for some integer m.

S

1 1 1 1
(i) For any f in F, there exists a matriz D in the product {O J [O J

S

such that Trace(D) = f.

(i) For any f in {i2+w 11 € _7-"\{0}}, there exists a matriz D in the product

- s
1 1 0 1
0 1] { 1 w} such that Trace(D) = f.

(iii) Given any f € F, there exists a matrix D in the product
S S

0 1} [ 01 11}] , where vw # 0, such that Trace(D) = f.

-1 w

Thus given any conjugacy classes AS, BS in S, where A, B is either of
type (iii) or (iv) in Remark 3, the product ASBS is the union of at least
q — 1 distinct conjugacy classes.

Proof.

(i) Given any i € F, set C(i) = E (1)] Observe that C(i) is in S. By

e (] ]) -

By Lemma 10 we have that {i? : i € F} = F and thus (i) follows.

Lemma 7(iv)
C(@)

Z’—l

0

5 g)-se
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(ii) Given any i € F \ {0}, set E(i) = [

(o

ﬂ . By Lemma 7(v), we have

B(i)
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1+ 1 )

i 1+1
teristic two, we have det (F(i)) = (1 + 1) —i* = i* + 1 — > = 1 and thus
F(i) € §. By Lemma 7(vi) we have

e ([ 0] [5 2] ) o

If vw # 0, then the set {vw(i® + 1) :i € F} = F by Lemma 10.

Since F is of characteristic two, the only matrix representative of type

(iii) For i € F, set F(i) = [ ] Observe that since F is of charac-

F(i)

11
(iii) is [0 1]. Also, since F is of characteristic two, we can check that

11 1
the matrices {0 1] and [ 01 0] are in the same conjugacy class. If we

take w in (ii) and v in (iii) as in Remark 5(iv), with cases (i), (ii), and
(iii), we cover all possible combinations of representatives of type (iii) and
(iv), and by Remark 3, the proof of the result is complete.

Proof of Theorem 1. If at least one of A or B is in the center, i.e. A or B
are of type (i) in Remark 3, then ASBS = (AB)S. Theorem 1 then follows
from Remark 4, Lemma 9 and Lemma 11. ]
Proposition 12. Fiz g = 2™ for some integer m > 0 and let F be a field with
1 1

]andB:{O }inS,wherexz—wx—&—lisan
1 1 w

irreducible polynomial over F. Then n(ASBS) =q-—1.

1
q elements. Let A = {0

Hence, Theorem 1 is optimal.

Proof. Set C = {Z Z} in S. By Lemma 7(iv), we have that Trace (A“B) =

—d? — ¢ + w(l — cd). Suppose that —d? — ¢ + w(1 — c¢d) = w, that is,
d? + ¢ + wed = 0. Since C is invertible, at least one of ¢ and d are nonzero,
and so both must be nonzero. Thus,

2 4 d? d
zz—wz+1:x2+c+ x+1:(x+g)<$+*)7
cd d c

a contradiction. Hence, the matrices in A% BS do not have trace w. Also, since
the eigenvalues of B are not in F and the eigenvalues of A is 1, then AS #

(B’l)s and so the identity I is not in ASBS.

Since F has even characteristic and I is not in A°BS, we conclude that
there is a one-to-one correspondence of the conjugacy classes in ASB® with
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the traces of the matrices: if the trace is 0, then the matrix is similar to a
matrix of type (iii), and otherwise, the matrix is similar to a matrix of type
(ii) or type (iv), depending on whether or not its characteristic equation is
reducible. Thus n(ASBS) =q-—1. ™

Lemma 13. Let u,v in F. Then the matrices {8 U} and [3 u] are similar
s s
if and only if v = ud?® for some d in F ~ {0}. In particular, if u is a non-

1
square, then the matrices [3 } and [s
s

0 u] are not similar, i.e. they belong
s

to distinct conjugacy classes.

C

} € S. By Lemma 6(ii), we have that LS) ﬂ =

Proof. Let C = {a b
c d

2 2
o ugd ud . Thus, if ot ugd ud _ |t , then either ¢ = 0
—uc s —ucd —uc s —ucd 0 ¢
and v = ud?, so the result follows, or © = v = 0, and in this case the result is
trivially true. o

Lemma 14. Let F be a finite field with q elements and a,b,c € F with a # 0.
If q is an odd number, then the set {ai2 +bi+c:1 € f} has ezactly %
elements.

Proof. Since the field F is of odd characteristic, we have that 2 # 0 and thus

2
[{ai® +bi+c:ie F}| = {i2+2i+ca:]-'}‘

e 2
_ {<i+2ba>2:ie]-"H—|{i2:ief}|.

Since ¢ is odd, then 2 divides ¢ — 1 and so the square of the set of units forms a
subgroup of order 45*. Since 02 = 0, we have that the set {ai2+bi+c: i€ F}
has exactly Q;zl +1= %1 elements.

Lemma 15. Let F be a finite field of size q, where q is odd.
(i) Fiz a,b € F ~ {0}, and suppose that ¢ > 3. Then the set
{az® +by® s 2,y € F ~{0}}
has a square and a non-square element.
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(ii) Fizr, s and v in F with s> —4 # 0. Then the set

{ —uz® —uy® + s(r —uzy) 12,y € F, (z,y) # (0,0)}

has at least ¢ — 1 elements.

(iii) Let w € F be such that w? — 4 is not a square. Then

{a® = +acw:a,c€ Fa# 0} =F ~{0}.

Proof.

(i) Observe that if ¢ € F is a non-square element, i.e. ¢ ¢ {i2 t1 € ]-"},

then F = {i* :i € F} U {ci® : i € F}. Thus, if x is a square and y is a
non-square element, then ax is a square and ay is a non-square element
when a is a square, and otherwise, ax is a non-square element and ay is
a square. Thus the set {ax2 +by? i xy € F N {O}} has a square and
a non-square element if and only if {x2 + ng rx,y € F N {0}} has a
square and a non-square element. Hence, without loss of generality, we
may assume that a = 1.

Note that there are %1 square elements in F and %1 non-square el-

ements in F. Also, since |F| > 3, if F has characteristic p # 3 then
32442 = 52, otherwise there exists an element w € F such that w?+1 = 0.
Thus the set {x2 +y?ixyc ]—'} always contains a square element. If b is
a square element, the set {22+by? : z,y € F~{0}} = {z?+y* 12,y € F}
has a square and a non-square element; otherwise the set of square ele-
ments would be a subfield of size L of the field of size ¢, but %1 does

2
not divide gq.

Suppose that b is a non-square element. If —1 is a non-square element,
then {x2 +by?:x,ye F~ {0}} = {x2 —y? i,y € F~ {0}}, and hence
we may assume that b = —1. Let € be a generator of F. Observe that € is
not a square and if # = L =1+ y, then 2> —y? = (z —y)(z +y) =€
and z,y € F ~ {0} since |F| > 3. Also for any x = y # 0, we have that
2% —y? = 0 and thus the set {2 —y? : 2,y € F . {0}} contains a square,
namely zero, and a non-square element, namely . We may assume then
that —1 is a square element.

Given z € F ~ {0}, set y = zz. Then z? + by? = 2%(1 + b2?2). Observe
that 1+ bz? = 0 does not have a solution since —1 is square and so —1/2>
is a square. Since the set Z = {1 +b22 2z € FN O} has qg—l elements
and 0,1 € Z, either Z has a square and a non-square element, or it has
only non-square elements. In the first case, since {x2(1 +b2%) a2 €
F~A{0}} C {2 +by? : 2,y € F}, the result follows. We may assume
now that Z is the set of non-square elements. Given w € F ~ {0}, set

x = wy. Then 2% + by? = y*(w? +b). Hence W = {w? +b: w € F \ 0}
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has q—;l elements and b, —b ¢ W. Since both b and —b are non-squares, it
follows that either W contains both square and non-square elements, or
W contains only square elements. In the first case, the result follows as
before. In the second case, since {#%(1 + bz?) : #,2 € F \ {0}} is the set
of all non-square elements and {y*(w? 4+b) : y,w € F \ {0} } is the set of
all nonzero square elements, (i) follows.

(ii) Observe that —ux? — uy? + s(r — uxry) = f if and only if

f—sr

2?4+ y® — szy + =0 (4)
for some (z,y). Observe that (4) has a solution if there is some y € F
such that the discriminant A(y) = (sy)? — 4(y> + £=7) = (s — 4)y® +

L;ST) is a square. Since s? — 4 # 0, by Lemma 14 we have that the set

{(s* —4)y*+ 4(fu;sr) :y € F} has at least 251 elements. Since there are

%1 squares, for some y we must have that A(y) is a square. It follows then

that z = VoW VQA(y) is a solution for (4). Observe that (z,y) = (0,0) is a
solution for the Equation 4 if and only if f — sr = 0. We conclude that for
at least ¢ — 1 elements of F, (4) has a solution (z,y) with (z,y) # (0,0).

(iii) Observe that the equation z2 + y? — zyw = 0 has the unique solution
(z,y) = (0,0) since w? —4 is not a square and so the discriminant 6(y) =
y?w? — 4y? = y?*(w? — 4) is a square if and only if y = 0. As before, we
can check that for any f € F \ {0}, the equation 2% + y? — zyw = f has
a solution with x # 0. o

Lemma 16. Let ¢ > 3 be odd, and let F be a finite field with q elements.

(i) Given any f in {2rt—uwi2 RS .7-'}, there exists a matriz B in the product
s

S
{g 1;] B 1:} such that Trace(B) = f. Also for some a,b € F, where

. . . t t b
a is a square and b is a non-square, the matrices K} GJ and [T ] are
r

0 rt
s t
in the product [r :f] { w}

r uSt ws
. T > k3,
0 0 ¢ hw"({o r] {0 t} >— 2

(ii) For any f in { —uc® —ud® + s(r — cd) : ¢,d € F ~ {0}}, there ewists
0
—1

Sro 118
Thereforen([g ﬂ {_1 J )Zq—l.

Revista Colombiana de Matemaéticas

S

S
a matriz D in the product {6 ﬂ [ 1] such that Trace(D) = f.



108 EDITH ADAN-BANTE & JOHN M. HARRIS

We conclude that given any conjugacy classes AS, BS in S, where at least
one of A or B is of type (iii), the product AS B is the union of at least
% distinct conjugacy classes.

Proof.

(i) By Lemma 6, given any z,y € F \ {0},

rt rwy2+tux2_rux2 twaETuStU}
0 rt o r ot 0 r| [0 t

By Lemma 15(i), the set {rwy2 +tuz? iz, y € F~ {O}} has a square and
a non-square element. It follows then by Lemma 13 that there are two
matrices that are not similar in the product with the same trace.

Given any i € F, let C(i) = F (1)
i

rou e t w 2
Trace [0 r] {O J = 2rt — uwi”.

By Lemma 14, the set {2rt —uwi? i € ]-'} has %1 elements. Thus

there are at least % distinct values for the traces of the matrices in the
product. Since there are at least two matrices that are not similar in the
product with the same trace and %1 +1= %, (i) follows.

S

} . By Lemma 7(iv), we have that

" a b
(ii) Let C = L d

rou 0 1 R B
Trace([o 7‘] [_1 S])- ud® — uc” + s(r — ucd).

By Lemma 15(ii), we have the set { — ud* — uc® + s(r — ucd) : ¢,d €
F,(c,d) # (0,0)} has ¢ — 1 elements and thus (ii) follows. ™

] € S. By Lemma 7(v), we have

Lemma 17. Let A = { 01 110} , B= [_01 ﬂ, where v,w € F are such that

v? — 4 and w? — 4 are both non-square elements, i.e. A and B are of type (iv).

Given any f in { —i® +i(v—w)+w—2:i € F}, there exists a matriz E
in the product AS B such that Trace(E) = f.
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-1 1
Let s be a non-square element of F. If v+ w # 0, the matrices [ 0 J

1

1

(md[o 1

-1 1
5 ] are in the product ASBS. Otherwise the matrices {O } and

1
[0 ﬂ are in the product ASBS.

We conclude that given any conjugacy classes AS, BS in S, where both A
and B are of type (iv), the product A° BS is the union of at least % distinct

conjugacy classes. n(ASBS) > %2;3_

1

Proof. Given any i € F, let C(i) = [0 )

} Then by Lemma 7(vi), we have

that _
Trace (AC(’)B) =i’ +i(v—w)+w—2.

a
Fix a and c in F, where a # 0. Set t; = —a?—c?>+acw and C' =
c o

(s}
||
S
S“mg
| I

We can check that ¢; # 0 since w? — 4 is a non-square and C' € F. Also
c
AC _ 0 1 _ w —%
-1 w tl 0 '

e L
Fix e and g in F, where e # 0. Set t, = —e2—g*+egv and D = [g eﬁﬁgv] .
to
By Lemma 15(iii), for any e, g € F with e # 0, we have t5 # 0 since v? — 4 is
a non-square.

Thus
0 &
1 _ wHw
Therefore, if t; = t5 we get that A BP = 0 tll . By Lemma 15(iii),
we have that {a® + ¢ —acw : a,c € F,a # 0} = F ~ {0}. Thus the set
{4t = —a® =& +acw,a,c € F,a # 0} has ¢ — 1 elements as long

asw+v #0. fw+v=0, thenwfv # 0 since w # 0. In that case, let
tl——tgandthustheset{ o it = —a? — 2 +acwac€]—'a7$0}has

— 1 elements. In particular, in both cases the sets contain 1 and a non-square
element and the result follows. o
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Proof of Theorem 2. If at least one of A and B is a scalar matrix, then
ASBS is a conjugacy class. We may assume then that A, B are similar to
matrices of type (ii), (iii) or (iv). Theorem 2 then follows from Lemma 9,
Lemma 16 and Lemma 17. o

Proposition 18. Assume that F is a field of q elements, with ¢ > 3 odd.

(i) Assume that ¢ = 1 mod 4. Let w be a non-square element in F. Let
A= Ll) ﬂ and B = [(1) qﬂ Then
n(ASBS) = 113 (5)
2
g 11
(i) Assume that ¢ #1 mod 4. Set E = o 1l Then
spsy_ 4+3
n(E°E”) = ——. (6)
Hence, Theorem 2 is optimal.
Proof.
. a; b; . .
(i) Let C; = e d| € S for i =1,2. By Lemma 6(ii),
ACiB 1+ ¢d; df 1 w|  [1+ed; w+wed; + df
| —a? 1-cqdi |0 1] | —¢2 1 —¢;d; —we;?
Hence, Trace (ACiB) = 2—wc;2, which takes on q;r—l values by Lemma 14.
Note that if two matrices A®*B and A“?B have the same trace, then
2 2
C1” = Co".

cada—cidy
P)
0 1

1
Suppose ¢;2 = cp? #0. Let D = [ €1

Then (AclB)D = A% B, and so, excluding trace 2, each possible value
of the trace is obtained by at most one conjugacy class.

1 w + di2
0 1

since —w is non-square. Let z be a generator of the multiplicative group
of units of F, and suppose w + d;> = 2. By Lemma 13, A1 B and
AC2B are conjugate if and only if there is an e € F ~ {0} such that
2"e? = 2™ i.e. when n; and ny have the same parity. Hence there are

at most two conjugacy classes represented by matrices with trace 2, and
thus, n(ASBS) < (£ —1) +2= 22,

Suppose ¢; = ¢ = 0. Then A% B = { ] . Note that w + d;2 #£0
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i) Define C; as in (i). Then we may proceed by replacing w with 1 in the

ON CONJUGACY CLASSES OF SL(2,Q) 111

argument for the previous case, since —1 is not a square in F. Thus,
3
n(ESES) < 42,

Hence, in each case, the result follows by Theorem 2. o

Acknowledgement. The first author thanks to Daniel M. Suarez for his en-
couragement.
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