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A Simple Observation Concerning
Contraction Mappings

Una simple observacién acerca de las contracciones
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ABsTRACT. In this short note we show that the results obtained by Walter in
[4] remain valid if we change the metric o by another metric. Furthermore, if
we use the norm ||z, given in [3], Theorem B in[4] remains valid.
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RESUMEN. En esta breve nota se muestra que los resultados obtenidos por

Walter en [4] siguen siendo vélidos si se cambia la métrica o por otra. Ademds,
si se utiliza la norma ||z, usada en [3], el Teorema B en [4] sigue siendo vélido.

Palabras y frases clave. Contraccién, principio de la contraccién, punto fijo.

1. Introduction

The main motivation of this note was the paper by W. Walter [4]. Thus, we
consider (X, 0) a metric space and T : X — X a nonlinear map. We say that
T is Lipschitz continuous if there exists a > 0 such that

o(Tz, Ty) < ao(w,y), Vz,y € X,

and if in addition 0 < a < 1, the map T is called a contraction.

The aim of this short note is to prove the following propositions and make
some remarks about them.

aPartially supported by FAPESP, Grant: 09/08435-0, Brazil.
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Proposition 1. Let (X, g) be a metric space and T : X — X a map such that,
for a fited n € N, T™ satisfies

Q(T"x,T"y) <ao(x,y) for zyeX. (1)

Then the function  defined by

1 1 - - 1/2
C(z,y) = QQ(JJ,Z/)+§QQ(T$,TIU)+'"+WQQ(T Yz, T 1y) (2)

is a metric on X, and T satisfies
((Tz,Ty) < af(z,y) for z,yeX. ®3)

Moreover, there exist positive constants a, b such that

ao(z,y) < ((z,y) < bo(z,y) (4)

if and only if T is Lipschitz continuous with respect to o.

Proof. Tt is not difficult to see that ¢ is a metric on X and o(z,y) < ((z,y)
for all x,y € X. Now, using the definition of { we get

C(Tx,Ty) = {92(T%Ty) + %f (T(Tx),T(Ty)) + - -

1 1/2
+ D o’ (T Y (Tx), T"—l(Ty))}
1 1 _ e
= [g2(Tx,Ty)+ ?QQ(T2.’E,T2@/)++mQ2(T” 1!E,T 1y)

1 1/2
2
T @ (Tnx’Tny)}
1 1 _ n—
< [92(Tx,Ty)+ ?QQ(T%C,T%/)—&-—Fsz(T" 1!E,T 1y)

a2n 9 1/2
+ PEICEY (z, y)]

1 1 . . 1/2
< [aQ(QQ(x,yHOPQQ(Tx,Ty)Jr"'Jrag(n_l)QQ(T 'z, T 1y))]

= ac(z7 y)7 Vm7y 6 X7

where in the last inequality we have used (1). Hence (3) is proved.

Also, if ((z,y) < bo(z,y), it is not difficult to show that T is Lipschitz
continuous with respect to o. In fact,

o(Tz, Ty) < ((Tz,Ty) < al(x,y) < abo(x,y), forall zyeX.
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Conversely, if T is Lipschitz continuous, then the powers of T are also
Lipschitz continuous.

If we assume that

o(TFz, T*y) < apo(z,y), z,yeX, k=1,2,...,n—1, (5)

then
o(z,y) < ((z,y) <bo(z,y), for z,yeX (6)
where b =14+ aia™' + -+ + a,_1a'™™. To get the last inequality we use the
right side of (2) and (5). vf

Proposition 2. Let (
™. Then the formula

+|) be a Banach space and A € L(X) such that |A™| =

1 1 1/2
o 2 2 n—1,_2
foll = (1of? + e+ -+ gl ol

defines a norm on X equivalent to the original norm, and for the norm of A,
|Allc, we have the inequality ||All¢ < a.

< el < bl
2 1 2,12 1 2 1z
Izl = (14aP + Z514%P + -+ + gl
2, 2. .12 1 L2 4 a®n 2 12
< (Mo 4 5% ot s LA 4 ol
1 1/2
( {|m| + = |Azac|2 -4 WM"‘%F])
- allalc
This proves that | 4| < a. ™

2. Some Remarks

Remark 3. Proposition 1 is the same as Proposition A in [4], where we change
the metric o by the metric (. Also, we can see that

((z,y) <o(x,y) forall z,yeX. (7)

The same applications given in [4] such as Contraction principle, Continu-
ous dependence and Approximate iteration can also be obtained changing the
metric o by ¢. As an example, it is well known that if (X, o) is a complete met-
ric space and T : X — X is a contraction then there exists an unique x € X
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such that T'x = x. This is called the contraction principle or the Banach fixed
point theorem. For details on contraction principle see [1, p.120]. One way to
find the fixed point x is: given g € X arbitrary, the sequence {x,,} C X given

by
{$0€X7 (8)

Tn=T"z9, n=0,1,2,...

converges to . The recursion formula given in (8) is known as the sucessive
approximations method to find the fixed point z. Moreover, we have a priori
error estimate

an

Q(l‘nax) g 1_a9(x0?$1)a n:0a1a25"'a (9)
and a posteriori error estimate
«o

Q(xn-&-lax) < 1_ag(x7zaxn+1)a n:OalaQa"'a (10)

and, we have the rate of convergence
0(xpnt1,2) < ap(xp,x), n=0,1,2,.... (11)

Now, if T is a map such that, for some n € N, T" is a contraction with
constant o™ < 1 and T satisfies the hypothesis of Proposition 1 then from (3),
we have that T is a contraction with respect to ( with constant «. Thus, the
inequalities (9), (10) and (11) remain valid if we change the metric g by the
metric (.

For numerical implementation it is important to know the number of itera-
tions, N, to get a good approximation of the fixed point. Setting d = o(z, Tx)
and using the a priori error estimate (9), we have a lower bound for N given
by
In(e) + In(1 — @) — Ind

In K ’
thus we have o(x,,x) <€, € > 0. For more details see [2].

N >

Remark 4. Proposition 2 is the same as Proposition B in [4] where we change
the norm by the norm ||+||¢. Also, we can easily see that

lz]lc < |lzf] forall =z e X.

Remark 5. The norm ||+|¢ is the same norm |+|7 . given in [3, p. 132]. If we
use the norm ||+|| given in [4] which is equivalent to the norm ||+||¢, the main
result (Theorem 1) in [3] is still valid.
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