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The Stekloff Problem for Rotationally
Invariant Metrics on the Ball

El problema de Stekloff para métricas rotacionalmente invariantes
en la bola

OSCAR ANDRES MONTANO CARRENO

Universidad del Valle, Cali, Colombia

AstrACT. Let (Br,g) be a ball of radius » > 0 in R" (n > 2) endowed
with a rotationally invariant metric ds® + f?(s)dw?, where dw? represents the
standard metric on S™7!, the (n—1)-dimensional unit sphere. Assume that B,
has non—negative sectional curvature. In this paper we prove that if A(r) > 0
is the mean curvature on 9B, and v; is the first eigenvalue of the Stekloff
problem, then v1 > h(r). Equality (1/1 = h(r)) holds only for the standard
metric of R™.
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RESUMEN. Sea (B, g) una bola de radio 7 > 0 en R™ (n > 2) dotada con
una métrica g rotacionalmente invariante ds® + f2(s)dw?, donde dw? repre-
senta la métrica estandar sobre S™ 71, la esfera unitaria (n — 1)-dimensional.
Asumamos que B, tiene curvatura seccional no negativa. En este articulo
demostramos que si h(r) > 0 es la curvatura media sobre 0B, y v1 es el
primer valor propio del problema de Stekloff, entonces v1 > h(r). La igualdad
(1 = h(r)) se tiene sélo si g es la métrica estdndar de R".

Palabras y frases clave. Valor propio de Stekloff, métrica rotacionalmente in-
variante, curvatura seccional no negativa.

1. Introduction

Let (M™,g) be a compact Riemannian manifold with boundary. The Stekloff
problem is the following: find a solution for the equation
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Ap=0 in M,

1
%:I/Qp on JOM, M)
on

where v is a real number. Problem for bounded domains in the plane was
introduced by Stekloff in 1902 (see [7]). His motivation came from physics. The
function ¢ represents a steady state temperature on M such that the flux on
the boundary is proportional to the temperature. Problem is also important
in conductivity and harmonic analysis as it was initially studied by Calderén
in [I]. This is because the set of eigenvalues for the Stekloff problem is the
same as the set of eigenvalues of the well-known Dirichlet-Neumann map. This
map associates to each function u defined on the boundary dM, the normal
derivative of the harmonic function on M with boundary data u. The Stekloff
problem is also important in conformal geometry in the problem of conformal
deformation of a Riemannian metric on manifolds with boundary. The set of
eigenvalues consists of an infinite sequence 0 < 11 < vy < v3 < --- such
that v; — oo. The first non—zero eigenvalue v; has the following variational
characterization,

2
vy = min W:@EC"O(M),/ pdo=0p. (2)
® f oM p*do M

For convex domains in the plane, Payne (see [6]) showed that v; > k,,
where k, is the minimum value of the curvature on the boundary of the do-
main. Escobar (see [2]) generalized Payne’s Theorem (see [0]) to manifolds
2-dimensionals with non-negative Gaussian curvature. In this case Escobar
showed that vy > kg, where k, > kg and kg, represents the geodesic curvature
of the boundary. In higher dimensions, n > 3, for non—negative Ricci curvature
manifolds, Escobar shows that vq > %ko, where kg is a lower bound for any
eigenvalue of the second fundamental form of the boundary. Escobar (see [3])
established the following conjecture.

Conjecture 1.1. Let (M™,g) be a compact Riemannian with boundary and
dimension n > 3. Assume that Ric(g) > 0 and that the second fundamental
form 7 satisfies m > kol on OM, kg > 0. Then

1 Z k’o.

Equality holds only for Euclidean ball of radius kg L

‘We propose to prove the conjecture for rotationally invariant metrics on the
ball.
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2. Preliminaries

Throughout this paper B, will be the n—dimensional ball of radius r > 0
parametrized by
X (s,w) = sY (w), 0<s<mr, (3)

where Y (w) is a standard parametrization of the unit sphere (n—1)-dimensional,
Sn=1 given by

Y(w)=Y(wy,...,wp_1)
= (Sinwp_1 SINWy_o -+ -SiN WY, ..., SINW,_1 COS Wy _2,COS Wy_1)-

(B, g) will be the ball endowed with a rotationally invariant metric, i.e., such
that in the parametrization has the form

ds® + f2(s)dw?,
where dw? represents the standard metric on S"~1, with f(0) = 0, f(0) = 1

and f(s) >0for 0 <s<r.

If D is the Levi-Civita connection associated to the metric g, and X (s, w) =
Y(w), X;(s,w) = %X(s,w) = sY;(w), t = 1,...,n — 1, are the coordinate
fields corresponding to the parametrization , it is easy to verify the following
identities:

Dx, X, =0. (4)
f/

Dx, X, = 7Xi- (5)
Dx, Xn-1=—ffXs. (6)
Dx, ,Xpn_o=—ffsin®w, 1 X, —sinw,_1cosw,_ 1 X,_1. (7)

COS Wiy —
Dx, Xn-2=—""2X, 5. (8)
SIN Wy —1

All calculations depend on the definition of the metric and the relation
between the metric and the connection. To coordinate fields, this relation is
given by

1 1 1
g(DXin,Xk) = ing(Xi,Xk) + §Xig(Xj,Xk) — ing(X“X]) (9)

These identities are necessary to calculate the mean curvature and the sectional
curvatures. As an example we show the identity .

On the one hand
9(Dx, Xn-2,X,) =0,

and
Q(DX,L,an—Q,Xi) =0, i=1,...,n—3.

Revista Colombiana de Matemadticas



184 OSCAR ANDRES MONTANO CARRENO

On the other hand

1
g(DXn,an727 anl) = §Xn72g(Xn71u anl)

1
= 5Xn-2f*(s) =0,

and

1
9(Dx,_, Xn-2,Xn_2) = §anlg(Xn72; Xn_2)

1
= §anlf2 Sin2 Wn—1

= f2sinwy,_1 COSWy_1.

From the above we conclude that Dy, |, X, o= o=t X, .

sin wy, —1

3. Curvatures
Let X (r,w) = Y(w) be the outward normal vector field to the boundary
of B,, 0B,. The identity implies that g(DXiXS,Xi) = g(fTIXi,Xi) =

(%)g(X,», X;). Hence, the mean curvature h(r) is given by

1

h(r):n—l

n—1
Zg(XiaXi)ilg(DXiXsaXi) = (10)
i=1

Proposition 3.1. The sectional curvature K(Xi, Xs), 1=1,...,n—1 is given

by

—f"(s)
f(s)

K(Xi,Xs) = . (11)

Proof. From , g(DXiXS, Xi) = ff dw? (Yi, Y;). Differentiating with respect
to X we get

9(Dx.Dx, X, X;) = —g(Dx, Xy, Dx, XJ) + (f')2dw? (i, Vi) + ffdw?(Y;, Y;)
oL Ex) 4 (1w (5,%) + 10 ()
= ff/dw? (Y, Y;).

From ,
9(Dx,Dx,X;, X;) = 9(Dx,0,X;) =0,

then
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1
o5, %) 1l

*f"
- , of
f

Proposition 3.2. The sectional curvature K(Xn,l,Xn,g) is given by

K(Xi, X,) = Dx,Dx,X,, X;) — g(Dx,Dx, X, X;) }

K (X1, Xos) — “Jff(;)‘s)) (12)

Proof. From identities @, and 7 we get

9(Dx, \Xn_1,Dx, ,Xn 2) = (F1) sin®w, 1,

and
9(Dx, ,Xn-2,Dx, ,Xpn_2) = f?cos® w,_1.

From equation @[) it follows that

1
g(DX",Qan%anl) = _5 nflg(Xn727an2) = _f2 Sinwnfl COS Wp—1-

Differentiating with respect to X, _1 we get

9(Dx, . Dx, ,Xn—2,Xn-1) =
— g(DanzXn,g, Danan,l) + f2(51n2 Wp_1 — COS> wn,l).

Therefore

g(DanlDXrﬁzXn—Qa Xn—l) =

— (ff)?sin® wy,_1 + f2(sin®w,_1 — cos®wy_1). (13)
On the other hand,
1
g(DXn_an—QaXn—l) = an—Zg(Xn—laXn—l) =0.

Differentiating this equation with respect to X, _o we get

g(DXn—QDanan—Q; Xn—l) -
~9(Dx, ,Xn_9,Dx, , Xn o) =—f*cos®>w,_1. (14)

From equations ([13)) and the proposition follows. o

Revista Colombiana de Matemadticas



186 OSCAR ANDRES MONTANO CARRENO

4. The First Nonconstant Eigenfunction for the Stekloff Problem
on B,

In the following theorem Escobar characterized the first eigenfunction of a
geodesic ball which has a rotationally invariant metric (see [4]).

Theorem 4.1. Let B, be a ball in R™ endowed with a rotationally invariant
metric ds®> + f2(s)dw?, where dw? represents the standard metric on S™71,
with f(0) =0, f/(0) =1 and f(s) > 0 for 0 < s < r. The first non—constant
eigenfunction for the Stekloff problem on B, has the form

o(s,w) = P(s)e(w), (15)

where e(w) satisfies the equation Ae + (n — 1)e =0 on S"~1 and the function
¥ satisfies the differential equation

L A N D)
e (O 5e) - C Y 0 w0 a9
with the conditions
w/(r) = V1¢(7”),
¥(0) =0. (17)

Proof. We use separation of variables and observe that the space L?(B,) is
equal to the space L?(0,7) ® L2(S™1). Let {e;}, i =0,1,2,..., be a complete
orthogonal set of eigenfunctions for the Laplacian on S™~! with associated
eigenvalues \; such that 0 = A\g < A\; < Ay < A3 < ---. For ¢ > 1, let ¥; be the
function satisfying

L d g d, D)
o () 0 i (0,

Yi(r) = Bii(r), ¥:(0) = 0.
Let ug = 1 and u; = 9;(s)e;(w) for ¢ = 1,2,.... The set {u;} for i =
0,1,2,... forms an orthogonal basis for L?(B,.).

Recall that the first non-zero Stekloff eigenvalue has the variational charac-
terization

vV = min M
! faBT pdo=0 f@B,. @2 do '
Since for ¢ >1
[ [Vui|* 7= ds dw
o= faB,. u? fr=t dw
S ) P ds A Sy ()R ds
P (r) frt(r)
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and \; > A\ =n — 1, we get that 8; > ;. Because the competing functions in
the variational characterization of vy are orthogonal to the constant functions
on 0B,., we easily find that v; = ;.

Using the formula Agzp = Po 4 (n — 1)f'8—“" + #Agp, where A is the

0s2 f Os
standard Laplacian on S™~!, the equation follows. o
When n = 2, the function ¢ has the form v (s) = cel” 76 for ¢ constant.
The first eigenvalue and the mean curvature are given by v, = 15}((;)) = f(lr)

and h(r) = % From this we observe:

Remark 4.2. When f(s) = s+ s> or f(s) = sinh(s) (the hyperbolic space

with curvature —1) since f/(r) > 1 then v; < h(r). Therefore for n = 2, the
condition that B, has non-negative sectional curvature is necessary.

Remark 4.3. From Proposition the condition of non—negative sectional
curvature implies that f”(s) < 0, and therefore f’ is decreasing. Since f'(0) =
1, then f’(r) < 1. Hence, for n = 2 the condition of non—negative sectional
curvature implies v; > h(r). As examples of these metrics we have f(s) = s
(standard metric), f(s) = sin(s) (constant sectional curvature equal to 1) and

sd
f(s)=s—%.
5. Main Theorem

Theorem 5.1. Let (B, g) be a ball in R™ (n > 3) endowed with a rotationally
invariant metric. Assume that B, has non-negative sectional curvature and
mean curvature on OB, h(r) > 0. Then the first non-zero eigenvalue of the
Stekloff problem vy satisfies v1 > h(r). Equality holds only for the standard
metric of R™.

Proof. The coordinate functions are eigenfunctions of the Laplacian on S™~!.
From the equation it follows that ¢(s,w) = 1 (s) cosw, _; is an eigenfunc-
tion associated to the first eigenvalue v4. Consider the function F' = %|V<p|2.
Since ¢ is a harmonic function and Ric (V(p, Vgo) > 0, the Weizenbock formula
(see [H])
AF = |Hess(9)|* + 9(Vep, V(Ag)) + Ric(Vep, Vi)

implies that AF > 0, and hence F' is a subharmonic function. Therefore, the
maximum of F' is achieved at some point P(r,0) € 0B,. Hopf’s Maximum
Principle implies that %—f(r, 0) > 0 or F' is constant. Since

1({[/0¢ 2 _ Op 2
A(5) (o) |
2
- ;{(1//)20052 Wp_1 + (;f) sin? wnl}
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and F' is a non-constant function, then

%—Z(fr, 0) = /9" cos? 6,1 + ?(?) sin?6,,_, > 0. (18)

Evaluating 83F_1 (s, w) at the point P we find that

2
335_1 (r,0) = <(;€> _ (¢/)2> sinf,,_1 cos,_1 = 0. (19)

The equation implies that

(“”)2 (W) =0,

f(r)
or
sinf,_1 =0 and cos?6,_1 =1,
or
sin?6,,_; =1 and cosf,_; =0.
If

@E:?)z - ()" =0,

given that ¥(r) # 0 (¢(r) = 0 implies ¢ = 0 on 9B, and thus, ¢ is a constant
function on B, which is a contradiction), it follow from that

¥(r)) Ly
o2 = (20
e(r) fr)
The condition A(r) > 0 and ( 1mpheb that f’(r) > 0. Since B, has non-
negative sectional curvature then 2)) implies that 1 > (f/)2. Then

ol = ) vt

From and it follows that v > h(r).
Equality holds only for f/(r) = 1. If

sinf,_1 =0 and cos®0, 1 =1,

then

2
F(T,al,...70n—279n—1) _F<Ta017~'~a9n—2’g) - ;{(’(/)/)2 B <1.]/c)) } = 0
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wr=(55) 2 (7i) = (53) = 0o

Equality holds only for f/(r) = 1.
If

thus

sin?6,,_1 =1 and cosf,_1 =0,

from we have

or

a(P)>0
since

UYEAN

= = 0

f(f) g
Thus

(?Jf) (W) _ (?)2@1 — h(r)) > 0.

The inequality is strict.

In any case we conclude that vy > h(r). If equality is attained then f'(r) =
1. Since the sectional curvature is non-negative, then implies that f'(s) <
0. f/(0) =1 = f'(r) and f”(s) < 0 implies f' = 1. Since f(0) = 0, then
f(s) = s. Consequently g is the standard metric on R™. o
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