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The Stekloff Problem for Rotationally

Invariant Metrics on the Ball

El problema de Stekloff para métricas rotacionalmente invariantes
en la bola
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Abstract. Let (Br, g) be a ball of radius r > 0 in Rn (n ≥ 2) endowed
with a rotationally invariant metric ds2 + f2(s)dw2, where dw2 represents the
standard metric on Sn−1, the (n−1)–dimensional unit sphere. Assume that Br

has non–negative sectional curvature. In this paper we prove that if h(r) > 0
is the mean curvature on ∂Br and ν1 is the first eigenvalue of the Stekloff
problem, then ν1 ≥ h(r). Equality

(
ν1 = h(r)

)
holds only for the standard

metric of Rn.
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Resumen. Sea (Br, g) una bola de radio r > 0 en Rn (n ≥ 2) dotada con
una métrica g rotacionalmente invariante ds2 + f2(s)dw2, donde dw2 repre-
senta la métrica estándar sobre Sn−1, la esfera unitaria (n− 1)–dimensional.
Asumamos que Br tiene curvatura seccional no negativa. En este art́ıculo
demostramos que si h(r) > 0 es la curvatura media sobre ∂Br y ν1 es el
primer valor propio del problema de Stekloff, entonces ν1 ≥ h(r). La igualdad(
ν1 = h(r)

)
se tiene sólo si g es la métrica estándar de Rn.

Palabras y frases clave. Valor propio de Stekloff, métrica rotacionalmente in-
variante, curvatura seccional no negativa.

1. Introduction

Let (Mn, g) be a compact Riemannian manifold with boundary. The Stekloff
problem is the following: find a solution for the equation
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∆ϕ = 0 in M,

∂ϕ

∂η
= νϕ on ∂M,

(1)

where ν is a real number. Problem (1) for bounded domains in the plane was
introduced by Stekloff in 1902 (see [7]). His motivation came from physics. The
function ϕ represents a steady state temperature on M such that the flux on
the boundary is proportional to the temperature. Problem (1) is also important
in conductivity and harmonic analysis as it was initially studied by Calderón
in [1]. This is because the set of eigenvalues for the Stekloff problem is the
same as the set of eigenvalues of the well-known Dirichlet-Neumann map. This
map associates to each function u defined on the boundary ∂M , the normal
derivative of the harmonic function on M with boundary data u. The Stekloff
problem is also important in conformal geometry in the problem of conformal
deformation of a Riemannian metric on manifolds with boundary. The set of
eigenvalues consists of an infinite sequence 0 < ν1 ≤ ν2 ≤ ν3 ≤ · · · such
that νi → ∞. The first non–zero eigenvalue ν1 has the following variational
characterization,

ν1 = min
ϕ

{∫
M
|∇ϕ|2 dυ∫

∂M
ϕ2 dσ

: ϕ ∈ C∞
(
M
)
,

∫
∂M

ϕdσ = 0

}
. (2)

For convex domains in the plane, Payne (see [6]) showed that ν1 ≥ ko,
where ko is the minimum value of the curvature on the boundary of the do-
main. Escobar (see [2]) generalized Payne’s Theorem (see [6]) to manifolds
2-dimensionals with non–negative Gaussian curvature. In this case Escobar
showed that ν1 ≥ k0, where kg ≥ k0 and kg represents the geodesic curvature
of the boundary. In higher dimensions, n ≥ 3, for non–negative Ricci curvature
manifolds, Escobar shows that ν1 >

1
2k0, where k0 is a lower bound for any

eigenvalue of the second fundamental form of the boundary. Escobar (see [3])
established the following conjecture.

Conjecture 1.1. Let (Mn, g) be a compact Riemannian with boundary and
dimension n ≥ 3. Assume that Ric(g) ≥ 0 and that the second fundamental
form π satisfies π ≥ k0I on ∂M , k0 > 0. Then

ν1 ≥ k0.

Equality holds only for Euclidean ball of radius k−1
0 .

We propose to prove the conjecture for rotationally invariant metrics on the
ball.
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2. Preliminaries

Throughout this paper Br will be the n–dimensional ball of radius r > 0
parametrized by

X(s, w) = sY (w), 0 ≤ s ≤ r, (3)

where Y (w) is a standard parametrization of the unit sphere (n−1)–dimensional,
Sn−1, given by

Y (w) = Y (w1, . . . , wn−1)

= (sinwn−1 sinwn−2 · · · sinw1, . . . , sinwn−1 coswn−2, coswn−1).

(Br, g) will be the ball endowed with a rotationally invariant metric, i.e., such
that in the parametrization (3) has the form

ds2 + f2(s)dw2,

where dw2 represents the standard metric on Sn−1, with f(0) = 0, f ′(0) = 1
and f(s) > 0 for 0 < s ≤ r.

If D is the Levi-Civita connection associated to the metric g, and Xs(s, w) =
Y (w), Xi(s, w) = ∂

∂wi
X(s, w) = sYi(w), i = 1, . . . , n − 1, are the coordinate

fields corresponding to the parametrization (3), it is easy to verify the following
identities:

DXs
Xs = 0. (4)

DXi
Xs =

f ′

f
Xi. (5)

DXn−1Xn−1 = −ff ′Xs. (6)

DXn−2
Xn−2 = −ff ′ sin2 wn−1Xs − sinwn−1 coswn−1Xn−1. (7)

DXn−1
Xn−2 =

coswn−1

sinwn−1
Xn−2. (8)

All calculations depend on the definition of the metric and the relation
between the metric and the connection. To coordinate fields, this relation is
given by

g
(
DXiXj , Xk

)
=

1

2
Xjg

(
Xi, Xk

)
+

1

2
Xig

(
Xj , Xk

)
− 1

2
Xkg

(
Xi, Xj

)
. (9)

These identities are necessary to calculate the mean curvature and the sectional
curvatures. As an example we show the identity (8).

On the one hand
g
(
DXn−1Xn−2, Xs

)
= 0,

and
g
(
DXn−1Xn−2, Xi

)
= 0, i = 1, . . . , n− 3.
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On the other hand

g
(
DXn−1

Xn−2, Xn−1

)
=

1

2
Xn−2g

(
Xn−1, Xn−1

)
=

1

2
Xn−2f

2(s) = 0,

and

g
(
DXn−1Xn−2, Xn−2

)
=

1

2
Xn−1g

(
Xn−2, Xn−2

)
=

1

2
Xn−1f

2 sin2 wn−1

= f2 sinwn−1 coswn−1.

From the above we conclude that DXn−1
Xn−2 = coswn−1

sinwn−1
Xn−2.

3. Curvatures

Let Xs(r, w) = Y (w) be the outward normal vector field to the boundary

of Br, ∂Br. The identity (5) implies that g
(
DXiXs, Xi

)
= g

(
f ′

f Xi, Xi

)
=(

f ′

f

)
g
(
Xi, Xi

)
. Hence, the mean curvature h(r) is given by

h(r) =
1

n− 1

n−1∑
i=1

g
(
Xi, Xi

)−1
g
(
DXi

Xs, Xi

)
=
f ′(r)

f(r)
. (10)

Proposition 3.1. The sectional curvature K
(
Xi, Xs

)
, i = 1, . . . , n−1 is given

by

K
(
Xi, Xs

)
=
−f ′′(s)
f(s)

. (11)

Proof. From (5), g
(
DXi

Xs, Xi

)
= ff ′dw2

(
Yi, Yi

)
. Differentiating with respect

to Xs we get

g
(
DXsDXiXs, Xi

)
= −g

(
DXiXs, DXiXs

)
+
(
f ′
)2
dw2

(
Yi, Yi

)
+ ff ′′dw2

(
Yi, Yi

)
= −g

(
f ′

f
Xi,

f ′

f
Xi

)
+
(
f ′
)2
dw2

(
Yi, Yi

)
+ ff ′′dw2

(
Yi, Yi

)
= ff ′′dw2

(
Yi, Yi

)
.

From (4),

g
(
DXi

DXs
Xs, Xi

)
= g
(
DXi

0, Xi

)
= 0,

then
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K
(
Xi, Xs

)
=

1

g(Xi, Xi)

{
g
(
DXiDXsXs, Xi

)
− g
(
DXsDXiXs, Xi

)}
=
−f ′′

f
. �X

Proposition 3.2. The sectional curvature K
(
Xn−1, Xn−2

)
is given by

K
(
Xn−1, Xn−2

)
=

1−
(
f ′(s)

)2
f2(s)

. (12)

Proof. From identities (6),(7) and (8), we get

g
(
DXn−1Xn−1, DXn−2Xn−2

)
=
(
ff ′
)2

sin2 wn−1,

and
g
(
DXn−1Xn−2, DXn−1Xn−2

)
= f2 cos2 wn−1.

From equation (9) it follows that

g
(
DXn−2Xn−2, Xn−1

)
= −1

2
Xn−1g

(
Xn−2, Xn−2

)
= −f2 sinwn−1 coswn−1.

Differentiating with respect to Xn−1 we get

g
(
DXn−1DXn−2Xn−2, Xn−1

)
=

− g
(
DXn−2

Xn−2, DXn−1
Xn−1

)
+ f2

(
sin2 wn−1 − cos2 wn−1

)
.

Therefore

g(DXn−1DXn−2Xn−2, Xn−1) =

− (ff ′)2 sin2 wn−1 + f2(sin2 wn−1 − cos2 wn−1). (13)

On the other hand,

g
(
DXn−1

Xn−2, Xn−1

)
=

1

2
Xn−2g

(
Xn−1, Xn−1

)
= 0.

Differentiating this equation with respect to Xn−2 we get

g(DXn−2
DXn−1

Xn−2, Xn−1) =

− g(DXn−1
Xn−2, DXn−1

Xn−2) = −f2 cos2 wn−1. (14)

From equations (13) and (14) the proposition follows. �X
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4. The First Nonconstant Eigenfunction for the Stekloff Problem
on Br

In the following theorem Escobar characterized the first eigenfunction of a
geodesic ball which has a rotationally invariant metric (see [4]).

Theorem 4.1. Let Br be a ball in Rn endowed with a rotationally invariant
metric ds2 + f2(s)dw2, where dw2 represents the standard metric on Sn−1,
with f(0) = 0, f ′(0) = 1 and f(s) > 0 for 0 < s ≤ r. The first non–constant
eigenfunction for the Stekloff problem on Br has the form

ϕ(s, w) = ψ(s)e(w), (15)

where e(w) satisfies the equation ∆e+ (n− 1)e = 0 on Sn−1 and the function
ψ satisfies the differential equation

1

fn−1(s)

d

ds

(
fn−1(s)

d

ds
ψ(s)

)
− (n− 1)ψ(s)

f2(s)
= 0 in (0, r), (16)

with the conditions

ψ′(r) = ν1ψ(r),

ψ(0) = 0.
(17)

Proof. We use separation of variables and observe that the space L2(Br) is
equal to the space L2(0, r)⊗L2(Sn−1). Let {ei}, i = 0, 1, 2, . . . , be a complete
orthogonal set of eigenfunctions for the Laplacian on Sn−1 with associated
eigenvalues λi such that 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . For i ≥ 1, let ψi be the
function satisfying

1

fn−1(s)

d

ds

(
fn−1(s)

d

ds
ψi(s)

)
− (n− 1)ψi(s)

f2(s)
= 0 in (0, r),

ψ′i(r) = βiψi(r), ψi(0) = 0.

Let u0 = 1 and ui = ψi(s)ei(w) for i = 1, 2, . . .. The set {ui} for i =
0, 1, 2, . . . forms an orthogonal basis for L2(Br).

Recall that the first non-zero Stekloff eigenvalue has the variational charac-
terization

ν1 = min∫
∂Br

ϕdσ=0

∫
Br

∣∣∇ϕ∣∣2 dv∫
∂Br

ϕ2 dσ
.

Since for i ≥ 1

βi =

∫
Br

∣∣∇ui∣∣2fn−1 ds dw∫
∂Br

u2
i f
n−1 dw

=

∫ r
0

(
d
dsψi

)2
fn−1 ds+ λi

∫ r
0

(ψi)
2fn−3 ds

ψ2
i (r)fn−1(r)
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and λi ≥ λ1 = n− 1, we get that βi ≥ β1. Because the competing functions in
the variational characterization of ν1 are orthogonal to the constant functions
on ∂Br, we easily find that ν1 = β1.

Using the formula ∆gϕ = ∂2ϕ
∂s2 + (n − 1) f

′

f
∂ϕ
∂s + 1

f2 ∆ϕ, where ∆ is the

standard Laplacian on Sn−1, the equation (16) follows. �X

When n = 2, the function ψ has the form ψ(s) = ce
∫ s du

f(u) for c constant.

The first eigenvalue and the mean curvature are given by ν1 = ψ′(r)
ψ(r) = 1

f(r)

and h(r) = f ′(r)
f(r) . From this we observe:

Remark 4.2. When f(s) = s + s3 or f(s) = sinh(s) (the hyperbolic space
with curvature −1) since f ′(r) > 1 then ν1 < h(r). Therefore for n = 2, the
condition that Br has non-negative sectional curvature is necessary.

Remark 4.3. From Proposition 3.1, the condition of non–negative sectional
curvature implies that f ′′(s) ≤ 0, and therefore f ′ is decreasing. Since f ′(0) =
1, then f ′(r) ≤ 1. Hence, for n = 2 the condition of non–negative sectional
curvature implies ν1 ≥ h(r). As examples of these metrics we have f(s) = s
(standard metric), f(s) = sin(s) (constant sectional curvature equal to 1) and

f(s) = s− s3

6 .

5. Main Theorem

Theorem 5.1. Let (Br, g) be a ball in Rn (n ≥ 3) endowed with a rotationally
invariant metric. Assume that Br has non-negative sectional curvature and
mean curvature on ∂Br, h(r) > 0. Then the first non-zero eigenvalue of the
Stekloff problem ν1 satisfies ν1 ≥ h(r). Equality holds only for the standard
metric of Rn.

Proof. The coordinate functions are eigenfunctions of the Laplacian on Sn−1.
From the equation (15) it follows that ϕ(s, w) = ψ(s) coswn−1 is an eigenfunc-

tion associated to the first eigenvalue ν1. Consider the function F = 1
2

∣∣∇ϕ∣∣2.

Since ϕ is a harmonic function and Ric
(
∇ϕ,∇ϕ

)
≥ 0, the Weizenböck formula

(see [5])

∆F =
∣∣Hess(ϕ)

∣∣2 + g
(
∇ϕ,∇(∆ϕ)

)
+ Ric(∇ϕ,∇ϕ)

implies that ∆F ≥ 0, and hence F is a subharmonic function. Therefore, the
maximum of F is achieved at some point P (r, θ) ∈ ∂Br. Hopf’s Maximum
Principle implies that ∂F

∂s (r, θ) > 0 or F is constant. Since

F (s, w) =
1

2

{(
∂ϕ

∂s

)2

+ f−2

(
∂ϕ

∂wn−1

)2}
=

1

2

{(
ψ′
)2

cos2 wn−1 +

(
ψ

f

)2

sin2 wn−1

}
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and F is a non-constant function, then

∂F

∂s
(r, θ) = ψ′ψ′′ cos2 θn−1 +

ψ

f

(
ψ

f

)′
sin2 θn−1 > 0. (18)

Evaluating ∂F
∂wn−1

(s, w) at the point P we find that

∂F

∂wn−1
(r, θ) =

((
ψ

f

)2

−
(
ψ′
)2)

sin θn−1 cos θn−1 = 0. (19)

The equation (19) implies that(
ψ(r)

f(r)

)2

−
(
ψ′(r)

)2
= 0,

or
sin θn−1 = 0 and cos2 θn−1 = 1,

or
sin2 θn−1 = 1 and cos θn−1 = 0.

If (
ψ(r)

f(r)

)2

−
(
ψ′(r)

)2
= 0,

given that ψ(r) 6= 0 (ψ(r) = 0 implies ϕ = 0 on ∂Br and thus, ϕ is a constant
function on Br which is a contradiction), it follow from (17) that

(ν1)2 =

(
ψ′(r)

ψ(r)

)2

=

(
1

f(r)

)2

. (20)

The condition h(r) > 0 and (10) implies that f ′(r) > 0. Since Br has non–
negative sectional curvature then (12) implies that 1 ≥ (f ′)2. Then(

1

f(r)

)2

≥
(
f ′(r)

f(r)

)2

=
(
h(r)

)2
. (21)

From (20) and (21) it follows that ν1 ≥ h(r).

Equality holds only for f ′(r) = 1. If

sin θn−1 = 0 and cos2 θn−1 = 1,

then

F
(
r, θ1, . . . , θn−2, θn−1

)
− F

(
r, θ1, . . . , θn−2,

π

2

)
=

1

2

{
(ψ′)2 −

(
ψ

f

)2
}
≥ 0
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thus

(ν1)2 =

(
ψ′(r)

ψ(r)

)2

≥
(

1

f(r)

)2

≥
(
f ′(r)

f(r)

)2

=
(
h(r)

)2
.

Equality holds only for f ′(r) = 1.

If

sin2 θn−1 = 1 and cos θn−1 = 0,

from (18) we have
∂F

∂s
(P ) > 0

since
ψ

f

(
ψ

f

)′
> 0.

Thus (
ψ

f

)(
fν1ψ − f ′ψ

f2

)
=

(
ψ

f

)2(
ν1 − h(r)

)
> 0.

The inequality is strict.

In any case we conclude that ν1 ≥ h(r). If equality is attained then f ′(r) =
1. Since the sectional curvature is non-negative, then (11) implies that f ′′(s) ≤
0. f ′(0) = 1 = f ′(r) and f ′′(s) ≤ 0 implies f ′ ≡ 1. Since f(0) = 0, then
f(s) = s. Consequently g is the standard metric on Rn. �X
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