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On the Connectedness of the Spectrum

of Forcing Algebras

Sobre la conexidad del espectro de álgebras de forzado
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Abstract. We study the connectedness property of the spectrum of forcing
algebras over a noetherian ring. In particular we present for an integral base
ring a geometric criterion for connectedness in terms of horizontal and vertical
components of the forcing algebra. This criterion allows further simplifications
when the base ring is local, or one–dimensional, or factorial. Besides, we dis-
cuss whether the connectedness of forcing algebras is a local property. Finally,
we present a characterization of the integral closure of an ideal by means of
the universal connectedness of the corresponding forcing morphism.
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Resumen. Estudiamos la conexidad del espectro de álgebras de forzado so-
bre anillo noetherianos. En particular, presentamos un criterio de conexidad
cuando el anillo base es un dominio en términos de las componentes verticales
y horizontales del álgebra de forzado. Este criterio nos permite obtener sim-
plificaciones en el caso en el que el anillo base es local, o 1–dimensional o un
dominio de factorización única. Además, discutimos sobre si la conexidad de
las álgebras de forzado es una propiedad local. Finalmente, presentamos una
caracterización de pertenencia a la clausura entera de un ideal en términos de
la conexidad universal del correspondiente morfismo de forzado.

Palabras y frases clave. Álgebra de forzado, conexidad, clausura entera.

Introduction

Let R be a commutative ring, I = (f1, . . . , fn) a finitely generated ideal and f
an arbitrary element ofR. A very natural and important question, not only from
the theoretical but also from the computational point of view, is to determine
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if f belongs to the ideal I or to some ideal closure of it (for example to the
radical, the integral closure, the solid closure, the tight closure, among others).
To answer this question the concept of a forcing algebra introduced by Mel
Hochster in the context of solid closure [8] is important (for more information
on forcing algebras see [2], [3] and [4]):

Definition 0.1. Let R be a commutative ring, I = (f1, . . . , fn) an ideal and
f ∈ R another element. Then the forcing algebra of these (forcing) data is

A = R[T1, . . . , Tn]
/

(f1T1 + · · ·+ fnTn + f).

Intuitively, when we divide by the forcing equation f1T1 + · · ·+fnTn+f we
are “forcing” the element f to belong to the expansion of I in A. Besides, it has
the universal property that for any R-algebra S such that f ∈ IS, there exists
a (non-unique) homomorphism of R-algebras θ : A → S. Furthermore, the
formation of forcing algebras commutes with arbitrary change of base. Formally,
if α : R→ S is a homomorphism of rings, then S⊗RA is the forcing algebra for
the forcing data α(f1), . . . , α(fn), α(f) [1, Chapter 2]. In particular, if p ∈ X =
SpecR, then the fiber of (the forcing morphism) ϕ : SpecA → SpecR over p,
ϕ−1(p), is the scheme theoretical fiber Spec

(
κ(p)⊗RA

)
, where κ(p) = Rp/pRp

is its residue field. In this case, the fiber ring κ(p)⊗R A is the forcing algebra
over κ(p) corresponding to the forcing data f1(p), . . . , fn(p), f(p), where we
denote by g(p) ∈ κ(p), the image (the evaluation) of g ∈ R inside the residue
field κ(p).

One can also define forcing algebras by several forcing equations and write
them in a matrix form:

A = R
[
T1, . . . , Tn

]/  f11 . . . f1n

...
. . .

...

fm1 . . . fmn

 ·
T1

...

Tn

+

 f1

...

fm

 .

This corresponds to a submodule N ⊆ M of finitely generated R-modules
and an element f ∈M via a free representation of these data (see [2]). The fiber
over a point p ∈ SpecR of this forcing algebra is just the solution set of the
corresponding system of inhomogeneous linear equations over κ(p). If the vector
(f1, . . . , fm) is zero, then we are dealing with a “homogeneous” forcing algebra.
In this case there is a (zero- or “horizontal”) Section s : X = SpecR → Y =
SpecA coming from the homomorphism of R-algebras from A to R sending
each Ti to zero. This Section sends a prime ideal p ∈ X to the prime ideal
(T1, . . . , Tn) + p ∈ Y .

In this paper we discuss when (the spectrum of) a forcing algebra is con-
nected. The fibers of a forcing algebra are affine spaces hence connected unless
they are empty (Lemma 1.1). In the homogeneous case it is easy to show that

Volumen 48, Número 1, Año 2014



ON THE CONNECTEDNESS OF THE SPECTRUM OF FORCING ALGEBRAS 3

if X = SpecR is a connected topological space, so is Y = SpecA (Proposi-
tion 1.2 (4)). However, in the non-homogeneous case this question is more sub-
tle. We establish in the noetherian case (in the setting of an ideal, i.e. m = 1) a
condition equivalent to the connectedness of Y in terms of the horizontal and
the vertical (to be defined) irreducible components of SpecA (Theorem 3.1).
In the following we specialize then to the cases where R is one-dimensional
(Corollary 3.2), local (Corollary 3.3), a factorial domain (Corollary 4.3) and a
principal ideal domain (Corollary 4.5). In the fifth Section we study the prob-
lem whether the connectedness of a forcing algebra is a local property over
the base. We give a quite general result (Theorem 5.1) that local connected-
ness (over the base) implies connectedness. In the one-dimensonal domain case
the converse is true for forcing algebras (Corollary 5.2), but this can neither
be extended to higher dimension nor to one-dimensional rings which are not
domains. In the final Section we relate the integral closure of an ideal to the
universal connectedness of the forcing algebra.

This paper arose during the research stay of Danny de Jesús Gómez-Ramı́rez
at the University of Osnabrück in 2011. He thanks all the department there
for the help and support, in particular, to Daniel Brinkmann for inspiring dis-
cussions on the subject. He also thanks the Universidad Nacional de Colombia
and the German Academic Exchange Service (DAAD) for financial support.
Finally, we want to thank the referee for careful reading and many suggestions.

1. Connectedness

Recall that a topological space X is connected if there exists exactly two sub-
sets (namely ∅ and X 6= ∅) which are open as well as closed. A connected
component of X is a maximal connected subspace, i.e., not strictly contained
in any connected subspace of X. Every connected component is necessarily
closed because its closure is a closed connected set containing it. Moreover, the
connected components form a partition of the space X.

For a commutative ring A, the spectrum SpecA is connected if and only if
A 6= 0 and if it is not possible to write A = A1 × A2 with A1, A2 6= 0. Equiv-
alently, there exist exactly two idempotent elements, namely 0 and 1 (see for
example [7, Exercise 2.19, Chapter II] or [5, Exercise 2.25]). Hence domains and
local rings are connected. If A is a C-algebra of finite type, then the connected-
ness of SpecA (in the Zariski topology) is equivalent to the connectedness of the
complex space (SpecA)C in the complex topology, because irreducible varieties
are connected over C (the real spectrum might be disconnected though).

Now, we present a lemma describing the fibers of a forcing algebra as affine
spaces over the base residue field.

Lemma 1.1. Let R be a commutative ring and let A be the forcing algebra
corresponding to the data {fij , fi}. Let p ∈ X be an arbitrary prime ideal of
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R and r the rank of the matrix
{
fij(p)

}
. Then the fiber over p is empty or

isomorphic to the affine space An−rκ(p).

Proof. We know by a previous remark that the fiber ring over P is κ(p)⊗R A
which is just

κ(p)[T1, . . . , Tn]
/  f11(p) . . . f1n(p)

...
. . .

...

fm1(p) . . . fmn(p)

 ·
T1

...

Tn

+

 f1(p)
...

fm(p)

 .

Hence we are dealing with a forcing algebra over a field. With the usual tech-
niques of linear algebra (elementary row operations and exchange of columns)
we can bring the matrix to triangular form without changing (up to isomor-
phism) the algebra. The linear system has no solution if and only if the forcing
algebra is 0. Otherwise we can use r rows to eliminate r variables showing that
the algebra is isomorphic to a polynomial algebra in n− r variables. �X

Since an affine space is irreducible and hence connected, the preceding
lemma tells us that the fibers of a forcing algebra are connected unless they
are empty. The easiest example of an empty forcing algebra is K[T ]/(0T − 1),
where K is a field. A forcing algebra may be connected though some fibers may
be empty, an example is given by K[X,Y ][T1, T2]/(XT1 + Y T2 − 1).

In the following we will mainly deal with the case where all fibers are non-
empty. This is equivalent to say that f belongs to the radical of the ideal I (or,
by definition, to the radical of the submodule N , see [2]).

Proposition 1.2. Let A be a forcing algebra over R with the corresponding
morphism ϕ : Y = SpecA→ X = SpecR. Then the following hold.

(1) The connected components of Y are of the form ϕ−1(Z) for suitable sub-
sets Z ⊆ X.

(2) If ϕ : Y → X is surjective, then these Z are uniquely determined.

(3) If ϕ : Y → X is surjective and Y is connected, then X is connected.

(4) If the forcing data are homogeneous, then there is a bijection between the
connected components of X and Y . In particular, X is connected if and
only if Y is connected.

(5) Suppose that ϕ : Y → X is (surjective and) a submersion. Then there is
a bijection between the connected components of X and Y . In particular,
X is connected if and only if Y is connected.
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Proof.

(1). By Lemma 1.1 the fibers are connected. Hence a connected component
of Y which contains a point of a fiber contains already the complete fiber. (2)
and (3) are clear.

(4). First note that in the homogeneous case there exists an R-algebra-
homomorphism A → R given by Ti 7→ 0, which induces a section s : X → Y
given by p 7→ (p, T1, . . . , Tn). Therefore ϕ : Y → X is surjective. Suppose
first that X is connected. Then the image s(X) of the section is connected.
Hence two points Q1, Q2 ∈ Y lie in the connected subset ϕ−1

(
ϕ(Q1)

)
∪ s(X)∪

ϕ−1
(
ϕ(Q2)

)
and so Y is connected. This argument holds for every subset Z ⊆

X, so the statement about the components follows.

(5). Recall that a submersion ϕ : Y → X between topological spaces is
surjective and has the property that ϕ−1(T ) is open if and only if T ⊆ X is
open. So if ϕ−1(Z) is open and closed, then Z itself is open and closed. Hence Y
is connected if and only if X is connected. The statement about the components
follows. �X

Example 1.3. The conditions in Proposition 1.2 (4), (5) are necessary, as the
following example shows. Consider R = K[X], where K is a field, and the
nonhomogeneous forcing algebra A = R[T ]/(X2T −X). The minimal primes of
(X2T−X) are (X) and (XT−1), which are comaximal

(
since 1 = XT−(XT−

1)
)
. So by the Chinese Remainder Theorem A ∼= R[T ]/(X) × R[T ]/(XT − 1)

and therefore

SpecA = Spec k[T ] ] SpecK[X,T ]/(XT − 1),

i.e. a disjoint union of a line over a point and a hyperbola dominating the base
(its image is the pointed affine line, hence dense). But, SpecR is the affine line
which is connected. Note that the element X belongs to the radical of (X2), but
does not belong to (X2) nor to its integral closure. Hence ϕ : SpecA→ SpecR
is surjective, but not submersive (see also Section 6).

2. Horizontal and Vertical Components

We describe now the irreducible components of the spectrum of a forcing alge-
bra over an integral base in the ideal case. We will identify prime ideals inside
R[T1, . . . , Tn] minimal over (f1T1 + · · · + fnTn + f) with the minimal prime
ideals of the forcing algebra R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn + f).

Lemma 2.1. Let R be a noetherian domain, I = (f1, . . . , fn) an ideal, f ∈ R
and A = R[T1, . . . , Tn]/(f1T1 + · · · + fnTn + f) the forcing algebra for these
data. Then the following hold.

(1) For I 6= 0 there exists a unique irreducible component H ⊆ SpecA with
the property of dominating the base SpecR (i.e. the image of H is dense).
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This component is given (inside R[T1, . . . , Tn]) by

p = R[T1, . . . , Tn] ∩ (f1T1 + · · ·+ fnTn + f)Q(R)[T1, . . . , Tn],

where Q(R) denotes the quotient field of R.

(2) All other irreducible components of SpecA are of the form

V
(
qR[T1, . . . , Tn]

)
for some prime ideal q ⊆ R which is minimal over (f1, . . . , fn, f).

(3) For a minimal prime ideal q ⊆ R over (f1, . . . , fn, f) the extended ideal
qR[T1, . . . , Tn] defines a component of SpecA if and only if I = 0 or
I 6= 0 and there exists a polynomial G ∈ p, G /∈ qR[T1, . . . , Tn].

Proof.

(1). For I 6= 0 the polynomial f1T1 + · · · + fnTn + f is irreducible (thus
prime) in Q(R)[T1, . . . , Tn], hence the intersection of this principal ideal with
R[T1, . . . , Tn] gives a prime ideal in this polynomial ring and therefore in
R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn + f). The minimality is clear, since it holds in
a localization. Because of R ∩ p = 0, this component dominates the base.
On the other hand, let p′ be a minimal prime ideal that is minimal over
(f1T1 + · · · + fnTn + f) and suppose that R ∩ p′ = 0. Let h ∈ p. Then
there exists r, s ∈ R, r 6= 0, and a polynomial G ∈ R[T1, . . . , Tn] such that
rh = sG(f1T1 + · · · + fnTn + f). This element belongs to p′ and since r /∈ p′

we deduce h ∈ p′. Hence p′ = p.

(2). Let (f1T1 + · · · + fnTn + f) ⊆ q be a minimal prime ideal differ-
ent from p. In every localization Afi there is only one minimal prime ideal,
namely the horizontal component (as in (1)), since f1T1 + · · · + fnTn + f
is a prime element whenever some fi is a unit. Therefore q /∈ SpecAfi and
hence fi ∈ q. Because q contains the forcing equation we also deduce f ∈
q. Hence (f1, . . . , fn, f) ⊆ q and by the minimality condition q is minimal
over the extended ideal (f1, . . . , fn, f)R[T1, . . . , Tn]. Therefore q must be the
extended ideal of a minimal prime ideal of (f1, . . . , fn, f) in R (the mini-
mal prime ideals above (f1, . . . , fn, f)R, above (f1, . . . , fn, f)R[T1, . . . , Tn] and
above (f1, . . . , fn, f)A are in bijection).

(3). Let q be a minimal prime ideal of (f1, . . . , fn, f) in R. Then qA is a
minimal prime ideal of SpecA if and only if p * qA (since by (ii) we know

there are no other possible minimal prime ideals). �X

We call H = V (p) the horizontal component of the forcing algebra and the
other components V (qj) the vertical components. If I = 0 there exist only the
vertical components which are in bijection with the components of SpecR/(f).
If n = 1, R is a domain and f1 6= 0, then the horizontal component is just the
closure of the graph of the rational function T = − f

f1
inside SpecR× A1.
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Remark 2.2. If R is a noetherian domain and I = (f1, . . . , fn) 6= 0, then the
horizontal component exists and the describing prime ideal p has height one in
R[T1, . . . , Tn]. If q is a minimal prime ideal over (f1, . . . , fn, f) of height one,
then the extended ideal in the polynomial ring has also height one and can
therefore not contain the horizontal prime ideal. Therefore such prime ideals
yield vertical components.

It is possible that all the V (qj), where qj ⊇ (f1, . . . , fn, f) is a minimal
prime ideal, lie on the horizontal component. In this case there exists no vertical
component.

Example 2.3. Let K be a field, R = K[X,Y ] and consider the forcing algebra
A = R[T ]/(XT +Y ), which is a domain. Here the only candidate for a vertical
component, namely V (X,Y ), is not a component of SpecA, because it lies on
the horizontal component.

If the forcing equation has a nice factorization inside the polynomial ring
R[T1, . . . , Tn], then we can describe the horizontal and vertical components
more explicitly.

Lemma 2.4. Let R be an noetherian integral domain and A be a forcing al-
gebra over R with forcing equation h = f1T1 + · · · + fnTn + f = dh′, where
(f1, . . . , fn) 6= 0, d ∈ R and where h′ = f ′1T1+· · ·+f ′nTn+f ′ is a prime element
in B = R[T1, . . . , Tn]. Then the horizontal component of SpecA is V (h′) and
the vertical components of SpecA are V (qA), where q varies over the minimal
prime ideals of (d) in R.

Proof. Because h′ is a prime element we have

(h′)R[T1, . . . , Tn] = R[T1, . . . , Tn] ∩ (h)Q(R)[T1, . . . , Tn]

and this gives, by Lemma 2.1 (1), the horizontal component. By Lemma 2.1
(3) we have to show that the minimal prime ideals over (d) correspond to the
minimal prime ideals over J = (f1, . . . , fn, f) with the additional property that
their extension to R[T1, . . . , Tn] does not contain h′.

So let q be a minimal prime ideal over (d). Then, by Krull’s Theorem,
the height of q is 1 and hence it is also minimal over J ⊆ (d). Moreover, the
height of qR[T1, . . . , Tn] is also 1. Besides, h′ /∈ qb, for otherwise (0) ( (h′) (
qR[T1, . . . , Tn] would be a chain of prime ideals of length 2, because (h′) 6= qB,
since (h′) ∩R = 0 and qR[T1, . . . , Tn] ∩R = q.

Conversely, let q denote a minimal prime ideal of J such that h′ does not be-
long to qR[T1, . . . , Tn]. Assume that d /∈ q. Then, because of f ′1d, . . . , fnd, f

′d ∈
q, we get immediately f1, . . . , fn, f ∈ q and hence the contradiction h′ ∈
qR[T1, . . . , Tn]. So we must have d ∈ q and q must also be minimal over (d). �X
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If R is a (not necessarily noetherian) factorial domain (a unique factoriza-
tion domain), then there exists always a factorization h = dh′ with h′ a prime
element in B. The minimal prime ideals over (d) are given by the prime fac-
tors p of d, and pB has also height 1. Hence the argument of the lemma goes
through, also in this case. Example 4.7 below shows that a forcing equation
does not always have a prime decomposition as in the lemma. Then it is more
complicated to determine the vertical components.

The following example shows that the irreducible components in the module
case are more complicated. In particular, Lemma 2.1 (2) is not true.

Example 2.5. Consider over R = K[X,Y ] the forcing algebra

A = R[T1, T2]/(XT1−XY, Y T2−XY ) ∼= R[T1, T2]
/([X 0

0 Y

] [
T1

T2

]
−
[
XY

XY

])
.

The horizontal component of SpecA is given by the prime ideal (T1−Y, T2−
X). The algebra is connected, since this component is a section. The other
minimal prime ideals are (X,T2), (Y, T1) and (X,Y ). Only the last one is the
extension of a prime ideal of the base.

3. Connectedness Results

The following is our main general connectedness result on forcing algebras.

Theorem 3.1. Let R be a noetherian domain, I = (f1, . . . , fn) an ideal 6= 0,
f ∈ R and A = R[T1, . . . , Tn]/(f1T1 + · · · + fnTn + f) the forcing algebra for
these data. Let H = V (p) be the horizontal component of SpecA and let Vj =
V (qj), j ∈ J , be the vertical components of SpecA according to Lemma 2.1.
Let Zi =

⋃
j∈Ji Vj be the connected components of

⋃
j∈J V (qj). Then SpecA is

connected if and only if H intersects every Zi.

Proof. This is clear from Lemma 2.1 since the connected components of a
noetherian scheme are just the unions of its irreducible components which in-
tersect chainwise. Note also that the Zi can be determined in SpecR alone. �X

Corollary 3.2. Let R be a noetherian domain of dimension 1, I = (f1, . . . , fn)
an ideal 6= 0, f ∈ R and A = R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn + f) the forcing
algebra for these data. Let H = V (p) be the horizontal component of SpecA
and let Vj = V (qj), j ∈ J , be the vertical components of SpecA according to
Lemma 2.1. Then SpecA is connected if and only if H intersects every Vj.

Proof. This follows from Theorem 3.1 since the minimal prime ideals of I 6= 0
in a one-dimensional domain are maximal ideals. These maximal ideals form
the connected components of V (I). �X
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Note that this corollary is not true in higher dimension, see Example 4.6 in
the next section. We specialize now to the local case.

Corollary 3.3. Let (R,m) be a local noetherian domain, I = (f1, . . . , fn) ⊆ m
an ideal 6= 0, f ∈ m and A = R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn + f) the forcing
algebra for these data. Let H = V (p) be the horizontal component of SpecA
according to Lemma 2.1. Then SpecA is connected if and only if p+(I, f) 6= (1)
in R[T1, . . . , Tn].

Proof. Let qj , j ∈ J , be the minimal prime ideals of (I, f), disregarding
whether the Vj = V (qjR[T1, . . . , Tn]) give rise to vertical components of SpecA
or not. Note that Vj ∩Vi 6= ∅ for all i, j, because we are over a local ring. Sup-
pose first that for at least one j we have Vj = V (qj) ⊆ H. Then Vi∩H 6= ∅ and
hence the forcing algebra is connected by Theorem 3.1. But this assumption also
means that p ⊆ qjR[T1, . . . , Tn] ⊆ mR[T1, . . . , Tn] and therefore p+(I, f) 6= (1),
because m does not extend to the unit ideal. So, under this assumption, the
two properties are equivalent.

Suppose next that Vj * H for all j, meaning that all Vj are vertical compo-
nents of SpecA. The subsets V (qj) inside the local ring SpecR are connected,
hence there is exactly one Z in the notation of Theorem 3.1. By this theorem,
SpecA is connected if and only if H ∩ Z 6= ∅. Because of Z = V

(⋂
j qj
)

this

is equivalent to p + (I, f) 6= (1). �X

Example 3.4. Let K be a field and set R = K[X,Y ](X,Y ) and

A = R[T ]/(XY T −X).

The horizontal component is V (Y T − 1) and the only vertical component is
V (X). Because they intersect (or because (Y T−1, X) 6= (1)) the forcing algebra
is connected. However, we have (Y T − 1,m) = (1), so the connectedness over
a local ring does not imply that the horizontal component meets the fiber over
the maximal ideal.

4. Connectedness over Factorial Domains

We deal now with the case where R is a factorial domain. Note that if R is
factorial, then B = R[T1, . . . , Tn] is factorial as well. So, if h = f1T1 + · · · +
fnTn+ f ∈ B is a forcing equation, then one can factor out a greatest common
divisor of all the coefficients f1, . . . , fn and f , say d, and obtain a representation
of h as a product of an element d in R and an irreducible polynomial h′ =
(f1/d)T1+· · ·+(fn/d)Tn+(f/d) in B (for n ≥ 1), which generates a prime ideal
because B is a factorial domain. This hypothesis appeared already in Lemma
2.4 and is also crucial in the following sufficient condition for connectedness.

Corollary 4.1. Let R be a noetherian domain, B := R[T1, . . . , Tn], and let

h := f1T1 + · · ·+ fnTn + f = d(f ′1T1 + · · ·+ f ′nTn + f ′)
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be a forcing equation such that h′ := f ′1T1+· · ·+f ′nTn+f ′ is a prime polynomial.
Assume (f1, . . . , fn) 6= 0. Suppose that (f ′1, . . . , f

′
n) is not contained in any

minimal prime ideal of (d). Then SpecA is connected, where A = B/(h).

Proof. By Lemma 2.4, the horizontal component of SpecA is V (h′) and the
vertical components correspond to the minimal prime ideals q over (d). We will
show that V (q) intersects the horizontal component.

This can be established after the base change R→ κ(q). Now, at least one
of the f ′i becomes a unit in κ(q) and therefore h′ is not a unit over κ(q). So,
κ(q)[T1, . . . , Tn]/(h′) 6= 0. �X

Note also that if d is a unit, then h = h′ is a prime polynomial by assumption
and then the forcing algebra is integral, hence connected anyway.

Now, we shall deduce a Corollary in the case that R is a factorial domain.
In this kind of rings we can define a greatest common divisor of a finite set of
elements a1, . . . , am, denoted by gcd(a1, . . . , am), using the prime factorization,
and it is well defined up to a unit in R and defined as the unity in R in the
case that the elements have no irreducible common factor.

Lemma 4.2. Let R be a factorial domain, f1, . . . , fn, f ∈ R with some fi 6= 0
and let d be a greatest common divisor of f1, . . . , fn and f and write

h = f1T1 + · · ·+ fnTn + f = d(f ′1T1 + · · ·+ f ′nTn + f ′)

where f ′i = fi/d. Then h′ = f ′1T1 + · · ·+ f ′nTn + f ′ is an irreducible polynomial
and describes the horizontal component of SpecR[T1, . . . , Tn]/(h).

Proof. Suppose we have a factorization h′ = h1h2 in B = R[T1, . . . , Tn]. Then
one of the hi can not contain any variable Tj , say h1; thus h1 ∈ R. Therefore,
h1 divides each f1/d, . . . , fn/d, f/d and therefore it is a unit in R, because
these elements have no common irreducible factors. Thus h′ is an irreducible
polynomial and hence a prime element since the polynomial ring B over R is
also factorial. Therefore (h′) describes the horizontal component by Lemma
2.4. �X

Corollary 4.3. Let R be a factorial domain, f1, . . . , fn, f ∈ R with some fi 6= 0
and let d be a greatest common divisor of f1, . . . , fn and f . Let

h = f1T1 + · · ·+ fnTn + f = d(f ′1T1 + · · ·+ f ′nTn + f ′)

be the forcing equation and let d = p1 · · · pk be a prime factorization of d.
Suppose that {1, . . . , k} =

⊎
i∈I Ji such that the

⋃
j∈Ji V (pj) are the connected

components of V (d). Then SpecB/(h) is connected if and only if for every i
there exists some j ∈ Ji such that (f ′1T1 + · · ·+ f ′nTn + f ′, pj) 6= (1).

Volumen 48, Número 1, Año 2014



ON THE CONNECTEDNESS OF THE SPECTRUM OF FORCING ALGEBRAS 11

Proof. By Lemma 2.4 and Lemma 4.2, p = (f ′1T1 + · · ·+ f ′nTn + f ′) describes
the horizontal component and every vertical component corresponds to a prime
factor of d. Hence the statement follows directly from Theorem 3.1. �X

The condition that (f ′1T1 + · · · + f ′nTn + f ′, p) 6= (1) is true if p does not
divide all f ′1, . . . , f

′
n or if f ′ is not a unit modulo p.

Example 4.4. Let R = K[X,Y ] over a field K. For h = X(XT + Y ) we have
d = X = p. Because Y is not a unit modulo X, the forcing algebra is connected.
For h = X(XT +X + 1) we also have d = X = p. Now X + 1 is a unit modulo
X and the forcing algebra is not connected. For h = XY (XT1 + Y T2 + f ′) we
have d = XY , but f ′1 = X, f ′2 = Y do not have a common prime factor and
hence the forcing algebra is connected.

Corollary 4.5. Let R be a factorial domain, B = R[T1, . . . , Tn], h = f1T1 +
· · · + fnTn + f a forcing equation and A = B/(h). Let d be a greatest com-
mon divisor of f1, . . . , fn and f , and assume that at least one of the fi 6= 0.
Suppose that gcd(d, f1/d, . . . , fn/d) = 1, then SpecA is connected. Moreover,
if R is a principal ideal domain then the condition gcd(d, f1/d, . . . , fn/d) = 1
is equivalent to SpecA being connected.

Proof. We write h = dh′, where h′ = f ′1T1 + · · · + f ′nTn + f ′ with f ′i = fi/d
and f ′ = f/d. Let p be a prime factor of d. Then p does not divide some f ′i .
But then f ′1T1 + · · · + f ′nTn + f ′ is not a unit modulo p, and the condition of
Corollary 4.3 holds even for every p.

Finally, we assume that R is a principal ideal domain and that

(d, f ′1, . . . , f
′
n) = (e),

where e ∈ R is not a unit. Let p ∈ R be a prime element dividing e. We still
work with the factorization h = dh′, where h′ is irreducible and describes the
horizontal component. The elements f1/d, . . . , fn/d, f/d do not have a common
prime factor, hence p does not divide f/d. Therefore in the field R/(p) the
element f/d becomes a unit u and the polynomial h′ becomes 0T1+· · ·+0Tn+u.
Therefore the horizontal component V (h′) and the vertical component V (p) are
disjoint and the forcing algebra is not connected by Corollary 3.2. �X

Example 4.6. The condition of being a principal ideal domain for R in the
last part of Corollary 4.5 is necessary, as the following example shows (see also
Figure 1, for the caseK = R). With the notation from above we consider the fol-
lowing setting: R := K[X,Y ], B = R[T ], h = X2Y T −XY = XY (XT −1) and
A := B/(h). Clearly, d = gcd

(
X2Y,XY

)
= XY , f1 = X2Y and gcd(d, f1/d) =

gcd(XY,X) = X 6= 1. Besides, as Lemma 2.1 or Lemma 2.4 shows, the irre-
ducible components of SpecA are the horizontal component V

(
(XT − 1)A

)
(hyperbolic surface) and the vertical components V (XA) (plane) and V (Y A)
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12 HOLGER BRENNER & DANNY DE JESÚS GÓMEZ-RAMı́REZ

(plane). Furthermore, V (XA)∩V (Y A) = V
(
(X,Y )A

)
6= ∅, so the two vertical

components are connected. Because of V (Y A)∩V
(
(XT − 1)A

)
= V

(
(Y,XT −

1)A
)
6= ∅

(
note also that V (XA) ∩ V

(
(XT − 1)A

)
= V

(
(X,XT − 1)A

)
= ∅

)
the condition of Theorem 3.1 (or Corollary 4.3) is fulfilled and hence SpecA is
connected. However, the condition of a greatest common divisor in Corollary
4.5 does not hold.

V (Y A)

V (XA)

V
(
(XT − 1)A

)

Figure 1. Corresponding to (SpecA)R.

Example 4.7. We consider the domain R = K[X,Y, Z]/(Z2−XY ) over a field
K. This is not a factorial domain, since Z2 = XY can be written in two ways as
a product of irreducible factors. Accordingly, the rational function q = Z

X = Y
Z

is defined on D(X,Z), and (X,Z) is a prime ideal of height one not given by
one element. We look at the forcing algebra

B = R[T ]/(XT − Z).

The element XT −Z is irreducible in R[T ], but not prime. The minimal prime
ideals over (XT − Z) are (XT − Z,ZT − Y ) (which describes the horizontal
component in the spectrum of the forcing algebra B, corresponding to the
closure of the graph of the rational function q) and the vertical component
(X,Z)R[T ]. Because of (X,Z) + (XT − Z,ZT − Y ) = (X,Y, Z), these two
components intersect and therefore the forcing algebra is connected.

5. Local Properties

An interesting question is whether the connectedness of Y = SpecA is a local
property over the base X = SpecR. Specifically, is it true that Y is a connected
space if and only if X is connected and for every p ∈ X, SpecAp is connected,
where Ap denotes the localization of A at the multiplicative system R r p
(considered in A). The next theorem gives a positive answer to the “if” part
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of this question in general. For a forcing algebra, the converse holds for a one-
dimensional domain, but neither over a reducible curve nor over the affine
plane.

Theorem 5.1. Let ψ : R → A be a ring homomorphism. Set X := SpecR
and Y := SpecA. Suppose that X is a connected space and that for all p ∈ X,
SpecAp is connected, where Ap := ARrp, that is, Y is locally (over the base)
connected. Then Y is connected.

Proof. We first show that we can assume that ψ is injective: first, note that
for any minimal prime p ∈ X, the space SpecAp is not empty, because it is
connected (our convention is that the empty set is not connected). Let Q ∈
SpecAp be a prime ideal, then ψ−1(Q) is a prime ideal of R contained in p,
because ψ−1(Q)∩(Rrp) = ∅, moreover it is equal to p in view of the minimality
of p. Therefore, for any minimal prime in R, there exists a prime ideal Q in A
lying over it. Therefore for any a ∈ kerψ, we know that ψ(a) = 0 ∈ ∩Q∈YQ
and then a ∈ ∩Q∈Y ψ−1(Q) ⊆ ∩p∈minRp = nilR, that is kerψ ⊆ nilR.

In consideration of this it is enough to reduce to the case of R being reduced.
For this reduction consider the natural homomorphism ψred := Rred → Ared

induced by ψ, killing the nilpotent elements. Now, our hypothesis of locally
(over the base X) connected and the conclusion holds for Y if and only if
holds

(
over the base Xred = Spec(Ared)

)
for Yred := Spec(Ared). In fact, clearly

X u Xred and Y u Yred as topological spaces; besides, for any p ∈ Xred,
(Ared)p u Ap/(nilA)Ap and (nilA)Ap ⊆ nil(Ap), hence Spec

(
(Ared)

)
p
u

Spec(Ap/nilAp) u SpecAp. In conclusion, it is enough to prove the theorem
in the reduced case for injective ψ.

Now, we assume that Y is not connected, which is equivalent to say that
there exists nontrivial idempotents e1, e2 ∈ A with e1 + e2 = 1, e1e2 = 0
and e1, e2 6= 0, 1. Set Ji = AnnR(ei) for i = 1, 2. We claim that J1 + J2  R.
Otherwise, there exists yi ∈ Ji such that y1 +y2 = 1, and then y1y2 = y1y2(e1 +
e2) = y2(y1e1) + y1(y2e2) = 0 + 0 = 0. Therefore X = V (y1) ] V (y2), that is,
we can write X as a disjoint union of two closed subsets, which implies, in
view of the connectedness of X, that one of these closed subsets is empty, or
what is the same, one of the yi is a unit. Hence, ei = y−1

i (yiei) = y−1
i 0 = 0, a

contradiction.

So let J1 + J2 ⊆ P be a prime ideal. By assumption, ARrp is connected,
hence either e1 or e2 become 0 in this ring. This means (in the first case) that
there exists s ∈ Rrp such that se1 = 0 in A. But then we get the contradiction
s ∈ J1. In conclusion, Y is a connected space. �X

We deal next with the one-dimensional case.
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Corollary 5.2. Suppose that R is a noetherian domain of dimension 1. Let
I = (f1, . . . , fn) 6= 0 be an ideal, f ∈ R an element and

A = R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn + f)

the forcing algebra for these data. Then SpecA is connected if and only if SpecA
is locally connected, i.e., for every prime ideal p ∈ SpecR is ARrp connected.

Proof. The global property follows from the local property by Theorem 5.1.
So suppose that SpecA is connected. By the assumption I 6= 0 we know that
a horizontal component exists. Hence the fiber over the generic point (0) is
nonempty, thus connected by Lemma 1.1. The connectedness of SpecA means,
by Corollary 3.2, that the horizontal component meets every vertical compo-
nent. The vertical components of SpecAp over SpecRp for a maximal ideal
p in SpecR are empty or V (pA) and, in the second case, they are a vertical
component of SpecA. By the intersection condition the horizontal component
and this vertical component (if it exists) intersect, so SpecAp is connected. �X

The following example shows that for a non-integral one-dimensional base
ring, connectedness is not a local property.

Example 5.3. Let K be a field and let R = K[X,Y ]/(XY (X + Y − 1)). Its
spectrum has three line components forming a triangle meeting in (0, 0), (1, 0)
and (0, 1). Consider the forcing algebra

A = R[T ]/((Y +X2)T −X(X + Y − 1).

Its spectrum consists in a horizontal line H1 over X = 0, a horizontal line H2

and one (or two) vertical components over X + Y = 1, a vertical line V over
X = Y = 0 and the graph G of the rational function (X − 1)/X over Y = 0.
Because of G∩H2 =

{
(1, 0, 0)

}
, H1 ∩H2 = (0, 1, 0) and H1 ∩ V = (0, 0, 0), the

forcing algebra A is connected. However, the localization of the forcing algebra
at (X,Y ) is not connected, because the connecting component H2 is missing
(the two connected components are V ∪H1 and G).

Corollary 5.4. Suppose that R is a Dedekind domain, i.e., a normal noethe-
rian domain of dimension 1. Let I = (f1, . . . , fn) be an ideal, f ∈ R an element
inside the radical of I and A = R[T1, . . . , Tn]/(f1T1 + · · · + fnTn + f) be the
forcing algebra for these data. Then the following are equivalent:

(1) SpecA is connected.

(2) SpecA is locally connected, i.e. for every prime ideal P ∈ SpecR is ARrP
connected.

(3) f ∈ I.
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Proof. The equivalence between (1) and (2) follows from Corollary 5.2. For the
equivalence with (3) we may assume that R is local, i.e., a discrete valuation
domain. Let p be a generator of its maximal ideal. We may assume at once
that I 6= 0, because else f = 0 due to the radical assumption, and also that all
fi (If fi = 0 we can omit this without changing any property) and f are not
0. We write fi = uip

ki and f = upk with units ui, u. Assume that f /∈ I. Then
k < min(k1, . . . , kn). We write the forcing equation as

pk(u1p
k1−kT1 + · · ·+ unp

kn−kTn + u),

where the exponents ki − k are all positive. Because of the radical assumption
we have k ≥ 1. But then the forcing algebra has the two components V (p) and
V (u1p

k1−kT1 + · · · + unp
kn−kTn + u) which are disjoint. The other direction

follows from Proposition 1.2 (4). �X

For a non-normal one-dimensional domain this equivalence can never be
true because of Corollary 6.3 below. The next trivial example shows that this
statement is also not true without the radical assumption.

Example 5.5. For R = K[X], K a field, the forcing algebra K[X,T ]/(0T −
X) ∼= K[T ] is connected, but the fiber over the generic point is empty, hence
not connected.

In higher dimension, even for a factorial domain, the converse of Theo-
rem 5.1 is also not true.

Example 5.6. We continue with Example 4.6 (see Figure 2 for K = R) i.e.,
R := K[X,Y ] is the ring of polynomials in two variables, B := R[T ], h :=
X2Y T −XY and A := B/(h). The morphism SpecA → SpecR is surjective,
since XY ∈ rad(X2Y ). We know already that SpecA has the three irreducible
components V (X), V (Y ) and V (XT − 1) that it is connected.

However, if we localize A in p := (X) ∈ SpecR, that is, if we consider the
ring Ap = ARrp, then SpecAp has just two irreducible components, namely,
V
(
(X)Ap

)
(plane) and V

(
(XT + 1)Ap

)
(hyperbolic surface), because the min-

imal primes of Ap are just (X)Ap and (XT + 1)Ap, since the remaining min-
imal prime ideal (Y ) meets R r p, since Y ∈ R r p. Moreover, these two
irreducible components are disjoint, because V

(
(X)Ap

)
∩ V

(
(XT − 1)Ap

)
=

V
(
(X,XT −1)Ap

)
= V

(
(1)
)

= ∅. In conclusion, SpecAp is not connected. For
getting a better intuition compare Figure 2 with Figure 1.

6. Integral Closure and Connectedness

In this final section we relate the integral closure of an ideal to the universal
connectedness of the forcing algebra. Recall that the integral closure, written
I, of an ideal I ⊆ R is defined as

I :=
{
f ∈ R : fn + a1f

n−1 + · · ·+ an−1f
1 + an = 0, where aj ∈ Ij

}
.
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V
(
(X)Ap

)

V
(
(XT + 1)Ap

)

Figure 2. Corresponding to (SpecAp)R.

For a noetherian domain, there exists a (discrete) valuative criterion for
the integral closure: The containment f ∈ I holds if and only if for all ring
homomorphisms θ : R → D to a discrete valuation domain D we have θ(f) ∈
ID, see [9, Theorem 6.8.3].

Definition 6.1. Let ϕ : Y → X be a morphism between affine schemes. We
say that ϕ is a universally connected if W ×X Y is connected for any affine
noetherian change of base W → X, with W connected.

Now, we prove a criterion for belonging to the integral closure in terms of
the universal connectedness of the corresponding forcing morphism.

Theorem 6.2. Let A be a forcing algebra over a noetherian ring R and ϕ :
Y := SpecA → X := SpecR the corresponding forcing morphism. Then the
following conditions are equivalent:

(1) f belongs to the integral closure of I, i.e. f ∈ I.

(2) ϕ is a universal submersion.

(3) ϕ is universally connected.

(4) W ×X Y is connected for all change of base of the form W = SpecD,
where D is a discrete valuation domain.

Proof. (1) ⇒ (2). Recall that a submersion is universal if it remains a sub-
mersion under noetherian change of base. Due to the valuative criterion for
the integral closure (see [9, Theorem 6.8.3]) and the fact that (2) can be
checked after change of base to a discrete valuation domain D (see [6, Re-
marque 2.6]), we can assume that R = D and that f ∈ I and we have to prove
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that ϕ : SpecA → SpecD is a submersion. But f ∈ I if and only if there
exists a section s : SpecD → SpecA, i.e. ϕ ◦ s = IdSpecD. By an elementary
topological argument the existence of a section implies that ϕ is a submersion.

(2) ⇒ (3). Let W → X be an affine noetherian connected change of base,
then, since ϕW : W×X Y →W is a submersion, by Proposition 1.2 (5) W×X Y
is connected.

(3)⇒ (4) is trivial.

(4)⇒ (1). Let W = SpecD → X be a change of base, where D is a discrete
valuation domain. By the valuative criterion for integral closure it is enough
to show that f ∈ ID. First, note that f ∈ rad(ID), which is equivalent to say
that ϕW : W ×X Y → W is surjective (see [2]). If the fiber over p ∈ W were
empty, then the morphism

Specκ(p)JxK −→ Specκ(p) −→W −→ X

would yield a contradiction, since then the pull-back (Specκ(p)JxK)×XY would
be empty (hence not connected) and κ(p)JxK is a discrete valuation domain.
Thus f ∈ rad(ID) and, by Corollary 5.4, the connectedness of W ×X Y is
equivalent to f ∈ ID. �X

Now, we prove a corollary of this theorem charaterizing the property that a
fraction belongs to the integral closure (or normalization) of an integral domain.

Corollary 6.3. Let R be an integral domain, K = Q(R) its field of fractions.
Let r/s ∈ K with s 6= 0, let A = R[T ]/(sT + r) be the forcing algebra and
ϕ : Y := SpecA → X := SpecR the corresponding morphism. Then r/s is
integral over R if and only if ϕ is universally connected.

Proof. It is an elementary fact that r/s is integral over R if and only if
r ∈ (s). Then by the former theorem r ∈ (s) if and only if ϕ is universally
connected. �X

In our final example we show that a forcing algebra over a non-normal curve
might be connected but not universally connected. In fact the pull-back to the
normalization is already not connected.

Example 6.4. LetK be a field and consider the ring-homomorphismK[u, v]→
K[x], u 7→ x(x − 1), v 7→ x2(x − 1). The kernel of this is (v3 + uv − v2). Let
R = K[u, v]/(v3 + uv − v2). Since x2 − x− u = 0, the extension R ↪→ K[X] is
integer, but K[X] is integrally closed, therefore the integral closure (or normal-
ization) of R is K[X]. We consider the forcing algebra A = R[T ]/(vT − u). It
consists of a horizontal component given by V (vT +u, vT 3−T +1) (check that
this is a prime ideal) (twisted hyperbola) and the vertical component V (u, v)
(middle vertical line). They intersect in V (u, v, T−1), hence the forcing algebra
is connected (see Figure 3).
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V (vT + u, vT 3 − T + 1)

V (u, v)

Figure 3. Squematic version of (SpecA)R.

When we pull-back this situation to the normalization we get

A′ = K[x][T ]/
(
x2(x− 1)T + x(x− 1)

) ∼= K[x][T ]/
(
x(x− 1)(xT + 1)

)
.

Now we have one horizontal component and two vertical components (lines),
and the horizontal hyperbola meets exactly one of them, hence this forcing
algebra is not connected by Corollary 3.2 (see Figure 4). Heuristically we get
Figure 3 from Figure 4 by turning the plane over itself as the base line indicates
and identifying the two vertical lines.

Figure 4. Corresponding to (SpecA′)R.
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