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Resumen. Se presenta un simple y efectivo método para la construcción de
curvas algebraicas sobre campos finitos con muchos puntos racionales. Las
curvas son dadas como coberturas de Kummer de la ĺınea proyectiva.
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1. Introduction

Let C be a nonsingular, projective, geometrically irreducible curve defined over
a finite field Fq with q elements. Let C

(
Fq
)

denote the set of Fq-rational points
on C; i.e; points on C having all coordinates in Fq. The Hasse-Weil bound
implies

#C
(
Fq
)
≤ q + 1 + 2

√
qg(C), (1)

where g(C) stands for the genus of the curve C. Curves which attains the Weil’s
upper bound are called maximal curves.

The interest on curves over finite fields with many rational points with
respect to their genera (i.e; with #C

(
Fq
)

close to known upper bounds; e.g.,
see the tables in [7].) was greatly renewed after Goppa’s construction of linear
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132 ÁLVARO GARZÓN & HORACIO NAVARRO

codes with good parameters from such curves. This created a much stronger
interest in the area and attracted new groups of researchers such as coding
theorists and algorithmically inclined mathematicians. An added incentive was
provided by the invention of elliptic-curve cryptosystem in 1985. The reader
may refer to the book [4] for extensive work on this topic.

The aim hence is to exhibit the construction of Kummer covers of the pro-
jective line over finite fields with many rational points. The key idea comes from
[6] (see also [3] and [2]) and that is the construction of functions µ(x) ∈ Fq[x]
via Euclidean algorithm, such that for many elements x = β ∈ Fq, µ(β) is a
r–th power in Fq with r a divisor of q − 1.

The paper is organized as follows: in Section 2 we present the method for
the construction of good curves C and we explain how one computes its genus
and its number of rational points; in Section 3 we give some characterization
of the remainder polynomial in particular cases obtained after having applied
the division algorithm and in Section 4 we give several examples based in our
construction.

In tables 1, 2 and 3 we summarize the good pairs
(
g(C),#C

(
Fq
))

obtained
in the examples of Section 4.

2. The Method

Let r > 1 be a divisor of q − 1 and f(x), `(x) two polynomials in Fq[x] such
that deg

(
f(x)r

)
≥ deg

(
`(x)

)
. We will denote by R`

(
f(x)r

)
the remainder of

the Euclidean division of f(x)r by `(x), i.e.,

f(x)r = `(x)h(x) +R`
(
f(x)r

)
. (2)

We will always assume that R`
(
f(x)r

)
6= 0 (i.e, f(x) is not multiple of

`(x)).

The method for the construction is then to consider the nonsingular pro-
jective model C of the curve given by the affine Kummer equation:

yr = µ(x) := R`
(
f(x)r

)
. (3)

As it was shown in [5, Proposition III.7.3], the genus g(C) can be easily
derived from the multiplicities of the zeros and poles of the function µ(x) ∈
Fq(x).

Now we will explain how one computes the genus. If α ∈ Fq is a zero of
µ(x) of multiplicity mα, then we have dα points on the curve C with first
coordinate x = α, where dα = gcd(r,mα). These dα points have ramification
index eα := r/dα and they have different exponent equal to eα−1 by Dedekind’s
Exponent Theorem. The same holds for the points on the curve C above the
point at infinite of the projective line i.e., for α =∞ one defines its multiplicity
as m∞ = −deg

(
R`
(
f(x)r

))
and, similarly, d∞ = gcd(r,m∞) and e∞ = r/d∞.
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DIVISION ALGORITHM AND CONSTRUCTION OF CURVES 133

New records

q g(C) #C
(
Fq
)

Former Entry

113 4 1580 1422

173 7 5220 5204

Table 1

New entries

q g(C) #C(Fq)
53 7 220

73 46 1512

113 5 1438

113 16 1810

133 5 2356

133 13 2592

133 15 2688

173 8 5202

173 21 5768

193 8 6588

193 16 6972

193 19 7560

35 4 306

35 6 345

35 15 519

Table 2

Meets the record

q g(C) #C(Fq)
23 3 24

23 9 45

33 1 38

33 24 208

35 5 364

53 1 148

53 3 192

Table 3

It now follows from Hurwitz’s genus formula that

g(C) = 1 + r

(
− 1 +

1

2

∑
α∈Fq∪∞

(
1− dα

r

))
. (4)

The sum over α ∈ Fq ∪∞ in the Formula (4) above is indeed a finite sum
over only the zeros and poles of the function µ(x) ∈ Fq(x). In fact, if α ∈ Fq is
not a zero of µ(x), then the multiplicity is equal to zero and hence dα = r.

From the genus Formula (4), we see that the genus g(C) is smaller as the
function µ(x) has fewer distinct zeros. So in general the inseparability of µ(x)
is desirable.

Now we turn to the rational points on Fq of the curve C given by Equa-
tion (3).
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134 ÁLVARO GARZÓN & HORACIO NAVARRO

If α ∈ Fq ∪∞ is a zero or pole of µ(x) with multiplicity mα, then we have
dα = gcd(r,mα) points on C with first coordinate x = α. On the other hand, if
α ∈ Fq, then it may be happen that the dα points on C with x = α are again
rational points over Fq. Here is how one decides if this is the case: If α is a zero
of µ(x), we can write

yr = g(x)(x− α)mα or

(
yr/dα

(x− α)mα/dα

)dα
= g(x), (5)

where g(x) ∈ Fq[x] with g(α) 6= 0. Then the dα points are all rational over Fq
if and only if g(α) is a dα–th power of an element of Fq.

On the other hand, if β ∈ Fq satisfies `(β)h(β) = 0 and f(β) 6= 0. Then, the
value of the function µ(x) at β is a r–th power (see formula 2). This guarantees
that we have r rational points on the curve C with first coordinate x = β as
above. So in order to have many rational points over Fq we will always take
`(x) as a polynomial having all its roots in the finite field Fq.

Now, if we denote by l1(x), the polynomial `(x)h(x)/ gcd
(
`(x)h(x), f(x)

)
,

then the number of Fq–rational points satisfies #C
(
Fq
)
≥ rλ where λ =

deg
(
l1(x)

)
.

Observe that here we only counted the rational points coming from the
roots of the polynomial l1(x) in Fq. Other rational points can coming from the
rational solutions γ ∈ Fq of the equation

R`
(
f(x)r

)(q−1)/r − 1 = 0 (6)

such that l1(γ) 6= 0. i.e.; those elements

γ ∈ Fq such that f(γ)r − `(γ)h(γ) is a r–th power of an element in Fq. (7)

We some times have carried out a computer search to determine the cardi-
nality κ of the set of such elements

κ := #
{
γ ∈ Fq such that l1(γ) 6= 0 and γ is a r-th power in Fq.

}
(8)

For each γ ∈ Fq satisfying (7) we have r rational points on C with first
coordinate x = γ. So in practice (when r is a proper divisor of q − 1), after
having a good candidate for a curve C with many rational points over Fq with
respect to its genus g(C) we some times have carried out a computer search to
determine the cardinality κ of the set of such elements.

3. Some Characterizations of Remainder Polynomial

The goal of this section is give some characterizations of the polynomialR`
(
f(x)

)
and then, we will use them to construct curves with many rational points
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DIVISION ALGORITHM AND CONSTRUCTION OF CURVES 135

Theorem 3.1. Let m ≥ 1 be a positive integer, f(x) and `(x) ∈ Fq[x] polyno-
mials such that:

(i) f(x) and `(x) are relatively prime.

(ii) deg
(
`(x)

)
= d, a divisor of m.

(iii) `(x) is irreducible.

Then, R`
(
f(x)q

m−1
)

= 1.

Proof. First suppose that deg
(
`(x)

)
= m. Since gcd

(
f(x), `(x)

)
= 1 and `(x)

is an irreducible polynomial, then f(x) /∈
〈
`(x)

〉
, and therefore the class of

f(x), in the residue class field F := Fq[x]/
〈
`(x)

〉
, is non zero. On the other

hand, since the finite field F has cardinality qm, then we have that

f(x)q
m−1 +

〈
`(x)

〉
=
(
f(x) +

〈
`(x)

〉)qm−1
= 1 +

〈
`(x)

〉
and therefore,

f(x)q
m−1 − 1 ∈

〈
`(x)

〉
;

consequently, there exits h(x) ∈ Fq[x] such that

f(x)q
m−1 = `(x)h(x) + 1,

that is to say, R`
(
f(x)q

m−1
)

= 1.

Now if deg
(
`(x)

)
= d with d 6= m, then by similar arguments as above we

obtain that f(x)q
d−1 = `(x)h(x) + 1 for some h(x) ∈ Fq[x] and since

qm − 1 = qdt − 1 =
(
qd
)t − 1 =

(
qd − 1

)(
qd(t−1) + · · ·+ 1

)
,

then we have:

f(x)q
m−1 =

(
f(x)q

d−1
)(qd(t−1)+···+1)

=(
`(x)h(x) + 1

)(qd(t−1)+···+1)
= `(x)h̃(x) + 1

for some h̃(x) ∈ Fq[x]. �X

Corollary 3.2. Let m ≥ 1 be a positive integer and let f(x), li(x) ∈ Fq[x] with
i = 1, 2 polynomials such that

(1) f(x) and li(x) are relatively prime,

(2) deg
(
li(x)

)
= di, a divisor of m,
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136 ÁLVARO GARZÓN & HORACIO NAVARRO

(3) li(x) is irreducible.

Then Rl1l2
(
f(x)q

m−1
)

= 1.

Proof. Suppose that

f(x)q
m−1 6= l1(x)l2(x)h(x) + 1

for all h(x) ∈ Fq[x]. By Theorem 3.1, the polynomial

f(x)q
m−1 − 1

l2(x)
/∈
〈
l1(x)

〉
and, since gcd

(
l1(x), l2(x)

)
= 1, we have that l2(x) /∈

〈
l1(x)

〉
and therefore,

f(x)q
m−1 − 1 =

f(x)q
m−1 − 1

l2(x)
l2(x) /∈

〈
l1(x)

〉
which is a contradiction. �X

Corollary 3.3. If f(x) and `(x) ∈ Fq[x] are coprime and `(x) is a proper

divisor of the polynomial xq
m− x then

R`
(
f(x)q

m−1
)

= 1.

Proof. It follows from Corollary 3.2 and the fact that the product of all
monic irreducible polynomials over Fq, whose degrees divide m, is precisely
xq

m− x. �X

In accordance with previous results, if we are interested in obtaining non-
constant remainders, the polynomials f(x) and `(x) must have at least one
common factor. This fact does not guarantee that it is always possible to char-
acterize the remainder polynomial, however with an appropriate choice of such
polynomials one has a nice results as it is shown in the next theorem.

Theorem 3.4. Let f(x) = x − 1 and `(x) = xh − 1 be polynomials in Fq[x]
with h =

(
qm − 1

)
/(q − 1). Then

R`
(

(x− 1)q
m−1

)
= −

h−1∑
i=1

xi = −
(
x+ x2 + · · ·+ xh−1

)
Proof. Let q(x) be the polynomial defined by
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q(x) =

q−2∑
i=1

i
(
x(q−1−i)h + x(q−1−i)h−1 + x(q−1−i)h−2 + · · ·+

x(q−1−i)h−(h−1)
)
− 1 =

q−2∑
i=1

i

(
h−1∑
k=0

x(q−1−i)h−k

)
.

Then,

(
xh − 1

)
q(x) =

q−2∑
i=1

i

(
h−1∑
k=0

x(q−i)h−k

)
− xh −

q−2∑
i=1

i

(
h−1∑
k=0

x(q−1−i)h−k

)
+ 1

=

h−1∑
k=0

x(q−1)h−k +

q−2∑
i=2

i

(
h−1∑
k=0

x(q−i)h−k

)
− xh

−
q−3∑
i=1

i

(
h−1∑
k=0

x(q−1−i)h−k

)
− (q − 2)

h−1∑
k=0

xh−k + 1

=

h−1∑
k=0

x(q−1)h−k +

q−3∑
i=1

(i+ 1)

(
h−1∑
k=0

x(q−1−i)h−k

)
− xh

−
q−3∑
i=1

i

(
h−1∑
k=0

x(q−1−i)h−k

)
+ 2

h−1∑
k=0

xh−k + 1

=

h−1∑
k=0

x(q−1)h−k +

q−3∑
i=1

(
h−1∑
k=0

x(q−1−i)h−k

)
− xh + 2

h−1∑
k=0

xh−k + 1

=

q−3∑
i=0

(
h−1∑
k=0

x(q−1−i)h−k

)
+ xh + 2

h−1∑
k=1

xh−k + 1

= x(q−1)h + · · ·+ xh + 2
(
xh−1 + · · ·+ x

)
+ 1.

On the other hand,

(x− 1)q
m−1 = xq

m−1 + · · ·+ xh + xh−1 + · · ·+ x+ 1

= x(q−1)h + · · ·+ xh + 2
(
xh−1 + · · ·+ x

)
+ 1−

(
xh−1 + · · ·+ x

)
=
(
xh − 1

)
q(x)−

(
xh−1 + · · ·+ x

)
. �X

Remark 3.5. Observe that the polynomial R`
(
(x− 1)q

m−1
)

has qm−2 + · · ·+
q2 + 2 different roots in Fqm−1 . In fact, first

R`
(
(x− 1)q

m−1
)

= −(xh−1 + · · ·+ x) = −x(x− 1)q−1

(
q+···+qm−2∑

i=0

xi

)q
.
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138 ÁLVARO GARZÓN & HORACIO NAVARRO

Second, the polynomial p(x) =

q+···+qm−2∑
i=0

xi = 1 + x + x2 + · · · + xq+···+q
m−2

is separable because if h̃ = 1 + q + · · · + qm−2, then the polynomial xh̃ − 1 is
separable and since

p(x)(x− 1) = xh̃ − 1,

then p(x) is also separable. Finally, it is easy to see that if αh̃ − 1 = 0, then
α ∈ Fqm−1 .

We end up this section with some characterizations of the remainder poly-
nomial in the particular case when the polynomial `(x) belongs to certain class
of polynomials over finite fields, that will be used in next section for the con-
struction of some curves with many rational points. First we begin with a
definition.

Let m, j be integers with m ≥ 1 and let sj(x1, x2, . . . , xm) be the elementary
symmetric function in m variables over Fq. For all j ∈ Z and integers m ≥ 1
we define a polynomial sm,j(x) ∈ Fq[x] (see [1]) as follows:

sm,j(x) := 0, for j < 0

sm,0(x) := 1

sm,1(x) := s1

(
x, xq, . . . , xq

m−1
)

= x+ xq + · · ·+ xq
m−1

sm,2(x) := s2

(
x, xq, . . . , xq

m−1
)

= x1+q + x1+q2 + · · ·+ xq
m−2+qm−1

...

sm,m(x) := sm

(
x, xq, . . . , xq

m−1
)

= x1+q+···+qm−1

sm,j(x) := 0, for j > m.

Observe that the polynomials sm,1(x) = x+xq+ · · ·+xq
m−1

and sm,m(x) =

x1+q+···+qm−1

are nothing but the trace and norm polynomials corresponding
to the finite extension Fqm/Fq.

Theorem 3.6. If f(x) = x and `(x) = sm,1(x), then

Rsm,1
(
xq

m−1
)

= −x
q + · · ·+ xq

m−1

x
= −sm−1,1(x)q

x

Proof. The proof is direct:
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xq
m−1 =

xq
m

x
=
xq + · · ·+ xq

m−1

+ xq
m −

(
xq + · · ·+ xq

m−1
)

x

=

(
x+ xq + · · ·+ xq

m−1
)q
−
(
xq + · · ·+ xq

m−1
)

x

=

(
x+ xq + · · ·+ xq

m−1
)q

x
−

(
xq + · · ·+ xq

m−1
)

x

= sm,1(x)
sm,1(x)q−1

x
− sm−1,1(x)q

x
�X

Theorem 3.7. Let f(x) = x + 1, τm(x) :=
∑m−1
j=0 sm,j(x) and h =

(
qm −

1
)
/(q − 1) then

Rτm
(
(x+ 1)h

)
= −x(x+ 1)τm−1(x)q

Proof. See [2] Lemma 3.3. �X

Remark 3.8. With notations as Theorem 3.7, we have:

(i) The polynomial τm(x) is separable, its roots belong to Fqm and has degree
h− 1.

(ii) The polynomial Rτm
(
(x + 1)h

)
has qm−2 + · · · + q + 2 different roots in

Fqm−1 .

(iii) sm,m(x+ 1) = τm(x) + sm,m(x).

Proof. See [2] Lemmas 3.2 and 3.3. �X

4. Constructions

In this section we will construct curves over finite fields using the characteri-
zations obtained in section above.

Theorem 4.1. Let h = (qm − 1)/(q− 1). The nonsingular complete geometri-
cally irreducible curve C over Fqm defined by the Kummer equation

yr = R`
(
(x− 1)q

m−1
)

= −
(
x+ x2 + · · ·+ xh−1

)
with r > 1 a divisor of qm − 1, has genus

g(C) =
2 + (r − 1)

(∑m−2
i=0 qi

)
− e1 − e∞

2
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with e1 = gcd(r, q − 1) and e∞ = gcd
(
r, 1 + q + · · · + qm−2

)
. The number of

rational points satisfies

#C
(
Fq
)
≥ r(h− 1) = r

(
qm−1 + · · ·+ q

)
Proof. By Remark 3.5, the polynomial R`

(
(x−1)q

m−1
)

has qm−2 + · · ·+q2 +2

different roots in Fqm−1 and one can write R`
(
(x− 1)q

m−1
)

as

R`
(
(x− 1)q

m−1
)

= −x(x− 1)q−1

(
q+···+qm−2∑

i=0

xi

)q
.

In this case, we have qm−2 + · · · + q2 + 1 points totally ramified in C with
ramification index r, namely x = 0 and x = α with α ∈ Fqm−1 corresponding to

the roots of R`
(
(x− 1)q

m−1
)

in Fqm−1 r {0, 1}. The point with first coordinate
x = 1 has ramification index e1 = gcd(r, q − 1), and the point at infinity has
ramification index e∞ = gcd(r, 1 + q + · · ·+ qm−2). Then, the formula for the
genus follows by (4).

The claim about the number of rational points is clear. �X

Corollary 4.2. If m = 2 and r = q2− 1, then the curve C over Fq2 defined by
the Kummer equation

yq
2−1 = R`

(
(x− 1)q

2−1
)

= −x(x− 1)q−1

is the Hermitian curve.

Proof. Observe that the points with first coordinate x = 0, x = 1 and x =∞
have ramification index e0 = q2 − 1, e1 = q + 1 and e∞ = q2 − 1 respectively.
Now it is easy to see that g(C) =

(
q2 − q

)
/2.

For the rational points, by Theorem 4.1, we have #C(Fq2) ≥ (q2 − 1)q.

The points above x = 0 and x = ∞ are rational and those (q − 1) above
x = 1 are also rational. Therefore #C(Fq2) = (q2−1)q+(q−1)+2 = q3+1. �X

As an application of Theorem 4.1 we have:

Example 4.3. In this example we will construct a curve C over F53 with
g(C) = 7 and 220 rational points. This is a new entry in [7]. The curve C is
defined by the Kummer equation

y4 = µ(x) := −(x+x2+· · ·+x30) = −x(1+x)5(4+x)4(1+x+x2)5(1+4x+x2)5.

In this case we have that h = (53−1)/4 = 31 and therefore by Theorem 4.1,
the polynomial `(x) = x31 − 1 provides r × (h − 1) = 4 × 30 = 120 rational
points. Other points could be found if we analyze the solutions of Equation (6).
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In this particular case the exact value of κ in (8) is 24, namely, the roots of the
polynomial

1 + x+ x2 + 3x3 + 2x4 + 3x5 + 3x6 + 4x8+

4x9 + 4x10 + x11 + x12 + 4x13 + x14 + 4x15 + 4x16+

x17 + 4x18 + 4x19 + 2x20 + 2x21 + 3x22 + 3x23 + x24,

and hence we have 4× 24 = 96 additional points.

Finally, we will analyze the ramification points of the function µ(x). First,
observe that µ(x) has three roots in F5 ⊂ F53 , namely x = 0, x = 1 and x = −1,
the other four roots (those roots of the polynomials 1 +x+x2 and 1 + 4x+x2)
belongs to F52 .

By (5), the points with first coordinate x = 0, x = −1 and x = ∞ are
rational, while the points above x = 1 are not rational. Hence we have d0 +
d1 + d∞ = 1 + 1 + 2 = 4 extra rational points. Summarizing, the curve C has
120 + 96 + 4 = 220 rational points. The genus follows from Theorem 4.1.

We now summarize the results obtained in the particular case when q = p3

(Table 4). In this case r a divisor of p3 − 1, h = p2 + p+ 1 and the curves are
defined by the Kummer equation:

yr = −
(
x+ x2 + · · ·+ xp

2+p
)
.

We omit the details.

q3 r g(C) #C
(
Fq3
)

old entry

23 7 9 45 45

33 2 1 38 38

53 4 7 220

113 2 5 1438

133 3 13 2592

173 2 8 5202

193 3 19 7560

Table 4. Examples of curves with many points using Theorem 4.1.

Now we will construct curves over Fqm using the Theorem 3.6.

Theorem 4.4. The nonsingular complete geometrically irreducible curve C
over Fqm defined by the Kummer equation

yr = Rsm,1
(
xq

m−1
)

= −sm−1,1(x)q

x
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142 ÁLVARO GARZÓN & HORACIO NAVARRO

with r > 1, a divisor of qm − 1, has genus

g(C) =
(r − 1)

(
qm−1 − 2

)
− 2(e0 − 1)

2

where e0 = gcd(r, q − 1), and the number of rational points satisfies

#C(Fq) ≥ r
(
qm−1 − 1

)
.

Proof. First observe that the polynomial sm−1,1(x) is separable and has its
roots in Fqm−1 . Therefore we have exactly qm−2 − 1 points totally ramified in
C with ramification index r. The points x = 0 and x = ∞ have ramification
index e0 = gcd(r, q − 1). Here we write the polynomial Rsm,1

(
xq

m−1
)

as

Rsm,1
(
xq

m−1
)

= −sm−1,1(x)q

x
= −xq−1

(
1 + xq−1 + · · ·+ xq

m−2−1
)q
.

Now the genus follows from (4). The affirmation corresponding to the num-
ber of rational points is clear. �X

Example 4.5. In this example we will construct a curve C over F53 with
g(C) = 3 and 192 rational points. This is the better value known in [7]. The
curve C is defined by the Kummer equation F53

y4 = −
(
x4 + x24

)
= −x4

(
2 + x2

)5(
3 + x2

)5
.

Since the polynomial `(x) = x25 + x5 + x has all its roots in F53 , then we
have r× (h− 1) = 4× 24 = 96 rational points. The value κ in (8) for this case
is κ = 24, namely, the roots of the polynomial

1 + x20 + x24

hence we have 4×24 = 96 additional points. Finally, by (5), the points with first
coordinate x = 0, x =∞ and x = α ∈ F53 , which are roots of the polynomials(
2 + x2

)
and

(
3 + x2

)
, are not rational. The genus follows from Theorem 4.4.

In Table 5 we summarize some results obtained using Theorem 4.4 in the
particular case q = p and m = 3. The curves C are defined by the Kummer
equation

yr = −
(
xp−1 + xp

2−1
)

Now, we will construct curves over Fqm using Theorem 3.7.

Theorem 4.6. Let m ≥ 2. The nonsingular complete geometrically irreducible
curve C over Fqm defined by the Kummer equation

yr = Rτm((x+ 1)h) = −x(x+ 1)τm−1(x)q
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q3 r g(C) #C
(
Fq3
)

old entry

23 7 3 24 24

33 26 24 208 208

53 2 1 148 148

53 4 3 192 192

73 18 46 1512

113 2 4 1580 1422

113 5 16 1810

133 2 5 2356

133 4 15 2688

173 2 7 5220 5204

173 4 21 5768

193 2 8 6588

193 3 16 6972

Table 5. Examples of curves with many points using Theorem 4.4.

with r|d, has genus

g(C) =
(r − 1)

(∑m−2
i=1 qi

)
+ r − e∞

2

where e∞ = gcd(r, q − 1) and the number rational points satisfies

#C(Fq) ≥ r(h− 1) = r
(
q + q2 + · · ·+ qm−1

)
.

Proof. By Remark 3.8, the polynomial Rlm
(
(x+ 1)h

)
has qm−2 + · · ·+ q + 2

different roots α ∈ Fqm−1 , so, each point on C with first coordinate x = α has
ramification index r. The point at∞ has ramification index e∞ = gcd(r, q−1).
Now the genus follows from (4).

To obtain a bound to the number of rational points, observe that since
τm(x) = sm,m(x+ 1)− sm,m(x), then τm(−1) = (−1)m+1 6= 0; so, the polyno-
mials x + 1 and τm(x) are coprimes and hence we conclude that the number
rational points satisfies #C(Fq) ≥ r(h− 1). �X

Corollary 4.7. If m = 2 and r = q + 1, then the curve C over Fq2 defined by
the Kummer equation

yq+1 = Rτ2
(
(x+ 1)h

)
= −x(x+ 1)

is maximal.
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Proof. The points x = 0, x = 1 and the point at ∞ have ramification index
e0 = q + 1, e1 = q + 1 and e∞ = (q + 1)/ gcd(q + 1, 2) respectively. Now it is
easy to see that g(C) =

(
q + 1− gcd(q + 1, 2)

)
/2.

For the rational points, observe that since τ2(x) = xq + x + 1, then by
Theorem 4.6, we have at least (q + 1)q rational points. The points on C with
first coordinate x = 0, x = 1 are rational and the gcd(q+ 1, 2) points above ∞
are also rational.

On the other hand, the exact value of κ in (8) is

κ =

{
(q + 1)(q − 2), if q is even;

(q + 1)(q − 3), if q is odd.

Therefore

#C
(
Fq2
)

=

{
2q2 + 1, if q is even;

2q2 − q + 1, if q is odd.
�X

As an application of Theorem 4.6 we have:

Example 4.8. In this example we will construct a curve C over F23 with
g(C) = 9 and #C

(
F23

)
= 45. This is the better value known in [7]. We defined

the curve C over F23 by equation

y7 = µ(x) := x(1 + x)
(
1 + x+ x2

)2
.

In this case we have that h =
(
23−1

)
/1 = 7 and therefore by Theorem 4.6,

the polynomial

τ2(x) = 1 + x+ x2 + x3 + x4 + x5 + x6

provides r× (h−1) = 7×6 = 42 rational points. Other points could come from
the analysis of the solutions of Equation (6). In this case the exact value of κ
in (8) is 0.

Finally, we will analyze the ramification points of the function µ(x). First,
observe that µ(x) has two roots in F2 ⊂ F23 , namely x = 0 and x = 1. The other
two roots (those roots of the polynomial 1 +x+x2) belongs to F22 . By (5) the
points with first coordinate x = 0, x = 1 and x =∞ are rational, and we have
exactly d0 + d1 + d∞ = 1 + 1 + 1 = 3 extra rational points. Summarizing, the
curve C has 42 + 3 = 45 rational points. The genus follows from Theorem 4.6.

In Table 6 we summarize some examples using Theorem 4.6. In the partic-
ular case q = p and m = 3 we have that h = q + 1, r is a divisor of q + 1 and
the Kummer equation

yr = −x(x+ 1)τ2(x)q = −x(x+ 1)(xq + x+ 1)q
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Example q r g(C) #C
(
Fq
)

old entry

3.1 23 7 9 45 45

3.2 133 3 13 2592

3.3 193 3 19 7560

Table 6. Examples of curves with many points using Theorem 4.6.

5. Others Examples

In general, given two polynomials f(x), `(x) ∈ Fq[x], it is very hard to give
a characterization of the remainder polynomial R`

(
f(x)

)
. However, although

we do not give an explicit formula for the remainder, we are going to give 4
examples of good curves over the finite field F243. These curves are defined as
always by Kummer equations of the kind yn = R`

(
f(x)

)
, with r and n divisors

of q − 1. In this particular case we will take f(x) = x and the polynomial `(x)
as a product of irreducible polynomials form the list below.

l1(x) = 1 + x

l2(x) = 2 + x

l3(x) = 1 + x+ 2x2 + x3 + x4 + x5

l4(x) = 1 + 2x2 + 2x3 + x4 + x5

l5(x) = 1 + x+ 2x4 + x5

l6(x) = 1 + 2x+ 2x3 + 2x4 + x5

l7(x) = 2 + 2x2 + 2x3 + x4 + x5

l8(x) = 2 + 2x2 + 2x4 + x5

l9(x) = 2 + x+ x2 + x3 + 2x4 + x5

l10(x) = 2 + 2x+ 2x2 + x3 + 2x4 + x5

l11(x) = 2 + 2x+ 2x3 + x4 + x5

Example 5.1. Taking `(x) = l3(x)l4(x)l5(x)l6(x), r = 22 and n = 2, we obtain

R`
(
x22
)

= 2x2(1 + x)2(2 + x)
(
1 + x2

)2(
2 + 2x+ x4

)(
1 + 2x+ x5

)
.

Now it is easy to verify that the curve C defined by the equation

y2 = 2x2(1 + x)2(2 + x)
(
1 + x2

)2(
2 + 2x+ x4

)(
1 + 2x+ x5

)
has g(C) = 4 and #C

(
F35

)
= 306.

Example 5.2. Taking `(x) = l7(x)l8(x)l9(x)l10(x), r = 22 and n = 2, we gets
the curve C defined by the equation

y2 = x
(
2+2x+x2

)2(
1+x+x2+x3+x4

)(
1+2x+2x2+x3+x4+2x5+2x6+2x7+x9

)
,
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which has g(C) = 6 and 345 rational points.

Example 5.3. The curve C given by y11 = 2 + x + x2 has g(C) = 5 and
#C
(
F35

)
= 364.

Here we take r = n = 11 and `(x) = l1(x)2l2(x). Then R`
(
x11
)

= 2+x+x2.

Example 5.4. The curve C defined by y11 = (2+x)3
(
2+x2+x3

)
has g(C) = 15

and #C
(
F35

)
= 519.

We here take r = n = 11 and `(x) = l3(x)l11(x). Hence

R`(x11) = 1 + 2x2 + x3 + x5 + x6 = (2 + x)3
(
2 + x2 + x3

)
We summarize the results obtained in this section in Table 7.

q r g(C) #C
(
Fq
)

old entry

35 2 4 306

35 11 5 364 364

35 2 6 345

35 11 15 519

Table 7. Examples of curves with many points over F243.
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Universidad del Valle

Facultad de Ciencias

Carrera 13 No 100-00

Cali, Colombia

e-mail: alvaro.garzon@correounivalle.edu.co

e-mail: horacio.navarro@correounivalle.edu.co

Revista Colombiana de Matemáticas
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