Gelfand-Kirillov Dimension of Skew $P B W$ Extensions

Dimensión de Gelfand-Kirillov de las extensiones $P B W$ torcidas

Armando Reyes ${ }^{\text {a }}$
Universidad Nacional de Colombia, Bogotá, Colombia

Dedicated to my dear professor Alexander Zavadskij

Abstract

Gelfand-Kirillov dimension of Poincaré-Birkhoff-Witt ($P B W$ for short) extensions was established by Matczuk ([15], Theorem A). Since $P B W$ extensions are a particular example of skew $P B W$ extensions (also called $\sigma-P B W$ extensions), the aim of this paper is to compute this dimension for these extensions and hence generalize Matczuk's results for several algebras which can not be classified as $P B W$ extensions.

Key words and phrases. Non-commutative algebras, Filtered and graded rings, $P B W$ extensions, Skew quantum polynomials, Gelfand Kirillov dimension.

2010 Mathematics Subject Classification. 16S80, 16W35, 16S36, 16U20, 16W50, 16E65.

Resumen. La dimensión de Gelfand-Kirillov de las extensiones de Poincaré-Birkhoff-Witt (abreviadas $P B W$) fue establecida por Matczuk ([15] Theorem A). Dado que las extensiones $P B W$ son un ejemplo particular de las extensiones $P B W$ torcidas (también llamadas extensiones $\sigma-P B W$), el objetivo de este artículo es calcular esta dimensión para dichas extensiones y así generalizar los resultados de Matczuk para varias álgebras que no pueden ser clasificadas como extensiones $P B W$.

Palabras y frases clave. Álgebras no conmutativas, anillos filtrado graduados, extensiones $P B W$, polinomios cuánticos torcidos, dimensión de Gelfand-Kirillov.

[^0]
1. Introduction

Originated in 2011 in the work of Gallego and Lezama [5], skew $P B W$ extensions are a generalization of $P B W$ extensions introduced by Bell and Goodearl [2] in 1988. These extensions defined in algebraic terms by generators and a list of commutation relations allow to study a considerable number of noncommutative rings of polynomial type. Skew $P B W$ extensions include $P B W$ extensions and many other algebras of interest for modern mathematical physicists which are not $P B W$ extensions. Some of these algebras are group rings of polycyclic-by-finite groups, Ore algebras, operator algebras, diffusion algebras, quantum algebras, quadratic algebras in 3 variables, Clifford algebras among many others. For some remarkable examples of skew $P B W$ extensions probably its Gelfand-Kirillov dimension have not been computed before. Indeed, for some particular non-commutative rings considered in this work several properties are probably known.

In this Section we recall the definition of skew $P B W$ extensions presented in [5] and we establish some key properties of this kind of non-commutative rings. The content and proofs of this introductory Section can be found in [5] and [13].

Definition 1. Let R and A be rings. We say that A is a skew $P B W$ extension of R (also called a $\sigma-P B W$ extension of R) if the following conditions hold:
(i) $R \subseteq A$.
(ii) There exist finite elements $x_{1}, \ldots, x_{n} \in A$ such A is a left R-free module with basis

$$
\operatorname{Mon}(A):=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}: \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}
$$

In this case we say that A is a left polynomial ring over R with respect to $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{Mon}(A)$ is the set of standard monomials of A. In addition, $x_{1}^{0} \cdots x_{n}^{0}:=1 \in \operatorname{Mon}(A)$.
(iii) For every $1 \leq i \leq n$ and $r \in R \backslash\{0\}$ there exists $c_{i, r} \in R \backslash\{0\}$ such that

$$
\begin{equation*}
x_{i} r-c_{i, r} x_{i} \in R . \tag{1}
\end{equation*}
$$

(iv) For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R \backslash\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}-c_{i, j} x_{i} x_{j} \in R+R x_{1}+\cdots+R x_{n} \tag{2}
\end{equation*}
$$

Under these conditions we will write $A:=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$.
The following Proposition justifies the notation and the alternative name given for the skew $P B W$ extensions.

Proposition 2. ([5, Proposition 3]) Let A be a skew PBW extension of R. Then, for every $1 \leq i \leq n$, there exist an injective ring endomorphism $\sigma_{i}: R \rightarrow R$ and a σ_{i}-derivation $\delta_{i}: R \rightarrow R$ such that $x_{i} r=\sigma_{i}(r) x_{i}+\delta_{i}(r)$ for each $r \in R$.

Proof. We follow the proof presented in [5]. For each $1 \leq i \leq n$ and all $r \in R$, we have elements $c_{i, r}, r_{i} \in R$ with $x_{i} r=c_{i, r} x_{i}+r_{i}$. Since $\operatorname{Mon}(A)$ is a left R-basis of A, it follows that $c_{i, r}$ and r_{i} are unique for r. Hence we define $\sigma_{i}, \delta_{i}: R \rightarrow R$ by $\sigma_{i}(r):=c_{i, r}, \delta_{i}(r):=r_{i}$. We can check that σ_{i} is an endomorphism and δ_{i} is a σ_{i}-derivation of R, i.e., $\delta_{i}\left(r+r^{\prime}\right)=\delta_{i}(r)+\delta_{i}\left(r^{\prime}\right)$ and $\delta_{i}\left(r r^{\prime}\right)=\sigma_{i}(r) \delta_{i}\left(r^{\prime}\right)+\delta_{i}(r) r^{\prime}$, for any elements $r, r^{\prime} \in R$. By Definition 1 (iii), $c_{i, r} \neq 0$ for $r \neq 0$, which shows that σ_{i} is injective for all i.

A particular case of skew $P B W$ extension is considered when all derivations δ_{i} are zero. If all σ_{i} are bijective another interesting case is presented. We recall the following definition (cf. [5].)

Definition 3. Let A be a skew $P B W$ extension.
(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition 1 are replaced by
(iii') For every $1 \leq i \leq n$ and $r \in R \backslash\{0\}$ there exists $c_{i, r} \in R \backslash\{0\}$ such that

$$
x_{i} r=c_{i, r} x_{i} .
$$

(iv') For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R \backslash\{0\}$ such that

$$
x_{j} x_{i}=c_{i, j} x_{i} x_{j} .
$$

(b) A is bijective if σ_{i} is bijective for every $1 \leq i \leq n$ and $c_{i, j}$ is invertible for any $1 \leq i<j \leq n$.

Skew $P B W$ extensions can be characterized in a similar way as left $P B W$ rings in [3, Proposition 2.4].

Theorem 4. ([5, Theorem 7]) Let A be a left polynomial ring over R with respect to $\left\{x_{1}, \ldots, x_{n}\right\} . A$ is a skew $P B W$ extension of R if and only if the following conditions hold:
(a) For every $x^{\alpha} \in \operatorname{Mon}(A)$ and every $0 \neq r \in R$ there exist unique elements $r_{\alpha}:=\sigma^{\alpha}(r) \in R \backslash\{0\}$ and $p_{\alpha, r} \in A$ such that

$$
\begin{equation*}
x^{\alpha} r=r_{\alpha} x^{\alpha}+p_{\alpha, r}, \tag{3}
\end{equation*}
$$

where $p_{\alpha, r}=0$ or $\operatorname{deg}\left(p_{\alpha, r}\right)<|\alpha|$ if $p_{\alpha, r} \neq 0$. Moreover, if r is left invertible, then r_{α} is left invertible.
(a) For every $x^{\alpha}, x^{\beta} \in \operatorname{Mon}(A)$ there exist unique elements $c_{\alpha, \beta} \in R$ and $p_{\alpha, \beta} \in A$ such that

$$
\begin{equation*}
x^{\alpha} x^{\beta}=c_{\alpha, \beta} x^{\alpha+\beta}+p_{\alpha, \beta}, \tag{4}
\end{equation*}
$$

where $c_{\alpha, \beta}$ is left invertible, $p_{\alpha, \beta}=0$ or $\operatorname{deg}\left(p_{\alpha, \beta}\right)<|\alpha+\beta|$ if $p_{\alpha, \beta} \neq 0$.
We remember also the following facts from [5, Remark 8].

Remark 5.

(i) A left inverse of $c_{\alpha, \beta}$ will be denoted by $c_{\alpha, \beta}^{\prime}$. We observe that if $\alpha=0$ or $\beta=0$, then $c_{\alpha, \beta}=1$ and hence $c_{\alpha, \beta}^{\prime}=1$.
(ii) Let $\theta, \gamma, \beta \in \mathbb{N}^{n}$ and $c \in R$. Then we have the following identities:

$$
\begin{aligned}
\sigma^{\theta}\left(c_{\gamma, \beta}\right) c_{\theta, \gamma+\beta} & =c_{\theta, \gamma} c_{\theta+\gamma, \beta}, \\
\sigma^{\theta}\left(\sigma^{\gamma}(c)\right) c_{\theta, \gamma} & =c_{\theta, \gamma} \sigma^{\theta+\gamma}(c)
\end{aligned}
$$

(iii) We observe that if A is quasi-commutative then from the proof of Theorem 4 we conclude that $p_{\alpha, r}=0$ and $p_{\alpha, \beta}=0$ for every $0 \neq r \in R$ and every $\alpha, \beta \in \mathbb{N}^{n}$.
(iv) From the proof of Theorem 4 we get also that if A is bijective, then $c_{\alpha, \beta}$ is invertible for any $\alpha, \beta \in \mathbb{N}^{n}$.

Next we present some key results proved in [13]. We start with a proposition that establishes that one can construct a quasi-commutative skew $P B W$ extension from a given skew $P B W$ extension of a ring R.

Proposition 6. Let A be a skew $P B W$ extension of R. Then there exists a quasi-commutative skew $P B W$ extension A^{σ} of R in n variables z_{1}, \ldots, z_{n} defined by

$$
z_{j} r=c_{j, r} z_{j}, \quad z_{j} z_{i}=c_{i, j} z_{i} z_{j}, \quad 1 \leq i, j \leq n,
$$

where $c_{j, r}, c_{i, j}$ are the same constants that define A. Moreover, if A is bijective then A^{σ} is also bijective.

Proof. We follow the proof presented in [13]. Consider variables z_{1}, \ldots, z_{n} and the set of standard monomials $\mathcal{M}:=\left\{z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}: \alpha_{i} \in \mathbb{N}^{n}, 1 \leq i \leq n\right\}$. Let A^{σ} be the free R-module with basis \mathcal{M} (i.e., A and A^{σ} are isomorphic R-modules). We define the product in A^{σ} by the distributive law and the rules

$$
r z^{\alpha} s z^{\beta}:=r \sigma^{\alpha}(s) c_{\alpha, \beta} z^{\alpha+\beta}
$$

where the σ 's and the constants c 's are as in Theorem 4. The identities of Remark 5 show that this product is associative. Moreover, note that $R \subseteq$ A^{σ} since for $r \in R, r=r z_{1}^{0} \cdots z_{n}^{0}$. Thus, A^{σ} is a quasi-commutative skew
$P B W$ extension of R, and also, each element f^{σ} of A^{σ} corresponds to a unique element $f \in A$, when the variables x 's are replaced by the variables z 's. The last assertion of the proposition is obvious. Therefore, $A^{\sigma} \cong R\left[z_{1} ; \sigma_{1}\right] \cdots\left[z_{n} ; \sigma_{n}\right]$ where $\sigma_{j}(r)=c_{j, r}, \sigma_{j}\left(z_{i}\right)=c_{i, j} z_{i}$ for $r \in R$ and $1 \leq i<j \leq n$.

An important fact for this work is that skew $P B W$ extensions are filtered rings. We recall the definition of these rings.

Definition 7. A filtered ring is a ring B with a family $F B=\left\{F_{n} B: n \in \mathbb{Z}\right\}$ of additive subgroups of B where we have the ascending chain $\cdots \subset F_{n-1} B \subset$ $F_{n} B \subset \cdots$ such that $1 \in F_{0} B$ and $F_{n} B F_{m} B \subseteq F_{n+m} B$ for all $n, m \in \mathbb{Z}$.

From a filtered ring B it is posible to construct its associated graded ring $G(B)$ taking $G(B)_{n}:=F_{n} B / F_{n-1} B$. It is sufficient to consider the multiplication in $G(B)$ on homogeneous elements. If $a \in F_{n} B / F_{n-1} B$, it says that a has degree n, and $\bar{a}=a+F_{n-1} B \in G(B)_{n}$ is the leading term of a. If c has degree m, then $\bar{a} \bar{c}$ is defined as $a c+F_{m+n-1} B \in G_{m+n} B$. This multiplication is well defined and hence $G(S)$ is effectively a ring, which is known in the literature as the associated graded ring of B.

The first key theorem establishes the graduation of a general skew $P B W$ extension of a ring R.

Theorem 8. Let A be an arbitrary skew $P B W$ extension of R. Then, A is a filtered ring with filtration given by

$$
F_{m} A:= \begin{cases}R, & \text { if } \quad m=0 \tag{5}\\ \{f \in A: \operatorname{deg}(f) \leq m\}, & \text { if } \quad m \geq 1\end{cases}
$$

and the corresponding graded ring $G(A)$ is a quasi-commutative skew $P B W$ extension of R. Moreover, if A is bijective, then $G(A)$ is a quasi-commutative bijective skew $P B W$ extension of R.

The next theorem characterizes the quasi-commutative skew $P B W$ extensions.

Theorem 9. Let A be a quasi-commutative skew $P B W$ extension of a ring R. Then,
(i) A is isomorphic to an iterated skew polynomial ring of endomorphism type.
(ii) If A is bijective, then each endomorphism is bijective.

2. Gelfand-Kirillov Dimension

For finitely generated \mathbb{k}-algebras B, there exists the Gelfand-Kirillov dimension denoted by $\mathrm{GK} \operatorname{dim}(B)$, which is an invariant and coincides with the Krull dimension in the commutative case. Algebras with Gelfand-Kirillov dimension zero are precisely those finite dimensional. Since this dimension applies only to algebras over a field \mathbb{k}, throughout this section, R is affine, that is, R is finitely generated as \mathbb{k}-algebra and all automorphisms and derivations are \mathbb{k}-linear. We recall that a filtration $F B=\left\{F_{n} B: n \in \mathbb{Z}\right\}$ of a \mathbb{k}-algebra B is said to be finite if each $F_{i} B$ is a finite dimensional \mathbb{k}-subspace.

It is known that if δ is a derivation of an \mathbb{k}-algebra R for a field \mathbb{k}, then the Gelfand-Kirillov dimension GKdim of the ring of derivation type $R[x ; \delta]$ is equal to $\operatorname{GK} \operatorname{dim}(R)+1$, provided that R is finitely generated [10]. Generalization of this result was established by Matczuk [15, Theorem A] for Poincaré-BirkhoffWitt extensions introduced by Bell and Goodearl [2] over finitely generated algebras. More exactly, Matczuk showed that if R is an affine \mathbb{k}-algebra and A is a $P B W$ extension of R, then $\operatorname{GKdim}(A)=\operatorname{GKdim}(R)+n$. This result generalizes [16, Proposition 8.2.10]. In this Section we generalize the Matczuk's result for skew $P B W$ extensions of a \mathbb{k}-algebra R being R finitely generated or with locally algebraic automorphisms. We start recalling the definition of Gelfand-Kirillov dimension.

Definition 10. Let B be an affine \mathbb{k}-algebra with finite generating set given by $\left\{b_{1}, \ldots, b_{n}\right\}$. Let V be a finite dimensional subspace of $B . V$ is called a finite dimensional generating subspace for B if we can express every element of B as a linear combination of monomials formed by elements of V.

An example is the case where V is the subspace of B spanned by the generators b_{1}, \ldots, b_{n}. If we set $V^{0}:=\mathbb{k}$ and $V^{n}:=$ the subspace spanned by monomials of the form $b_{i_{1}}^{l_{1}} \cdots b_{i_{m}}^{l_{m}}, b_{i_{j}} \in\left\{b_{1}, \cdots, b_{m}\right\}$ and $\sum_{i=1}^{m} l_{i}=n$, we have $B_{n}=\sum_{i=0}^{n} V^{i}$ and $B=\bigcup_{n=0}^{\infty} B_{n}$. Define $d_{V}(n):=\operatorname{dim}_{k}\left(B_{n}\right)$. GKdim is a measure of the rate of growth of the algebra in terms of any generating set. More exactly

Definition 11. The Gelfand-Kirillov dimension of B is

$$
\operatorname{GKdim}(B):=\varlimsup \overline{\lim }\left(\frac{\log d_{V}(n)}{\log (n)}\right)
$$

for a finite dimensional generating subspace V of B.
The Gelfand-Kirillov dimension of the algebra B is independent of the choice of V. For details about Gelfand-Kirillov dimension see [10] or [16].

We need two preliminary results.

Proposition 12. ([10, Proposition 6.6]) Let B be $a \mathbb{k}$-algebra with a finite filtration $\left\{B_{i}\right\}_{i \in \mathbb{Z}}$ such that $G(B)$ is finitely generated. Then

$$
\operatorname{GKdim}\left(G(B)_{G(B)}\right)=\operatorname{GKdim}\left(B_{B}\right)
$$

Lemma 13. ([9, Lemma 2.2]) Let B a \mathbb{k}-algebra with a finite dimensional generating subspace $V, \sigma a \mathbb{k}$-automorphism of B and δ a σ-derivation. If $\sigma(V) \subseteq V$, then

$$
\operatorname{GKdim}(B[x ; \sigma, \delta])=\mathrm{GKdim}(B)+1
$$

Proof. Briefly, the idea presented in [9] is the following. We may assume that $1 \in V$. Since $\bigcup_{k=0}^{\infty} V^{k}=B$ and $\delta(V)$ is finite dimensional, there exists a positive integer m such that $\delta(V) \subset V^{m}$. Then, by induction on $n \geq 1$, we have $\delta\left(V^{n}\right) \subset V^{m+n}$ for all n. If $W:=\mathbb{k} x \oplus V$, then W is a finite dimensional generating subspace of $B[x ; \sigma, \delta]$. One can show that $W^{n} \subset \sum_{k=0}^{n} V^{m n} x^{k}$ for all n. Since the sum $\sum_{k=0}^{n} V^{m n} x^{k}$ is direct, the definition of Gelfand-Kirillov dimension implies that $\operatorname{GKdim}(B[x ; \sigma, \delta])=\operatorname{GKdim}(B)+1$.

Next we formulate one of the main results in this section. Consider the automorphism σ_{n} of R in Proposition 2.

Theorem 14. Let R be $a \mathbb{k}$-algebra with a finite dimensional generating subspace V and let A be a bijective skew $P B W$ extension of R given by $A=$ $\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$. If $\sigma_{n}(V) \subseteq V$, then

$$
\operatorname{GKdim}(A)=\operatorname{GKdim}(R)+n
$$

Proof. From Theorem 8 it is clear that A is a \mathbb{k}-algebra with a finite filtration. Let X the \mathbb{k}-linear subspace of A spanned by $1, x_{1}, \ldots, x_{n}$. Then $V X$ is a finite dimensional generating subspace of $G(A) \cong A^{\sigma}$ and hence Proposition 12 implies $\operatorname{GKdim}(A)=\operatorname{GKdim}(G(A))$. Now, from Theorem 5 and Theorem 9 we have that the ring A^{σ} is isomorphic to the skew polynomial ring of automorphism type $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n} ; \sigma_{n}\right]$. Note that $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$ is a \mathbb{k}-algebra and the automorphism σ_{n} of $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$ given by $\sigma_{n}(r)=c_{n, r}$ and $\sigma_{n}\left(x_{i}\right)=c_{i, n} x_{i}$ for $r \in R, 1 \leq i<n$ is a \mathbb{k}-automorphism. If X^{\prime} is the \mathbb{k}-linear subspace of A spanned by $1, x_{1}, \ldots, x_{n-1}$, then $V X^{\prime}$ is a finite dimensional generating subspace of $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$ and, from the assumption that $\sigma_{n}(V) \subseteq V$, it follows that $\sigma_{n}\left(V X^{\prime}\right) \subseteq V X^{\prime}$. Lemma 13 guarantees $\operatorname{GKdim}(A)=\operatorname{GKdim}(G(A))=\operatorname{GKdim}(R)+n$.

Remark 15. Theorem 14 generalizes [15, Theorem A], which established the result above for classic $P B W$ extensions.

Definition 16 ([11] or [18]). For a \mathbb{k}-algebra B, an automorphism σ of B is said to be locally algebraic if for any $b \in B$ the set $\left\{\sigma^{m}(b): m \in \mathbb{N}\right\}$ is contained in a finite dimensional subspace of B.

We remark a useful result about rings with a locally algebraic automorphism

Lemma 17. ([11, Proposition 1]) If σ is a locally algebraic automorphism of a \mathbb{k}-algebra B, we have $\operatorname{GKdim}(B[x ; \sigma])=\operatorname{GKdim}(B)+1=\operatorname{GKdim}\left(B\left[x^{ \pm 1} ; \sigma\right]\right)$.

Next we formulate another result of this Section. Again, consider the automorphism σ_{n} of R in Proposition 2.

Theorem 18. Let R be $a \mathbb{k}$-algebra with a finite dimensional generating subspace V and let A be a bijective skew $P B W$ extension of R given by $A=$ $\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$. If σ_{n} is locally algebraic, then

$$
\operatorname{GKdim}(A)=\operatorname{GKdim}(R)+n
$$

Proof. From Theorem 14 we know that A is a \mathbb{k}-algebra with a finite filtration and that $V X$ is a finite dimensional generating subspace of $A^{\sigma} \cong G(A)$ which implies $\operatorname{GKdim}(A)=\operatorname{GKdim}(G(A))$. We also know that the ring A^{σ} is isomorphic to the skew polynomial ring of automorphism type $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n} ; \sigma_{n}\right]$ and that the ring $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$ is a \mathbb{k}-algebra and the function σ_{n} of $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$ given by $\sigma_{n}(r)=c_{n, r}$ and $\sigma_{n}\left(x_{i}\right)=c_{i, n} x_{i}$ for $r \in R$, $1 \leq i<n$ is a \mathbb{k}-automorphism. Hence, if X^{\prime} is the \mathbb{k}-linear subspace of A spanned by $1, x_{1}, \ldots, x_{n-1}$, then $V X^{\prime}$ a finite dimensional generating subspace of $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$. It is easy to show that.

$$
\begin{equation*}
\sigma_{n}^{m}\left(x_{i}\right)=\left[\prod_{t=0}^{m-1} \sigma_{n}^{m-1-t}\left(c_{n, i}\right)\right] x_{i}, \quad 1 \leq i<n, m \in \mathbb{N} \tag{6}
\end{equation*}
$$

By assumption, the automorphism σ_{n} of R is locally algebraic so (6) implies that σ_{n}, considered as an automorphism of $R\left[x_{1} ; \sigma_{1}\right] \cdots\left[x_{n-1} ; \sigma_{n-1}\right]$, is locally algebraic. By Lemma 17 we conclude $\operatorname{GKdim}(G(A))=\operatorname{GKdim}(R)+n$.

Remark 19.

(1) Gelfand-Kirillov dimensions in the literature (cf. [3], [10] and [16, Proposition 8.2.7]) agree with Theorems 14 and 18. For instance, the following Gelfand-Kirillov dimensions are well known:
(a) $\operatorname{GKdim}(R[x])=\operatorname{GKdim}(R)+1$;
(b) $\operatorname{GKdim}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)=n$;
(c) $\operatorname{GKdim}\left(\mathcal{O}_{q}\left(\mathbb{k}^{2}\right)\right)=2$;
(d) $\operatorname{GKdim}\left(A_{n}(R)\right)=\operatorname{GKdim}(R)+n$,
(e) $\operatorname{GKdim}(\mathcal{U}(\mathfrak{g}))=\operatorname{dim}_{\mathfrak{k}}(\mathfrak{g})$,
(f) $\operatorname{GKdim}(R G)=\operatorname{GKdim}(R)$ for any finite group G;
(g) $\operatorname{GKdim}\left(\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{k}))\right)=3$;
(h) $\operatorname{GKdim}(R \otimes \mathcal{U}(\mathfrak{g}))=\operatorname{GKdim}(R)+\operatorname{dim}(\mathfrak{g})$, for a finite dimensional Lie algebra \mathfrak{g};
(i) $\operatorname{GKdim}(R * \mathcal{U}(\mathfrak{g})) \geq \operatorname{GKdim}(R)+\operatorname{dim}(\mathfrak{g}) ; \quad$ if $\quad R$ is affine, $\operatorname{GKdim}(R * \mathcal{U}(\mathfrak{g}))=\operatorname{GKdim}(R)+\operatorname{dim}(\mathfrak{g}) ;$
(j) $\operatorname{GKdim}\left(\mathcal{O}_{q}\left(M_{n}(\mathbb{k})\right)\right)=n^{2}$ (c.f. [17]);
(k) $\operatorname{GKdim}\left(A_{2}\left(J_{a, b}\right)\right)=4$ (c.f. [4]);
(l) $\operatorname{GKdim}\left(A_{n}\left(q, p_{i j}\right)\right)=2 n$ (c.f. [6]);
(m) $\operatorname{GK} \operatorname{dim}(\mathcal{A})=n, \quad$ where \mathcal{A} is a diffusion algebra (c.f. [8]).
(2) Theorem 18 generalizes the following result due to Zhang in [18]: Let B a finitely generated \mathbb{k}-algebra which is a commutative domain, σ is a \mathbb{k} endomorphism of A, and if δ is a σ-derivation of B, then the following statements are equivalent:
(a) $\operatorname{GKdim}(B[x ; \sigma, \delta])<\operatorname{GKdim}(B)+2$;
(b) $\operatorname{GKdim}(B[x ; \sigma, \delta])=\operatorname{GKdim}(B)+1$;
(c) σ is locally algebraic.
(3) Conditions on automorphism σ_{n} in Theorem 14 and Theorem 18 are necessary as the next examples show. Let $R=\mathbb{k}\left[y^{ \pm 1}, z^{ \pm 1}\right]$. Consider the skew $P B W$ extensions of R given by $B=\mathbb{k}\left[y^{ \pm 1}, z^{ \pm 1}\right][x ; \sigma]$ and $T=$ $\mathbb{k}\left[y^{ \pm 1}, z^{ \pm 1}\right]\left[x^{ \pm 1} ; \sigma\right]$ where $\sigma(y):=y z$ and $\sigma(z):=z$. Then $\operatorname{GKdim}(R)=2$ and $\operatorname{GKdim}(B)=\operatorname{GKdim}(T)=4$. Note that T is the group algebra $\mathbb{k} G$ where G is the group generated by x, y, z with relations $z y=y z, z x=x z$ and $y^{-1} x^{-1} y x=z$. The representation

$$
x \mapsto\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad y \mapsto\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad z \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

gives an isomorphism of G with the group of 3×3 matrices

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

with $a, b, c \in \mathbb{Z}$, i.e., the discrete Heisenberg group. See [16], Example 8.2.16 for more details.

Other example is given by Ore extensions $B[x ; \sigma, \delta]$ with B a \mathbb{k}-algebra and σ a \mathbb{k}-endomorphism of B. Huh and Kim [9] showed the inequality $\operatorname{GKdim}(B[x ; \sigma, \delta]) \geq \operatorname{GKdim}(B)+1$, where equality holds whenever each
finite dimensional subspace of B is contained in a finitely generated subalgebra of B that is stable under both σ and δ. In general, the difference $\operatorname{GKdim}(B[x ; \sigma, \delta])-\operatorname{GKdim}(B)$ may be an arbitrary natural number, it may be infinite. Similarly, if R is a \mathbb{k}-algebra and δ is a \mathbb{k}-derivation, then $\operatorname{GKdim}(R[x ; \delta]) \geq \operatorname{GKdim}(R)+1$ (Corollary, 8.2.11).
(4) In $[3,8,12,14]$ Gelfand-Kirillov dimension is computed for several classes of rings and algebras. We remark that none of these algebras generalize skew $P B W$ extensions and Theorem 14 and Theorem 18 allow to compute the Gelfand-Kirillov dimension for many examples of these algebras. See [13] for relations between all these algebras and skew $P B W$ extensions.

2.1. Gelfand-Kirillov Dimension of Skew Quantum Polynomials

In this Section we calculate the Gelfand-Kirillov dimension for skew quantum polynomials. We recall the following definition presented in [13].

Definition 20. Let R be a ring with a fixed matrix of parameters $\mathbf{q}:=\left[q_{i j}\right] \in$ $M_{n}(R), n \geq 2$, such that $q_{i i}=1=q_{i j} q_{j i}=q_{j i} q_{i j}$ for every $1 \leq i, j \leq n$, and suppose also that it is given a system $\sigma_{1}, \ldots, \sigma_{n}$ of automorphisms of R. The ring of skew quantum polynomials over $R, R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$, is defined as the ring satisfying the following relations:
(i) $R \subseteq R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$;
(ii) $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ is a free left R-module with basis

$$
\begin{equation*}
\left\{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}: \alpha_{i} \in \mathbb{Z} \text { for } 1 \leq i \leq r \text { and } \alpha_{i} \in \mathbb{N} \text { for } r+1 \leq i \leq n\right\} \tag{7}
\end{equation*}
$$

(iii) the variables x_{1}, \ldots, x_{n} satisfy the defining relations

$$
\begin{align*}
x_{i} x_{i}^{-1} & =1=x_{i}^{-1} x_{i}, \quad 1 \leq i \leq r \tag{8}\\
x_{j} x_{i} & =\sigma_{j}\left(x_{i}\right) x_{j}=q_{i j} x_{i} x_{j}, \quad r \in R, \quad 1 \leq i, j \leq n, \tag{9}\\
x_{j} r & =\sigma_{j}(r) x_{j} j, \quad r \in R, \quad 1 \leq i, j \leq n . \tag{10}
\end{align*}
$$

Remark 21. $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ can be viewed as a localization of a skew $P B W$ extension. In fact, we have the quasi-commutative bijective skew $P B W$ extension

$$
\begin{aligned}
A & :=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle, \quad \text { with } \quad x_{i} r=\sigma_{i}(r) x_{i} \quad \text { and } \\
x_{j} x_{i} & =q_{i j} x_{i} x_{j}, \quad 1 \leq i, j \leq n .
\end{aligned}
$$

If we set $S:=\left\{r x^{\alpha}: r \in R^{*}, x^{\alpha} \in \operatorname{Mon}\left\{x_{1}, \ldots, x_{r}\right\}\right\}$ then S is a multiplicative subset of A and $S^{-1} A \cong R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$. In fact, if $f \in A$ and $r x^{\alpha} \in S$ are such that $f r x^{\alpha}=0$, then $0=f r x^{\alpha}=f x^{\alpha}\left[\left(\sigma^{\alpha}\right)^{-1}(r)\right]$, so
$0=f x^{\alpha}$ since $\left(\sigma^{\alpha}\right)^{-1}(r) \in R^{*}$, and hence, $f=0$. From this we get that $r x^{\alpha} f=0 . S$ satisfies the left (right) Ore condition:

If $f=c_{1} x^{\beta_{1}}+\cdots+c_{t} x^{\beta_{t}}$, then $g r x^{\alpha}=x^{\alpha} f$, where $g:=d_{1} x^{\beta_{1}}+\cdots+d_{t} x^{\beta_{t}}$ with $d_{i}:=\sigma^{\alpha}\left(c_{i}\right) c_{\alpha, \beta_{i}} c_{\beta_{i}, \alpha}^{-1} \sigma^{\beta_{i}}\left(r^{-1}\right)$, and $c_{\alpha, \beta_{i}}, c_{\beta_{i}, \alpha}$ are the elements of R that we obtain when we apply Theorem 4 to A (for the right Ore condition g is defined in a similar way). This means that $S^{-1} A$ exists ($A S^{-1}$ also exists, and hence, $S^{-1} A \cong A S^{-1}$.

Finally, note that the function

$$
h^{\prime}: A \rightarrow R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right], \quad h^{\prime}(f):=f
$$

is a ring homomorphism and it satisfies $h^{\prime}(S) \subseteq R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]^{*}$ (in fact, $\left[r x^{\alpha}\right]^{-1}=\left(\sigma^{\alpha}\right)^{-1}\left(r^{-1}\right)\left(x^{\alpha}\right)^{-1}$), so h^{\prime} induces the ring homomorphism

$$
\begin{aligned}
& h: S^{-1} A \rightarrow R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right] \\
& h\left(\frac{f}{r x^{\alpha}}\right):=h^{\prime}\left(r x^{\alpha}\right)^{-1} h^{\prime}(f)=\left(r x^{\alpha}\right)^{-1} f .
\end{aligned}
$$

It is clear that h is injective; moreover, h is surjective since $x_{i}=h\left(\frac{x_{i}}{1}\right), 1 \leq$ $i \leq n, x_{j}^{-1}=h\left(\frac{1}{x_{j}}\right), 1 \leq j \leq r, r=h(r), r \in R$.

Remark 22.

(a) When all automorphisms are trivial, the ring of quantum polynomials over R is denoted by $R_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$.
(b) If $R=\mathbb{k}$ is a field, then $\mathbb{k}_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ is the algebra of skew quantum polynomials.
(c) For trivial automorphisms we get the algebra of quantum polynomials simply denoted by $\mathcal{O}_{\mathbf{q}}$ (see [1]).
(d) If $r=0$, the $\operatorname{ring} R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]=R_{\mathbf{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]$ is the n-multiparametric skew quantum space over R.
(e) When $r=n$, the ring of skew quantum polynomials over R coincides with $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the n-multiparametric skew quantum torus over R. In this case, if $n=1, R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]=R\left[x^{ \pm 1} ; \sigma\right]$, i.e., this ring coincides with the skew Laurent polynomial ring over R. If $r=n$ and automorphisms are trivial, i.e., $\sigma_{i}=i_{R}, 1 \leq i \leq n$, we denoted $R_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and it is called n-multiparametric quantum torus over R. For $R=\mathbb{k}$, $\mathbb{k}_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is simple called n-multiparametric skew quantum torus, and the particular case $n=2$ is called skew quantum torus; for trivial automorphisms we have the n-multiparametric quantum torus and the quantum torus (see [7].) The ring $\mathbb{k}\left[x^{ \pm 1} ; \sigma\right]$ is the algebra of skew Laurent polynomials; if $\sigma=i_{R}$, then $R\left[x^{ \pm 1} ; \sigma\right]=R\left[x^{ \pm 1}\right]$ is the classical Laurent polynomial ring over R, and then $\mathbb{k}\left[x^{ \pm 1}\right]$ is the algebra of Laurent polynomials.
(f) Following [7, p. 16], let \mathbb{k} be a field and $\mathbf{q}=\left(q_{i j}\right)$ a multiplicatively antisymmetric $n \times n$ matrix over \mathbb{k}. The corresponding multiparameter quantum torus is the \mathbb{k}-algebra $\mathcal{O}_{\mathbf{q}}\left(\left(\mathbb{k}^{*}\right)^{n}\right)$ presented by generators $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$ and relations $x_{i} x_{j}=q_{i j} x_{j} x_{i}$ for all i, j. The single parameter version $\mathcal{O}_{q}\left(\left(\mathbb{k}^{*}\right)^{n}\right)$, for $q \in \mathbb{k}^{*}$, is the special case when $q_{i j}=q$ for all $i<j$.

From these observations we can see that the ring of skew quantum polynomials over R generalizes all the rings considered by Artamonov in [1].

For the next Lemma consider the automorphism σ_{n} in Theorem 18.
Lemma 23. Let R be $a \mathbb{k}$-algebra with a finite dimensional generating subspace V and suppose that σ_{n} is locally algebraic. Then,
$\operatorname{GKdim}\left(R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]\right)=\operatorname{GKdim}\left(R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]\right)$.
Proof. Note that $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ is as a quasi-commutative bijective skew $P B W$ extension of the r-multiparametric skew quantum torus over R. More exactly, $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right] \cong \sigma(T)\left\langle x_{r+1}, \ldots, x_{n}\right\rangle$, with $T:=R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$. Note that for T, σ is defined by the σ_{j} in (9) with $1 \leq j \leq r$. Moreover, T is a \mathbb{k}-algebra with a finite dimensional generating subspace $V X^{ \pm 1}$, where $X^{ \pm 1}:=\left\{1, x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right\}$. Given that σ_{n} is a locally algebraic automorphism of T, the result follows from Theorem 18 .

The following Lemma allows us to compute GKdim of the n-multiparametric skew quantum torus.

Lemma 24. Let $R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$ be the r-multiparametric skew quantum torus. If R is a \mathbb{k}-algebra with a finite dimensional generating subspace V, and the automorphism σ_{r} of $R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r-1}^{ \pm 1}\right]$ given by $\sigma_{r}(a)=c_{r a}, \sigma_{r}\left(x_{i}\right)=$ $c_{i r} x_{i}$ for $a \in R$ and $1 \leq i<r$, is locally algebraic, then

$$
\operatorname{GKdim}\left(R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]\right)=\operatorname{GKdim}(R)+r
$$

Proof. Follows from Lemmas 17 and 23.
For the next Theorem consider the automorphism σ_{n} of $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$ in Lemma 23.

Theorem 25. Under the same conditions of Lemma 24, Gelfand-Kirillov dimension for skew quantum polynomials over a finitely generated \mathbb{k}-algebra R with locally algebraic automorphism σ_{n}, is given by

$$
\operatorname{GKdim}\left(R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1} x_{r+1}, \ldots, x_{n}\right]\right)=\operatorname{GKdim}(R)+n .
$$

Proof. It is clear that $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$ is a \mathbb{k}-algebra. Denote with $X^{ \pm 1}$ the \mathbb{k}-linear subspace of $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$ spanned by $1, x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}$. Then $V X^{ \pm 1}$ is a finite dimensional generating subspace of $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$. The assertion follows from Theorem 18 and Lemma 24.

3. Examples

In [13] it was proved that all rings and algebras in the following tables are bijective skew $P B W$ extensions. Under conditions of Theorems 14 and 18 we have computed its Gelfand-Kirillov dimension.

Noncommutative ring	GKdim
Polynomial ring	$\operatorname{GKdim}(R)+n$
Skew polynomial ring of derivation type	$\operatorname{GKdim}(R)+n$
Universal enveloping algebra of Lie algebras	$\operatorname{GKdim}(R)+n$
Universal enveloping algebra of Kac-Moody	Lie algebras
	$\operatorname{GKdim}(k)+m+n$
Universal enveloping rings $\mathcal{U}(V, R, \mathbb{k})$	$\operatorname{GKdim}(k)+n$
Differential operator rings $V(R, L)$	$\operatorname{GKdim}(k)+n$
Tensor and crossed product	$\operatorname{GKdim}(R)+n$
Twisted or smash product differential	operator ring
	$\operatorname{GKdim}(R)+n$

Table 1. Gelfand-Kirillov dimension for some $P B W$ extensions.

Noncommutative ring	GKdim
Weyl algebra	$2 n$
Quantum plane	2
Algebra of q-differential operators	2
Algebra of shift operators	2
Mixed algebra	3
Algebra for multidimensional discrete linear systems	$2 n$
Algebra B	3

Table 2. Gelfand-Kirillov dimension for some Ore extensions of derivation type.

Noncommutative ring	GKdim
Algebra of linear partial differential operators	$2 n$
Algebra of linear partial shift operators	$2 n$
Algebra of linear partial difference operators	$2 n$
Algebra of linear partial q-dilation operators	$n+m$
Algebra of linear partial q-differential operators	$n+m$
Operator differential rings	m

Table 3. Gelfand-Kirillov dimension for operator algebras.

Noncommutative ring	GKdim
Diffusion algebras	n
Generalized Weyl algebras $R\{\theta, \xi\}$	$\operatorname{GKdim}(R)+2$
Quadratic algebras in 3 variables	3
Clifford algebras	$\operatorname{GKdim}(R)+2 n$

TABLE 4. Gelfand-Kirillov dimension for others examples of skew $P B W$ extensions.

Noncommutative ring	GKdim
Additive analogue of the Weyl algebra	$2 n$
Multiplicative analogue of the Weyl algebra	n
Quantum algebra $\mathcal{U}^{\prime}(\mathfrak{s o}(3, \mathbb{k}))$	3
Dispin algebra $\mathcal{U}(\operatorname{osp}(1,2))$	3
Woronowicz algebra $\mathcal{W}_{\nu}(\mathfrak{s l}(2, \mathbb{k}))$	3
Algebra U	$3 n$
The Complex algebra $V_{q}(\mathfrak{s l}(3, \mathbb{C}))$	10
Manin algebra $\mathcal{O}_{q}\left(M_{2}(\mathbb{k})\right)$	4
Algebra of quantum matrices $\mathcal{O}_{q}\left(M_{n}(\mathbb{k})\right)$	n^{2}
q-Heisenberg algebra $\mathbf{H}_{n}(q)$	$3 n$
Quantum enveloping algebra $\mathcal{U}_{q}(\mathfrak{s l}(2, \mathbb{k}))$	3
Hayashi's algebra $W_{q}(J)$	$3 n$
Differential operators on a quantum space $D_{\mathbf{q}}\left(S_{\mathbf{q}}\right)$	$2 n$
Quantum Weyl algebra $A_{2}\left(J_{a, b}\right)$	4
Quantum Weyl algebra $A_{2}^{\bar{q}, \Lambda}$	2
Quantum Weyl algebra of Maltsiniotis $A_{n}^{\mathbf{q}, \lambda}$	n^{2}
Quantum Weyl algebra of Maltsiniotis $A_{n}\left(q, p_{i j}\right)$	n^{2}
Multiparameter quantized Weyl algebra $A_{n}^{Q, \Gamma}$	n^{2}
Quantum Weyl algebra $A_{n}(\bar{q}, \Lambda)$	n^{2}
Quantum symplectic space $\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbb{k}^{2 n}\right)\right)$	n^{2}

Table 5. Gelfand-Kirillov dimension for some quantum algebras.

Finally, Table 6 contains the Gelfand-Kirillov dimensions for some examples of skew quantum polynomials (see Remark 22.)

Noncommutative ring	GKdim
Skew Laurent extension $R\left[x^{ \pm 1} ; \sigma_{1}\right]$	$\operatorname{GKdim}(R)+1$
Skew Laurent polynomials $\mathbb{k}\left[x^{ \pm 1} ; \sigma_{1}\right]$	1
Classical Laurent polynomial ring $R\left[x^{ \pm 1}\right]$	$\operatorname{GKdim}(R)+1$
Algebra of Laurent polynomials $\mathbb{k}\left[x^{ \pm 1}\right]$	1
n-Multiparametric skew quantum space $R_{\mathbf{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]$	$\mathrm{GK} \operatorname{dim}(R)+n$
n-Multiparametric quantum space $R_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$	$\operatorname{GKdim}(R)+n$
n-Multiparametric skew quantum space $\mathbb{k}_{\mathbf{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]$	n
n-Multiparametric quantum space $\mathbb{k}_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$	n
n-Multiparametric skew quantum torus $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$	$\operatorname{GKdim}(R)+r$
n-Multiparametric quantum torus $R_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$	$\operatorname{GKdim}(R)+r$
n-Multiparametric skew quantum torus $\mathbb{k}_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]$	r
Ring of skew quantum polynomials $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	$\operatorname{GKdim}(R)+n$
Ring of quantum polynomials $R_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	$\operatorname{GKdim}(R)+n$
Algebra of skew quantum polynomials $\mathbb{k}_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	n
Algebra of quantum polynomials $\mathcal{O}_{\mathbf{q}}=\mathbb{k}_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	n

Table 6. Gelfand-Kirillov dimension of skew quantum polynomials.

Acknowledgement. The author thanks the referee for his/her useful comments and suggestions.

References

[1] Vyacheslav Artamonov, Quantum Polynomials, WSPC Proceedings (2008).
[2] Allen D. Bell and Kenneth R. Goodearl, Uniform Rank over Differential Operator Rings and Poincaré-Birkhoff-Witt Extensions, Pacific Journal of Mathematics 131 (1988), no. 1, 13-37.
[3] José Bueso, Jóse Gómez-Torrecillas, and Alain Verschoren, Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups, Kluwer, 2003.
[4] Hisaaki Fujita, Ellen Kirkman, and James Kuzmanovich, Global and Krull Dimensions of Quantum Weyl Algebras, Journal of Algebra 216 (1999), 405-416.
[5] Claudia Gallego and Oswaldo Lezama, Gröbner bases for ideals of $\sigma-p b w$ extensions, Communications in Algebra 39 (2011), no. 1, 50-75.
[6] Anthony Giaquinto and Jian J. Zhang, Quantum Weyl Algebras, Journal of Algebra 176 (1995), 861-881.
[7] Kenneth R. Goodearl and Edward S. Letzter, Prime Ideals in Skew and qSkew Polynomial Rings, Memoirs of the American Mathematical Society, AMS, 1994.
[8] Owen G. Hinchcliffe, Diffusion Algebras, Doctoral thesis, University of Sheffield, 2008.
[9] Chan Huh and Chol On Kim, Gelfand-Kirillov Dimension of Skew Polynomial Rings of Automorphism Type, Communications in Algebra 24 (1996), no. 7, 2317-2323.
[10] Gunter R. Krause and Thomas H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, 2nd ed., Graduate Studies in Mathematics, 22, AMS, Providence, USA, 2000, Revised Edition.
[11] Andre Leroy, Jerzy Matczuk, and Jan Oknínski, On the Gelfand-Kirillov Dimension of Normal Localizations and Twisted Polynomial Rings, Perspectives in ring theory (1988), 205-214.
[12] Viktor Levandovskyy, Über die Vollständigkeit des Logikkalküls Noncommutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Doctoral thesis, Universität Kaiserslautern, 2005.
[13] Oswaldo Lezama and Armando Reyes, Some Homological Properties of Skew PBW Extensions, Communications in Algebra (2013), to appear.
[14] Huishi Li, Noncommutative Gröbner Bases and Filtered-Graded Transfer, vol. 1795, Lecture Notes in Mathematics, Springer, 2002.
[15] Jerzy Matczuk, The Gelfand-Kirillov Dimension of Poincare-BirkhoffWitt Extensions, Perspectives in Ring Theory, NATO ASI Series, vol. 233, Springer Netherlands, 1988, pp. 221-226.
[16] John McConnell and Chris Robson, Non-Commutative Noetherian Rings, with the Cooperation of L. W. Small, 2nd ed., Graduate Studies in Mathematics. American Mathematical Society (AMS), Providence, USA, 2001.
[17] Ewan Russell, Prime Ideals in Quantum Algebras, Ph.D. Thesis, University of Edinburgh, 2008.
[18] James J. Zhang, A Note on GK Dimension of Skew Polynomial Extensions, Proceedings of the American Mathematical Society 125 (1997), no. 2, 363-373.
(Recibido en octubre de 2012. Aceptado en abril de 2013)

Departamento de Matemáticas Universidad Nacional de Colombia Facultad de Ciencias Carrera 30, calle 45

Bogotá, Colombia e-mail: mareyesv@unal.edu.co

[^0]: ${ }^{\text {a }}$ Grupo de Álgebra Constructiva - SAC2.

