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Introduction to Representations of

Braid Groups

Introducción a las representaciones de los grupos de trenzas

Camilo Arias Abada
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ory, held in Curitiba, Brazil in March 2013. The purpose of the course is to
provide an introduction to the study of representations of braid groups. Three
general classes of representations of braid groups are considered: homological
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Knizhnik-Zamolodchikov connection, and solutions of the Yang-Baxter equa-
tion via quasi-triangular bialgebras. Some of the remarkable relations between
these three different constructions are described.
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Resumen. Estas notas fueron preparadas para un minicurso enseñado en la
escuela Cimpa Algebraic and geometric aspects of representation theory, en
Curitiba, Brazil en Marzo de 2013. El propósito del curso es presentar una
introducción al estudio de las representaciones de los grupos de trenzas. Tres
clases generales de representaciones son consideradas: representaciones ho-
mológicas de mapping class groups, representaciones de monodromı́a de la
connección de Knizhnik-Zamolodchikov, y soluciones de la equación de Yang-
Baxter en términos de quasi-triangular bialgebras. Algunas de las notables
relaciones entre estas construcciones son descritas.
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2 CAMILO ARIAS ABAD

1. Introduction

Braid groups were introduced by Emil Artin in 1925, and by now play a role in
various parts of mathematics including knot theory, low dimensional topology,
public key cryptography and deformation quantization. The braid group Bn
admits different equivalent definitions: the fundamental group of the configura-
tion space Cn(C) of n unordered points in the complex plane, the mapping class
group of a disk with n marked points, and Artin’s presentation. Each of these
descriptions provides a method for constructing representations of Bn: funda-
mental groups act via monodromy, mapping class groups act on the homology
groups of spaces, and solutions to the Yang-Baxter equations produce solutions
to Artin’s relations. The aim of these notes is to introduce these methods, and
describe some of the relations between these seemingly unrelated constructions.
The notes are organized as follows:

In Section §2 we present three different ways in which the braid group Bn
can be defined, explain how these definitions are equivalent, and introduce some
general facts regarding the braid groups. Section §3 regards the group Bn as
the mapping class group of a disk with n marked points. This description pro-
duces representations of Bn via the action on the homology of spaces which
are functorially associated to the punctured disk. The Burau representation is
discussed and the relationship with the Alexander-Conway polynomial is ex-
plained. The Lawrence-Krammer-Bigelow representation is also constructed.
Section §4 begins with the introduction of the Knizhnik-Zamolodchikov con-
nection and explains how representations of complex semisimple Lie algebras
produce, via the Knizhnik-Zamolodchivok connection, monodromy representa-
tions of the braid group. A theorem of Kohno is explained, which describes
the relationship between monodromy representations associated to the Lie al-
gebra sl2(C) and the Lawrence-Krammer-Bigelow representation. In Section §5
we introduce the Yang-Baxter equation, and explain the way in which solu-
tions of this equation produce representations of Bn. We define the notion of a
quasi-triangular bialgebra, and show that modules over quasi-triangular bial-
gebras come equipped with solutions to the Yang-Baxter equation. Finally, the
Drinfeld-Kohno theorem is discussed. This remarkable theorem explains the
precise relationship between the monodromy representations constructed via
the Knizhnik-Zamolodchikov connection, and the representations constructed
as solutions of the Yang-Baxter equation provided by quantum enveloping al-
gebras. We have included some proofs of the results we discussed, when they
are enlightening and sufficiently simple. However, no attempt has been made
to present all proofs of the theorems we mentioned, as this would go far beyond
the scope of these notes. When proofs are missing, we have tried to provide
references to the many excellent sources that were used in preparing this course.

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 3

2. Braid Groups

Artin’s braid groups admit several equivalent descriptions, which we will review
in this section.

2.1. Artin’s Presentation

We denote by D2 the unit disk in the complex plane and fix n marked points

−1 < p1 < p2 < · · · < pn < 1 ∈ D2 ∩ R.

Definition 2.1. A braid is a collection of n paths fi : I = [0, 1] 7→ D2, called
strands, such that:

(1) fi(0) = pi.

(2) fi(1) = pτ(i), for some permutation τ in the symmetric group Σn.

(3) For each t ∈ I, fi(t) 6= fj(t) provided that i 6= j.

Braids are pictured geometrically as a collection of n strands in three di-
mensional space. One is usually interested in braids only up to isotopies fixing
the endpoints of each strand. We will abuse the notation and take the word
braid to mean an isotopy class. Some examples of braids are the following:

Figure 1. Examples of braids.

Definition 2.2. The braid group in n strands, denoted Bn, consists of the set
of all braids with n strands with multiplication given by glueing.

It is a good exercise to become convinced that this operation indeed gives
Bn the structure of a group. The following result, due to Emil Artin, gives a
presentation for the group Bn.

Revista Colombiana de Matemáticas
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4 CAMILO ARIAS ABAD

Theorem 2.3 (Artin [3]). Denote by Bn the group generated by the symbols
σ1, . . . , σn−1 modulo the relations:

(1) σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n− 2.

(2) σiσj = σjσi, for |i− j| ≥ 2.

There is an isomorphism of groups φ : Bn → Bn determined by:

σi 7→ .

Proof. The fact that the first relation is satisfied follows from the equality

= .

The fact that the second relation is satisfied follows from

= .

We conclude that φ defines a homomorphism.

Next, one needs to prove that φ is actually an isomorphism. Surjectivity is
easy since the elements φ(σi) clearly generate Bn. For a proof of injectivity see
[15, Theorem 1.12]. �X

From now on we will identify the groups Bn and Bn using the isomorphism
above.

2.2. Configuration Spaces

The group Bn can also be described as the fundamental group of the configu-
ration space of points in the plane. We will now briefly recall some definitions
regarding configuration spaces. Let M be a smooth manifold. The configuration
space of n ordered points in M , denoted Ĉn(M) is the manifold

Ĉn(M) :=
{

(x1, . . . , xn) ∈Mn : xi 6= xj , if i 6= j
}
.

There is a natural action of the symmetric group Σn on the space Ĉn(M), given
by permuting the coordinates. The configuration space of n unordered points
in M is the quotient space

Cn(M) := Ĉn(M)/Σn.

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 5

Theorem 2.4 (Fox-Neuwirth [11], Fadell-van Buskirk [9]). There is a natural
isomorphism between the braid group in n strands and the fundamental group
of the configuration space of n unordered points in the plane

Bn ∼= π1

(
Cn(C),p

)
.

Here p = {1, 2, . . . , n} ∈ Cn(C).

The isomorphism above is defined as follows: a braid can be thought of
as a path in the configuration space Ĉn(C). However, seen as a path in this
configuration space it is not closed, since the endpoint of a strand may be
different from its starting point. By composing with the quotient map to the
unordered configuration space, this path becomes a closed path, and therefore
defines an element of the fundamental group.

2.3. Mapping Class Groups

The braid groups Bn can also be realized as mapping class groups, which ex-
poses the very interesting relation with the topology of surfaces. Let M,N
be compact manifolds, possibly with boundary. We denote by C(M,N) the
space of all continuous functions from M to N . There is a natural topology
on C(M,N), the compact open topology, defined as follows: for any K ⊂ M
compact and U ⊂ N open, set:

V (K,U) := {f ∈ C(M,N) : f(K) ⊂ U}.

The compact open topology is the smallest topology for which all V (K,U) are
open. We denote by Homeo(M) the group of homeomorphisms of M . This is
a subset of C(M,M) and in this way inherits a topology which gives it the
structure of a topological group.

Let us now specialize the discussion to the case of an orientable compact
surface S. The group of orientation preserving homeomorphism of S that fix
the boundary pointwise will be denoted by Homeo+(S, ∂S). The connected
component of the identity in Homeo+(S, ∂S) is denoted by Homeo0(S, ∂S) and
consists of the set of homeomorphism that are isotopic to the identity via an
isotopy that fixes the boundary pointwise.

Definition 2.5. The mapping class group of a surface S denoted Mod(S) is
defined as

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).

Remark 2.6. The mapping class group can alternatively be defined by re-
placing homeomorphisms by diffeomorphism and isotopies by homotopies. The
following is a list of possible definitions of Mod(S)

Revista Colombiana de Matemáticas
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6 CAMILO ARIAS ABAD

Mod(S) ∼= Homeo+(S, ∂S)/Homeo0(S, ∂S)

∼= Diff+(S, ∂S)/Diff0(S, ∂S)

∼= π0

(
Homeo+(S, ∂S)

)
∼= π0

(
Diff+(S, ∂S)

)
.

Example 2.7. The notation Mod(S) for the mapping class group is motivated
by the example of the torus T, where

Mod(T) ∼= SL2(Z).

The isomorphism is defined by the action of Mod(T) on homology.

Definition 2.8. Let S be a surface and Q ⊂ S a finite set of marked points.
We denote by Homeo(S,Q) the group of homeomorphisms of S that fix Q as a
set and fix the boundary pointwise. The mapping class group of S, seen as a
surface with marked points is

Mod(S,Q) := π0

(
Homeo+(S, ∂S) ∩ Homeo(S,Q)

)
.

Example 2.9 (Alexander-Tietze Theorem). The mapping class group of the
disk is trivial

Mod(D) = {0}.
In order to prove this fact we consider an automorphism f : D → D that fixes
the boundary. Then we define the isotopy

ht(z) =

{
z, if t ≤ |z| ≤ 1;

th
(
z
t

)
, if |z| ≤ t.

Example 2.10. An example of a nontrivial mapping class is that of the half
twist. Here S is the disk with two marked points, that we may take to be
p =

(
− 1

2 , 0
)

and q =
(

1
2 , 0
)
. The half twist H is the class of the diffeormorphism

described by Figure 2.

Theorem 2.11. Let D be a disk with n marked points Q = {p1, . . . , pn}. There
is an isomorphism

ψ : Bn → Mod(D,Q),

characterized by the property that

σi 7→ Hi.

Here Hi denotes the class of the homeomorphism which is supported on a disk
containing only the i-th and i+ 1-th punctures, and which acts as a half twist
on that disk.

The reader interested in the proof of this theorem may consult [5]. In this
section we have closely followed the book by Farb and Margalit [10], which is
an excellent reference for learning about mapping class groups.

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 7

Figure 2. Halftwist of a two pointed disk.

2.4. Pure Braids

There is a natural group homomorphism π : Bn → Σn which sends a braid to
the corresponding permutation of the marked points. Alternatively, the homo-
morphism is characterized by the property that

σi 7→ (i, i+ 1).

Definition 2.12. The pure braid group on n strands, denoted by Pn, is the
kernel of the homomorphism π : Bn → Σn.

The group Pn consists of those braids such that each strand starts and ends
at the same point. These are closed paths in the configuration space Ĉn(C),
and in this way one obtains an identification

Pn ∼= π1

(
Ĉn(C),p

)
.

Remark 2.13. LetG be an abelian group. An Eilenberg-Maclane spaceK(G,n)
is a topological space such that:

• πn
(
K(G,n)

) ∼= G.

• πm
(
K(G,n)

) ∼= {0}, for m 6= n.

Given G and n, the spaces K(G,n) exist and are well defined up to homo-
topy equivalence. The configuration spaces of points in the plane are important
examples of Eilenberg-Maclane spaces,

Cn(C) ∼= K(Bn, 1)

Ĉn(C) ∼= K(Pn, 1)

Revista Colombiana de Matemáticas
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8 CAMILO ARIAS ABAD

3. Homological Representations

In this section we discuss the Burau representations of braid groups, their ge-
ometric interpretation as action of mapping classes on homology, and their re-
lation with the Alexander-Conway polynomial of links. We also introduce the
Lawrence-Krammer-Bigelow representation, which has the remarkable prop-
erty of being faithful. Our exposition follows closely the book by Kassel and
Turaev [15].

3.1. The Burau Representation

Let us denote by Λ the ring of Laurent polynomials with integer coefficients

Λ := Z
[
t, t−1

]
.

In [6], W. Burau constructed representations of the braid group Bn on the
space Aut(Λn) of n× n matrices with coefficients in Λ. Let us define the n× n
matrix Ui as follows:

Ui =


Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1


Proposition 3.1. There is a unique group homomorphism
ψn : Bn → Aut(Λn) characterized by the property

σi 7→ Ui.

This homomorphism is called the Burau representation of Bn.

Proof. We begin by proving that the matrices Ui are invertible. Let us set

U =

[
−t t

1 0

]
.

Since the matrices Ui are block diagonal matrices whose blocks are either iden-
tity matrices of U it is enough to prove that U is an invertible matrix. For this
we exhibit an explicit inverse

U−1 =

[
0 1

t−1 1− t−1

]
One can directly check that UU−1 = U−1U = id. The block form of the
matrices implies that UiUj = UjUi provided that |i−j| ≥ 2. Finally, it remains
to show that

UiUi+1Ui = Ui+1UiUi+1.

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 9

This can be checked in the case n = 3 and becomes the following exercise in
matrix multiplication1− t t 0

1 0 0

0 0 1

1 0 0

0 1− t t

0 1 0

1− t t 0

1 0 0

0 0 1


1 0 0

0 1− t t

0 1 0

1− t t 0

1 0 0

0 0 1

1 0 0

0 1− t t

0 1 0

 . �X
Remark 3.2. Setting t = 1, each of the matrices Ui becomes a permuta-
tion matrix, and one obtains representations of Bn that factor through the
symmetric groups. For this reason, the Burau representations may be seen as
deformation of the usual permutation representation.

The Burau representation admits a one dimensional invariant subspace. By
taking the quotient of Λn by this invariant subspace one obtains the reduced
Burau representations.

Proposition 3.3. Let n be a natural number greater that 2 and V1, . . . , Vn−1

be the (n− 1)× (n− 1) matrices defined as follows:

V1 =

−t 0 0

1 1 0

0 0 In−3

 Vn−1 =

In−3 0 0

0 1 t

0 0 −t

 ,
and for 1 < i < n− 1

Vi =


Ii−2 0 0 0 0

0 1 t 0 0

0 0 −t 0 0

0 0 1 1 0

0 0 0 0 In−i−2

 .
Also, Let C be the n× n matrix over Λ

C =


1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

 .

Then

C−1UiC =

[
Vi 0

Xi 1

]
,

Revista Colombiana de Matemáticas
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10 CAMILO ARIAS ABAD

where Xi is the row of length n− 1 which is (0, . . . , 0) in case i 6= n− 1 and is
(0, . . . , 0, 1) for i = n− 1.

Proof. We set

Wi :=

[
Vi 0

Xi 1

]
.

It suffices to prove that UiC = CWi for all i = 1, . . . , n − 1. A direct
computation shows that

UiC =



1 1 1 · · · 1 1

0 1 1 · · · 1 1

0 0 1 · · · 1 1
...

...
...

. . .
...

...

0 0 0 1− t · · · 1

0 0 0 1 · · · 1
...

...
...

. . .
...

...

0 0 0 · · · 0 1


.

Similarly, a simple calculation gives

CWi =



1 1 1 · · · 1 1

0 1 1 · · · 1 1

0 0 1 · · · 1 1
...

...
...

. . .
...

...

0 0 0 1− t · · · 1

0 0 0 1 · · · 1
...

...
...

. . .
...

...

0 0 0 · · · 0 1


.

Here, the matrices on the right hand side of the equations are those obtained
from C by replacing the entry (i, i) by 1− t and the entry (i+ 1, i) by 1. This
completes the proof. �X

Since conjugation with the matrix C is an automorphism, we conclude that
the matrices Wi satisfy the braid relations. Moreover, since det(Wi) = det(Vi),
the matrices Vi are invertible as elements of End

(
Λn−1

)
. The fact that the last

column of the matrices Wi is nonzero only in the last entry also implies that
the matrices Vi satisfy the braid relations. These observations allow us to make
the following definition

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 11

Definition 3.4. For n ≥ 2 the reduced Burau representation of the braid
group Bn is the representation ψrn : Bn → Aut

(
Λn−1

)
characterized by the

property that
σi 7→ Vi.

For n = 2 the reduced Burau representation is given by ψr2(σ1) = −t.

Remark 3.5. The Burau representation is known to be faithful for n ≤ 3 and
not faithful for n ≥ 5. It is not known whether it is faithful for n = 4. A theorem
of Bigelow asserts that ψ4 is faithful if and only if the Jones polynomial detects
the unknot.

3.2. Homological Interpretation

Let us denote by D the closed disk in the plane with n distinguished interior
points p1 < · · · < pn ∈ D ∩ R and set Q := {p1, . . . , pn}. Observe that for any
point p in the interior of D,

H1

(
D − {p},Z

) ∼= Z,

is generated by the homology class of a small circle around p oriented counter-
clockwise. Set Σ := D − Q and fix a basepoint d ∈ ∂D. We define the group
homomorphism φ : π1(Σ, d)→ Z by

[γ] 7→
n∑
i=1

wi(γ),

where wi(γ) is the winding number of γ around pi. The kernel of φ determines

a covering space Σ̃→ Σ, whose group of covering transformation is the infinite
cyclic group Z. We choose a point d̃ ∈ Σ̃ over d and set

H̃ := H
(
Σ̃,Zd̃,Z

)
.

Let F be a self homeomorphism of D that permutes the elements of Q. The
restriction f of F to Σ preserves the total winding number i.e.,

φ ◦ f∗ = φ,

and therefore f can be lifted to a homeomorphism F̃ of Σ̃. This construction
defines a representation

Ψn : Mod(D,Q)→ Aut
(
H̃
)
.

Since the group of deck transformations of Σ̃→ Σ is the infinite cyclic group,
the homology group H̃ has an action of Z, and therefore it is a module over
the ring Λ. The following theorem shows that the homological representation
constructed above coincides with the Burau representation.

Revista Colombiana de Matemáticas
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12 CAMILO ARIAS ABAD

Theorem 3.6. There exists an isomorphism of Λ-modules µ : Λn → H̃ such
that the following diagram commutes

Aut(Λn) Aut
(
H̃
)
,

Bn Mod(D,Q)

µ

ψn

∼=

Ψn

Here µ is the isomorphism induced by µ.

Proof. For a proof the reader may consult [15, Theorem 3.7]. �X

3.3. Braids, Knots and the Alexander Conway Polynomial

A knot is an isotopy class of an embedding of a circle in three dimensional
euclidian space. More generally, a link with k components is an isotopy class
of an embedding of k circles in R3. The fundamental problem of knot theory is
the classification of knots and links. A typical example of a knot is

............
..............
...........
...........
....................................................................................................................................

.............................................................................................................................................................................................

......................................................................................................
......................
.................
..............
.............
.....................

........................................................................
...........
.........
..............
............
...........
..........
.........
.........
........
..........
...........

........................
..............
.............
............
.............................................................

....................................................

The relationship between links and braids is given by the operation of clo-
sure of a braid, which produces a link by connecting the strands of the braid,
as explained in the diagram

7→

A link obtained as the closure of a braid comes with a natural orientation,
given by declaring the strands of the braid to be flowing downwards.

Volumen 49, Número 1, Año 2015



i
i

“v49n1a01-Arias” — 2015/6/30 — 9:58 — page 13 — #13 i
i

i
i

i
i

INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 13

Theorem 3.7 (Alexander [1]). Any oriented link can be obtained as the closure
of a braid.

Proof. For a proof of this theorem the reader may consult [15, Theorem 2.3].
�X

The theorem above immediately raises the question of deciding when two
braids produce the same oriented link upon closure. This question is answered
by Markov’s theorem. We say that two braids β, β′ ∈ Bn are related by the
Markov move M1 if their are conjugate, i.e. if there exists a γ ∈ Bn such that
γβγ−1 = β′. The following picture describes the action of the operation M1.

7→

Let ιn : Bn → Bn+1 be the natural inclusion of groups characterized by
ι(σi) = σi. Two braids β ∈ Bn, β′ ∈ Bn+1 are related by the second Markov
move M2 if σ±n ι(β) = β′. The following picture describes the action of the
second Markov move on a braid

7→

Definition 3.8. The Markov equivalence relationM is the smallest equivalence
relation on the set of all braids such that two braids are equivalent if they are
related by the Markov moves M1 and M2. We say that two braids are Markov
equivalent if they are equivalent with respect to M .

Theorem 3.9 (Markov [21]). Two braids are Markov equivalent if and only if
their closures represent the same oriented link.

Proof. The interested reader may consult [15, Theorem 2.8] . �X

Definition 3.10. A Markov function f with values in a set X is a sequence
of functions fn : Bn → X with the properties:

• fn
(
γ−1βγ

)
= fn(β).

Revista Colombiana de Matemáticas
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14 CAMILO ARIAS ABAD

• fn(β) = fn+1

(
σnιn(β)

)
= fn+1

(
σ−1
n ιn(β)

)
.

Clearly, Markov’s theorem implies that any Markov function produces a
link invariant with values in the set X. Let us now describe a Markov function
provided by the Burau representation. Let g : Λ = Z

[
t, t−1

]
→ Z

[
s, s−1

]
be the ring homomorphism characterized by t 7→ s2. We define the group
homomorphsim

〈 〉 : Bn → Z,

by setting 〈σi〉 = 1.

For n ≥ 2 we define the function fn : Bn → X = Z
[
s, s−1

]
by the formula

fn(β) = (−1)n+1 s
−〈β〉(s− s−1

)
sn − s−n

g
(

det
(
ψrn(β)− id

))
.

Theorem 3.11. The sequence of functions fn defined above is a Markov func-
tion with values in the set X = Z

[
s, s−1

]
.

Proof. The interested reader may consult [15, Lemma 3.12]. �X

The Markov function fn defined above in terms of the Burau represen-
tation defines an invariant of oriented links known as the Alexander-Conway
polynomial.

Definition 3.12. The Alexander-Conway polynomial of an oriented link L,
denoted ∇(L), is the polynomial fn(β) ∈ Z

[
s, s−1

]
, where β is any braid whose

closure is L.

For the purpose of computation it is often useful to describe the skein re-
lations for the Alexander Conway polynomials. These relations express the
change in the value of the polynomial that occurs when modifying the crossing
of a link diagram. A Conway triple L+, L−, L0 is a triple of link diagrams that
differ only locally at one crossing, which looks, respectively, as follows:

__ ??

L+

??__

L−

\\ BB

L0

Theorem 3.13. The Alexander-Conway polynomial is the unique invariant of
oriented links ∇ with values in Z

[
s, s−1

]
which satisfies the following properties:

• ∇(L) = 1, if L is the unknot.

• For any Conway triple L+, L−, L0 :

∇(L+)−∇(L−) =
(
s−1 − s

)
∇(L0).

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 15

Proof. The proof can be found in [15, Theorem 3.13]. �X

It is fairly easy to show that there is at most one invariant satisfying the
skein relations above. The existence is the more interesting part of the theorem,
and that is where the explicit construction of the invariants, provided by the
Burau representations, is needed.

3.4. The Lawrence-Krammer-Bigelow Representation

We will now discuss another homological representation introduced by
R. Lawrence [20] and studied by D. Krammer [19] and S. Bigelow [4]. Let us
fix a natural number n ≥ 1 and denote by D the unit disk with n distinguished
points Q = {p1, . . . , pn}. We also set

Σ := D −Q, F := Ĉ2(Σ), C := C2(Σ).

Here we use the notation introduced above for configuration spaces. That
is, F is the configuration space of two ordered points in Σ, and C is the config-
uration space of two unordered points in Σ. There is a natural double sheeted
covering F → C. A point in C is an unordered set of distinct points of Σ and
we use the notation {x, y} for points of C. A path in C can be represented as
a pair of paths {ζ1, ζ2} where ζi : I → Σ such that for all s ∈ I, ζ1(s) 6= ζ2(s).
A loop in C is a path such that {ζ1(0), ζ2(0)} = {ζ1(1), ζ2(1)}. That is, a pair
of maps (ζ1, ζ2) defines a loop in C if either they define a loop in F or define a
path in F that permutes the starting points.

Given a loop ζ = {ζ1, ζ2} in C we define the number w(ζ) ∈ Z as follows. If
the pair (ζ1, ζ2) defines a loop in F , then each of the ζi are loops in Σ and we
set

w(ζ) := φ(ζ1) + φ(ζ2),

where, as above, φ is the group homomorphism that counts the total winding
number with respect to Q. If the pair (ζ1, ζ2) does not define a loop in F , then
it defines a path that permutes the endpoints. Therefore ζ1 ◦ ζ2 defines a loop
is Σ and we set

w(ζ) := φ(ζ1 ◦ ζ2).

We define a second numerical invariant u(ζ) as follows. Consider the map
γζ : I → S1 given by the formula

γζ(s) :=

(
ζ1(s)− ζ2(s)

|ζ1(s)− ζ2(s)|

)2

.

Observe that this map is well defined for ζ, since ζ1 and ζ2 play a symmetric
role. Since ζ is a loop, we also conclude that γζ(0) = γζ(1) and therefore γζ
defines a map S1 → S1 whose degree is the value of u at ζ. It is a simple

Revista Colombiana de Matemáticas
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16 CAMILO ARIAS ABAD

exercise to prove that the maps w and u are well defined on homotopy classes
and are group homomorphisms π1(C)→ Z.

We fix two distinct points d1, d2 ∈ ∂(Σ) and take {d1, d2} as the basepoint
of C. We denote by

ρ : π1

(
C, {d1, d2}

)
→ Z⊕ Z,

the group homomorphism given by the formula

ρ(ζ) = qw(ζ)tu(ζ),

where q and t are the canonical generators of Z⊕ Z.

Lemma 3.14. The group homomorphism ρ : π1

(
C, {d1, d2}

)
→ Z ⊕ Z is sur-

jective.

Proof. It suffices to prove that both q and t are in the image of ρ. Let us first
prove that q is in the image. Let ζ = {ζ1, ζ2} be the loop in C such that ζ1 is
constant and ζ2 is a small counterclockwise loop around p1. Then

w(ζ) = φ(ζ1) + φ(ζ2) = 1.

Since ζ2 stays close to p1 and ζ1 is constant, we conclude that u(ζ) = 0. Thus
ρ(ζ) = q.

Let us now prove that t is in the image of ρ. Consider a small disk B ⊂ Σ
and define the loop ϕ = {ϕ1, ϕ2} as follows. Fix two distinct points x, y ∈ ∂(B).
Set ϕ1 the path that goes along ∂B from x to y in counterclockwise direction
and ϕ2 the path that goes along ∂B from y to x in counterclockwise direction.
Then

w(ϕ) = φ(ϕ1 ◦ ϕ2) = 0

and
u(ϕ) = deg(id) = 1.

We conclude that ρ(ϕ) = t. �X

Let C̃ → C be the covering space that corresponds to the subgroup ker(ρ)
of π1

(
C, {d1, d2}

)
. The group Z⊕ Z acts as the group of deck transformations

of C̃. Therefore, the space
H := H2

(
C̃,Z

)
,

has the structure of a module over the ring

R := Z
[
q, q−1, t, t−1

]
.

We will now describe an action of the braid group Bn on the R-module H.
We will again use the identification

Bn ∼= Mod(D,Q).

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 17

Take a homeomorphism f of D that fixes the boundary pointwise and per-
mutes the elements of Q. The map f induces a homeomorphism f̂ : C → C
given by

f̂
(
{x, y}

)
:=
{
f(x), f(y)

}
.

Since f fixes the boundary pointwise, we know that f̂
(
{d1, d2}

)
= {d1, d2}

and therefore f̂ induces an isomorphism f̂∗ : π1

(
C, {d1, d2}

)
→ π1

(
C, {d1, d2}

)
.

Lemma 3.15. The homomorphism f̂∗ preserves the invariant ρ, i.e. ρ◦ f̂∗ = ρ.

Proof. We need to prove that w ◦ f̂∗ = w and u ◦ f̂∗ = u. The first statement
reduces to the fact that the total winding number is preserved by f̂∗, which
we have already seen. Let us now prove the second statement. Consider the
inclusion of configuration spaces

ι : C = C2(Σ) ↪→ C2(D),

induced by the inclusion Σ ↪→ D. The definition of the invariant u can be
extended word by word to an invariant û of loops in C2(D) in such a way that
the diagram

π1

(
C, {x, y}

)
π1

(
C2(D), {x, y}

)

Z

ι

u
û

commutes. On the other hand, f̂ extends to a homeomorphism f of C2(D)
which, by the Alexander-Tietze Theorem proved in Example 2.9, is isotopic to
the identity. Thus f acts trivially on the fundamental group of C2(D). Then,
for any element γ ∈ π1

(
C, {x, y}

)
,

u ◦ f̂∗(γ) = û ◦ ι ◦ f̂∗(γ) = û ◦ f∗ ◦ ι ◦ γ = û ◦ ι(γ) = u(γ). �X

The previous lemma implies that the homeomorphism f̂ lifts naturally to
a homeomorphism f̃ : C̃ → C̃ that commutes with the deck transformations
of the covering. This homeomorphism induces a homomorphism in homology
f̃∗ : H2

(
C̃,Z

)
→ H2

(
C̃,Z

)
.

Definition 3.16. The Lawrence-Krammer-Bigelow representation of the braid
group Bn is the homomorphism

Bn → AutR
(
H2

(
C̃,Z

))
,

given by the formula
f 7→ f̃∗.

Revista Colombiana de Matemáticas
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18 CAMILO ARIAS ABAD

Theorem 3.17 (Krammer [19], Bigelow [4]). The following statements hold
for all n ≥ 2:

(1) There is a natural isomorphism of R-modules

H ∼= R
n(n−1)

2 .

(2) The Lawrence-Krammer-Bigelow representation Bn → AutR(H) is faith-
ful.

Proof. The interested reader may consult [15, Theorem 3.15]. �X

The second statement of the theorem implies that Bn is a linear group,
i.e. it is isomorphic to a group of matrices with real coefficients. This can be
obtained by setting q, t to be algebraically independent real numbers.

4. The Knizhnik-Zamolodchikov Connection

We will now describe representations of braid groups that arise by monodromy
of certain flat connections, known as Knizhnik-Zamolodchivov connections, on
configuration spaces of points in the plane. More about this connections and
the relationship with the Jones polynomial can be found in Kohno’s book [16].

4.1. Cohomology of Configuration Spaces and the KZ Connection

As before, we denote by Ĉn(C) the configuration space of n ordered points in

the plane. The cohomology of Ĉn(C) has been computed explicitly by Arnold in
[2]. Since the original article is in russian, some readers may prefer to read [22]
for a detailed explanation of the computation. Let us now describe Arnold’s
result.

Definition 4.1. The algebra An is the graded commutative algebra over C
generated by degree one elements aij = aji for i 6= j, 1 ≤ i, j ≤ n modulo the
Arnold relation

aijajk + akiaij + ajkaki = 0, for i < j < k.

We also define the differential forms wij for 1 ≤ i, j ≤ n in Ĉn(C) given by

wij = d
(

log(zi − zj)
)

=
dzi − dzj
zi − zj

.

Theorem 4.2 (Arnold). There is a homomorphism of differential graded al-

gebras An → Ω
(
Ĉn(C)

)
given by

aij 7→ wij .

Volumen 49, Número 1, Año 2015
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INTRODUCTION TO REPRESENTATIONS OF BRAID GROUPS 19

Moreover, this homomorphism induces an isomorphism in cohomology

An ∼= H
(
Ĉn(C),C

)
.

Proof. The fact that the formula above gives a homomorphism is an explicit
computation with the differential forms wij . For the proof that the map is an
isomorphism we recommend [22]. �X

Arnold’s computation can be used to define natural flat connections on
configuration spaces.

Definition 4.3. For each n ≥ 2, the Kohno-Drinfeld Lie algebra is the Lie
algebra tn generated by the symbols tij = tji for 1 ≤ i, j ≤ n modulo the
relations:

[tij , tkl] = 0, if #{i, j, k, l} = 4,

[tij , tik + tjk] = 0, if #{i, j, k} = 3.

Definition 4.4. The Knizhnik-Zamolodchikov connection is the connection on
the configuration space Ĉn(C) with values in the Kohno-Drinfeld Lie algebra,
given by the formula

θn :=
∑
i<j

tijwij .

Lemma 4.5. The Knizhnik-Zamolodchikov connection θn is flat, i.e.

dθn +
1

2

[
θn, θn

]
= 0.

Proof. Since each of the forms wij = d
(

log(zi − zj)
)

is closed, it is enough to
prove that

[θn, θn] = 0.

For this we use the Arnold relations as follows

[θn, θn] =
∑

i<j,k<l

[tijωij , tklwkl] =
∑

i<j,k<l

[tij , tkl]wijwkl.

In view of the first relation in the Drinfeld-Kohno Lie algebra, it suffices to
sum over sets of indices so that #{i, j, k, l} = 3. Thus, the expression above is
equal to ∑

i<j,k<l,#{i,j,k,l}=3

[tij , tkl]wijwkl.

We now rewrite this expression by considering all the possible ways in which a
pair of indices can be equal, and obtain
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∑
i<j<k

[
tij , tik

]
wijwik +

[
tik, tij

]
wikwij +

[
tjk, tij

]
wjkwij +

[
tij , tjk

]
wijwjk +

[
tik, tjk

]
wikwjk +

[
tjk, tik

]
wjkwik.

Using now the second relation in the Drinfeld-Kohno Lie algebra, we can rewrite
the expression as

2
∑
i<j<k

[
tij , tjk

](
wijwjk + wkiwij + wjkwki

)
,

which vanishes in view of the Arnold relation. �X

The KZ connection is a flat connection on the configuration space with
values in the Drinfeld-Kohno Lie algebra. We will see how this connection
can be used to construct flat connections on vector bundles on configurations
spaces. Recall that given a finite dimensional complex Lie algebra g the Killing
form is the symmetric bilinear form κ on g defined by

κ(x, y) := tr
(
ad(x) ◦ ad(y)

)
,

where ad denotes the adjoint representation of g. The Lie algebra g is called
semisimple if the Killing form κ is nondegenerate. We denote by U(g) the
universal enveloping algebra of g. If g is semisimple then the killing form defines
an isomorphism

κ] : g→ g∗,

which in turn induces identifications

g⊗ g ∼= g⊗ g∗ ∼= End(g).

We will denote by Ω the element of g⊗ g which corresponds to id ∈ End(g)
under the identification above. Explicitly, one can choose an orthonormal basis{
Iµ
}

for g with respect to the Killing form and then

Ω =
∑
µ

Iµ ⊗ Iµ.

The Casimir element of g, denoted by C, is the image of Ω ∈ g ⊗ g in
the universal enveloping algebra. Since the Killing form is ad invariant i.e.
κ
(
ad(x)(y), z

)
+ κ

(
y, ad(x)(z)

)
= 0, the map κ] : g → g∗ is a morphism of

representations of g. Since id ∈ End(g) is an invariant element for the action
of g, so is Ω. We conclude that C is a central element of U(g).
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Recall that U(g) admits a coproduct

∆ : U(g)→ U(g)⊗ U(g),

which is the unique algebra homomorphism with the property that

∆(x) = 1⊗ x+ x⊗ 1,

for all x ∈ g.

Lemma 4.6. We regard g as a subspace of U(g) via the obvious inclusion.
Then

Ω =
1

2

(
∆(C)− 1⊗ C − C ⊗ 1

)
.

Proof. This is a direct computation:

∆(C) = ∆

(∑
µ

IµIµ

)
=
∑
µ

∆(Iµ)∆(Iµ)

=
∑
µ

(1⊗ Iµ + Iµ ⊗ 1)(1⊗ Iµ + Iµ ⊗ 1)

= 1⊗ C + C ⊗ 1 + 2Ω. �X

Let ι12 : U(g)⊗ U(g)→ U(g)⊗ U(g)⊗ U(g) be the map

x⊗ y 7→ x⊗ y ⊗ 1,

and define ι23, ι13 analogously. Then, for 1 ≤ i < j ≤ 3 we set

Ωij := ιij(Ω).

Lemma 4.7. The following relation is satisfied[
Ω12,Ω23 + Ω13

]
= 0.

Proof. First, we observe that since C is a central element in U(g),
1⊗ 1⊗C, 1⊗C ⊗ 1, C ⊗ 1⊗ 1 are central elements in U(g)⊗ U(g)⊗ U(g). In
view of Lemma 4.6, we know that for each pair 1 ≤ i < j ≤ 3

Ωij =
1

2
ιij
(
∆(C)

)
+Xij ,

where Xij is central. Therefore it suffices to prove that[
ι12
(
∆(C)

)
, ι23

(
∆(C)

)
+ ι13

(
∆(C)

)]
= 0.
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In order to prove this we compute

ι23
(
∆(C)

)
= ι23

(
1⊗ C + C ⊗ 1 + 2

∑
µ

Iµ ⊗ Iµ
)

= 1⊗ 1⊗ C + 1⊗ C ⊗ 1 + 2
∑
µ

1⊗ Iµ ⊗ Iµ.

Similarly

ι13
(
∆(C)

)
= ι13

(
1⊗ C + C ⊗ 1 + 2

∑
µ

Iµ ⊗ Iµ
)

= 1⊗ 1⊗ C + C ⊗ 1⊗ 1 + 2
∑
µ

Iµ ⊗ 1⊗ Iµ.

Therefore
ι13
(
∆(C)

)
+ ι23

(
∆(C)

)
= 2

∑
µ

∆(Iµ)⊗ Iµ +X,

where X is central. Finally we compute

1

2

[
ι12
(
∆(C)

)
, ι23

(
∆(C)

)
+ ι13

(
∆(C)

)]
=

[
∆(C)⊗ 1,

∑
µ

∆(Iµ)⊗ Iµ
]

=
∑
µ

[
∆(C),∆(Iµ)

]
⊗ Iµ = 0. �X

The previous lemma will be the key to constructing an action of the pure
braid group Pn on tensor products of representations of a complex semisimple
Lie algebra. Given a representation ρ : g → End(V ) of a Lie algebra g, we
will also denote by ρ the corresponding homomorphism of associative algebras
ρ : U(g)→ End(V ).

Lemma 4.8. Let g be a finite dimensional complex semisimple Lie algebra and
ρ1 : g→ End

(
V1

)
, . . . , ρn : g→ End

(
Vn
)

be representations of g. Then there is
a homomorphism of Lie algebras

Υn : tn → End
(
V1 ⊗ · · · ⊗ Vn

)
given by the formula

tij 7→ (ρ1 ⊗ · · · ⊗ ρn) ◦ λij(Ω) ∈ End
(
V1

)
⊗ · · · ⊗ End

(
Vn
)

⊂ End
(
V1 ⊗ · · · ⊗ Vn

)
,

where λij : U(g)⊗ U(g)→ U(g)⊗n is the morphism of algebras given by

x⊗ y 7→ 1⊗ · · · ⊗ 1⊗ x︸︷︷︸
i

⊗ 1⊗ · · · ⊗ 1⊗ y︸︷︷︸
j

⊗ 1⊗ · · · ⊗ 1.
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Proof. We need to prove that the endomorphisms Υ(tij) satisfy the Khono-
Drinfeld relations. It is clear from the definition that[

Υ(tij),Υ(tkl)
]

= 0,

if #{i, j, k, l} = 4. It remains to prove that[
Υ(tij),Υ(tik) + Υ(tik)

]
= 0,

if #{i, j, k} = 3. Clearly, it is enough to consider the case n = 3. Since
ρ1 ⊗ · · · ⊗ ρn is a morphism of algebras, it suffices to prove that[

Ω12,Ω23 + Ω13
]

= 0,

which is precisely the claim of Lemma 4.7. �X

Lemma 4.8 together with the flatness of the KZ connection imply the fol-
lowing result

Theorem 4.9. Let g be a finite dimensional complex semisimple Lie algebra
and ρ1 : g → End

(
V1

)
, . . . , ρn : g → End

(
Vn
)

be representations of g. The

vector space
(
V1 ⊗ · · · ⊗ Vn

)
has the structure of a representation of the pure

braid group Pn, given by holonomy of the connection Υn(θn) on the trivial

vector bundle over Ĉn(C) with fiber
(
V1 ⊗ · · · ⊗ Vn

)
.

Proof. Since the KZ connection θn is flat and Υn is a morphism of Lie algebras,
the connection Υn(θn) is a flat connection on the trivial vector bundle over

Ĉn(C). Using the identification

Pn ∼= π1

(
Ĉn(C),p

)
,

one obtains the desired representation. �X

The construction above can be symmetrized to obtain representation of the
braid groups Bn.

Theorem 4.10. Let g be a finite dimensional complex semisimple Lie algebra
and ρ : g → End(V ) be representation of g. The vector space V ⊗n has the
structure of a representation of the braid group Bn.

Proof. By applying the construction in Theorem 4.9 to the case ρi = ρ, one ob-
tains a flat connection Υn(θn) on the trivial vector bundle over Ĉn(C) with fiber

V ⊗n. The symmetric group Σn acts on V ⊗n and also on Ĉn(C) by permuting

the coordinates. Therefore it also acts diagonally on Ω
(
Ĉ(C)

)
⊗End

(
V ⊗n

)
. One

easily checks that Υn(θn) is invariant under this diagonal action, and therefore

descends to a flat connection form on the vector bundle
(
Ĉn(C)×V ⊗n

)
/Σn over

Ĉn(C)/Σn ∼= Cn(C). The holonomy of this connection gives a representation
of π1

(
Cn(C),p

) ∼= Bn on the vector space V ⊗n. �X
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4.2. Representations of sl2(CCC) and Lawrence-Krammer-Bigelow

We will consider the KZ connection for the semisimple Lie algebras g = sl2(C)
of 2×2 complex matrices of trace zero. Let us fix the following basis for sl2(C):

H =

[
1 0

0 −1

]
, E =

0 1

0 0
, F =

[
0 0

1 0

]
.

In terms of the basis, the bracket is given by:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

Definition 4.11. Let λ ∈ C be a complex number. The Verma module Mλ

with highest weight λ is the representation of sl2(C) defined as follows. As a
vector space it is generated by the elements F j(vλ) for j ≥ 0. The action of
sl2(C) on Mλ is given by:

F
(
F j(vλ)

)
= F j+1(vλ),

E
(
F j(vλ)

)
= j(λ− j + 1)F j−1(vλ),

H
(
F j(vλ)

)
= (λ− 2j)F j(vλ).

Given Λ = (λ1, . . . , λn) ∈ Cn we set |Λ| = λ1 + · · ·+ λn, and we define the
space of weight vectors with weight |Λ| − 2m to be the vector space

W
[
|Λ| − 2m

]
:=
{
x ∈Mλ1

⊗ · · · ⊗Mλn : H(x) =
(
|Λ| − 2m

)
x
}
.

The space of null vectors N [|Λ| − 2m] is

N
[
|Λ| − 2m

]
:=
{
x ∈W

[
|Λ| − 2m

]
: E(x) = 0

}
.

Lemma 4.12. The vector space W
[
|Λ| − 2m

]
is finite dimensional, of dimen-

sion equal to the number of ordered partitions of length n of the number m.

Proof. Since H acts on Mλ in a diagonal manner with respect to the given
basis, a sum of basis elements is in W

[
|Λ| − 2m

]
if and only if each of the

basis elements is. Therefore, it suffices to count the number of basis elements
in W

[
|Λ| − 2m

]
. A basis element x = F ji ⊗ · · · ⊗ F jn belongs to W

[
|Λ| − 2m

]
precisely when (

|Λ| − 2m
)
x = H(x) =

∑
i

(λ− 2ji)x,

that is, precisely when
∑
i ji = m. �X

Given a nonzero complex number τ we define the KZ connection with pa-
rameter τ ,

θn,τ :=
1

τ
θn.
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Note that since dθn = 0 = [θn, θn], the connection θn,τ is flat. We now fix
another complex number λ ∈ C and consider the representation M⊗nλ . Using
the notation in Theorem 4.9, the differential form Υn(θn,τ ) is a flat connection
on M⊗nλ .

Proposition 4.13. The flat connection Υnθn,τ commutes with the action ρ :
sl2(C) → End

(
M⊗nλ

)
, i.e. for any vector field Y on the configuration space

Ĉn(C)
ρ(v)

(
Υnθn,τ (Y )(x)

)
= Υnθn,τ (Y )

(
ρ(v)(x)

)
,

for any v ∈ sl2(C) and x ∈M⊗nλ . The vector space N [nλ− 2m] is a represen-
tation

µn,m,λ,τ : Bn → Aut
(
N [nλ− 2m]

)
of the braid group Bn.

Proof. It suffices to prove that each of the endomorphisms Υn(tij) commutes
with ρ. The action of sl2(C) on M⊗nλ is given by ρ⊗n ◦ ∆n(x) : g ⊂ U(g) →
End

(
M⊗nλ

)
. Therefore, it suffices to prove that each element Ωij = λij(Ω)

commutes with ∆n(v). By Lemma 4.6 we know that Ω differs from ∆(C) by a
central element, so it suffices to prove that[

λij
(
∆(C)

)
,∆n(v)

]
= 0,

which is a consequence of the fact that C is a central element of U(g). This
completes the proof of the first claim. Since the connection Υnθn,τ commutes
with the action of ρ, then it preserves the finite dimensional vector spaceN [nλ−
2m], and therefore it restricts to a flat connection on the trivial vector bundle

over Ĉn(C) with fiber N [nλ−2m]. As before, the connection is invariant under
the action of Σn and therefore it descends to a flat connection on the quotient
vector bundle over Cn(C). The holonomy of this connection gives N [nλ− 2m]
the structure of a representation of Bn. �X

We are now ready to state the following remarkable theorem of Khono which
describes the relation between the Lawrence-Krammer-Bigelow representations
and the representations on the null spaces of Verma modules of sl2(C) given
by holonomy of the KZ connection.

Theorem 4.14 (Kohno [18]). There exists an open dense subset U ⊂ C2, such
that for (τ, λ) ∈ U the representation

µn,2,λ,τ : Bn → Aut
(
N [nλ− 4]

)
is equivalent to the representation obtained from the Lawrence-Krammer-Bigelow
representation

Bn → AutR(H) ∼= Aut
(
R
n(n−1)

2

)
,
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by setting

q = exp−2πiλτ , t = exp
2πi
τ .

Here, as before, R is the ring R = Z
[
q, q−1, t, t−1

]
.

5. The Yang-Baxter Equation and the Drinfeld-Kohno Theorem

5.1. The Yang-Baxter Equation and Quasi-Triangular Bialgebras

The Yang-Baxter equation was originally introduced in the field of statistical
mechanics. Solutions to this equation provide a systematic way to construct
representations of the braid groups Bn. We will introduce the notion of quasi-
triangular bialgebra, and explain that these are algebraic structures with the
property that their modules are naturally endowed with solutions to the Yang-
Baxter equation.

Definition 5.1. Let V be a complex vector space. An automorphism R of
V ⊗ V is called an r-matrix if it satisfies the Yang-Baxter equation

(R⊗ id) ◦ (id⊗R) ◦ (R⊗ id) = (id⊗R) ◦ (R⊗ id) ◦ (id⊗R) ∈ End
(
V ⊗3

)
.

Lemma 5.2. Given an r-matrix R ∈ Aut(V ⊗ V ), there is a representation

ρR : Bn → Aut
(
V ⊗n

)
,

defined by
σi 7→ idi−1 ⊗R⊗ idn−i−1.

Proof. The identity

ρ(σi)ρ(σi+1)ρ(σi) = ρ(σi+1)ρ(σi)ρ(σi+1),

follows from the fact that R satisfies the Yang-Baxter equation. The relation
σiσj = σjσi if |i− j| > 2 is clear from the form of the map ρR. �X

Let us now introduce some algebraic definitions.

Definition 5.3. A bialgebra is a tuple (A,µ, η,∆, ε) where:

• A is a vector space over C.

• µ is map A⊗A→ A, called the product.

• η is a map C→ A, called the unit.

• ∆ is a map ∆ : A→ A⊗A, called the coproduct.

• ε is a map A→ C, called the counit.
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Satisfying the conditions:

• (A,µ, η) is a unital associative algebra.

• (A,∆, ε) is a counital coassociative coalgebra.

• ∆ : A→ A⊗A is a morphism of associative algebras.

Of course, we will abuse the notation and simply say that A is a bialgebra.

Example 5.4. We have already encountered an important example of a bial-
gebra, the universal enveloping algebra U(g) of a Lie algebra g. Recall that the
coproduct is the unique algebra homomorphism ∆ : U(g)→ U(g)⊗ U(g), with
the property that ∆(x) = 1 ⊗ x + x ⊗ 1, for any x ∈ g. The bialgebra U(g) is
cocommutative but in general it is not commutative.

Given modules V,W of a bialgebra A, the vector space V ⊗W , is also a
module of A with action given by

a(v ⊗ w) := ∆(a)(v ⊗ w).

Thus, bialgebras are algebras for which the category of modules admits a tensor
product. In general, the modules V ⊗W and W ⊗ V need not be isomorphic.
In case the coproduct ∆ is cocommutative, the linear map

τV,W : V ⊗W →W ⊗ V,
v ⊗ w 7→ w ⊗ v,

is an isomorphism of A-modules. The condition that A is cocommutative is
sufficient, but not necessary in order to have consistent isomorphism of A-
modules V ⊗W ∼= W ⊗V . This consideration leads to the following definition:

Definition 5.5. An almost-cocommutative bialgebra is a bialgebra
(A,µ, η,∆, ε) together with an invertible element R ∈ A ⊗ A, called the uni-
versal r-matrix, such that for any a ∈ A

τA,A ◦∆(a) = R∆(a)R−1,

where τA.A : A⊗A→ A⊗A is given by a⊗ b 7→ b⊗ a.

Given an almost-cocommutative bialgebra, and modules V,W the map

τR,V,W := τV,W ◦R : V ⊗W →W ⊗ V,

is an isomorphism of A-modules. Thus, an almost-cocommutative bialgebra is
a bialgebra for which there are natural isomorphisms of A-modules V ⊗W ∼=
W ⊗ V .
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28 CAMILO ARIAS ABAD

Let us now consider A-modules V,W,Z. There are several ways to obtain
isomorphisms of A-modules between V ⊗W ⊗ Z and W ⊗ V ⊗ Z, and it is
natural to expect that these isomorphisms should coincide. Namely, one would
expect the following diagrams to commute:

V ⊗W ⊗ Z W ⊗ Z ⊗ V

W ⊗ V ⊗ Z W ⊗ Z ⊗ V ,

τR,V,W⊗Z

τR,V,W ⊗ id id

id ⊗ τR,V,Z

(1)

V ⊗W ⊗ Z Z ⊗ V ⊗W

V ⊗ Z ⊗W Z ⊗ V ⊗W .

τR,V ⊗W,Z

id ⊗ τR,W,Z id

τR,V,Z ⊗ id

(2)

The commutativity of these diagrams can be assured by imposing conditions
on the universal r-matrix R. This leads to the following definition.

Definition 5.6. A quasi-triangular bialgebra is an almost-cocommutative bial-
gebra A such that the universal r-matrix R ∈ A⊗A satisfies the equations:

(∆⊗ id)R = R13R23,

(id⊗∆)R = R13R12.

Here R12 = R⊗1, R23 = 1⊗R and R13 = (τA,A⊗ id)(R23) = (id⊗ τA,A)(R12).

Example 5.7. The simplest example of a quasi-triangular bialgebra is a co-
commutative bialgebra, with r-matrix R = 1⊗1. Thus, the universal enveloping
algebra U(g) of a Lie algebra g is a quasi-triangular bialgebra.

Remark 5.8. The definition of a quasi-triangular bialgebra is designed to
guarantee that the category of modules has a well behaved tensor product.
Namely, a tensor product with natural isomorphisms

CVW : V ⊗W ∼= W ⊗ V,

for which the diagrams (1) and (2) commute. This kind of category is known as
a braided monoidal category. Observe that in diagrams (1) and (2) expressions
of the type V ⊗W⊗Z appear. This notation is using implicitly that the natural
isomorphisms of vector spaces

(V ⊗W )⊗ Z ∼= V ⊗ (W ⊗ Z)
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are isomorphism of representations. In more generality, one may consider the
case where there are natural isomorphisms of representations

(V ⊗W )⊗ Z ∼= V ⊗ (W ⊗ Z),

which are not the obvious isomorphisms of vector spaces.

This corresponds to the general definition of braided monoidal category.
The algebraic structure on A that guarantees that the category of modules is
a braided monoidal category is that of a quasi-triangular quasi-bialgebra. Note
that the fact that for a bialgebra the obvious linear isomorphism (V ⊗W ) ⊗
Z ∼= V ⊗ (W ⊗ Z) is a morphism of modules corresponds to the fact that
the coproduct is coassociative. Thus, in a quasi-triangular quasi-bialgebra one
does not require ∆ to be strictly coassociative. Instead, there is an element φ ∈
A⊗A⊗A, called the Drinfeld associator, which controls the lack of associativity
much in the same way in which R controls the lack of commutativity. We will
not discuss the details of these elegant structures here. The interested reader
may consult Kasssel’s book [14].

Proposition 5.9. Let A be a quasi-triangular bialgebra with universal r-matrix
R ∈ A⊗A. Given A-modules V,W,Z there are isomorphisms of A-modules

τR,V,W : V ⊗W →W ⊗ V,

defined by

τR,V,W := τV,W ◦R,

satisfying the following equations:

(τR,V⊗W,Z) = (τR,V,Z ⊗ id) ◦ (id⊗ τR,W,Z), (3)

(τR,V,W⊗Z) = (id⊗ τR,V,Z) ◦ (τR,V,W ⊗ id), (4)

(τR,W,Z ⊗ id)◦(id⊗ τR,V,Z) ◦ (τR,V,W ⊗ id)

= (id⊗ τR,V,W ). ◦ (τR,V,Z ⊗ id) ◦ (id⊗ τR,W,Z). (5)

Proof. Let us first check that τR,V,W is an isomorphism of A-modules. Since R
is invertible, τR,V,W is an invertible linear map. Let us check that it is A-linear

τR,V,W
(
a(v ⊗ w)

)
= τR,V,W

(
∆(a)(v ⊗ w)

)
= τV,W ◦R ◦∆(a)(v ⊗ w)

= τV,W ◦ τA,A
(
∆(a)

)
◦R(v ⊗ w) = ∆(a) ◦ τV,W ◦R(v ⊗ w)

= a ◦ τR,V,W (v ⊗ w).
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i
i

“v49n1a01-Arias” — 2015/6/30 — 9:58 — page 30 — #30 i
i

i
i

i
i

30 CAMILO ARIAS ABAD

Equations (3) and (4) are analogous. Let us prove equation (3). For this we use
the fact that (∆⊗ id)(R) = R13R23, and compute

(τR,V,Z ⊗ id) ◦ (id⊗τR,W,Z)

= (τV,Z ◦R⊗ id) ◦ (id⊗ τW,Z ◦R)

= (τV,Z ⊗ id) ◦R12 ◦ (id⊗ τW,Z) ◦R23

= (τV,Z ⊗ id) ◦ (id⊗ τW,Z)(id⊗ τA,A)(R12) ◦R23

= (τV,Z ⊗ id) ◦ (id⊗ τW,Z)R13 ◦R23

= (τV,Z ⊗ id) ◦ (id⊗ τW,Z)(∆⊗ id)R

= (τV⊗W,Z) ◦ (∆⊗ id)R

= τR,V⊗W,Z .

Let us now prove equation (5). We compute:

(τR,W,Z⊗id) ◦ (id⊗ τR,V,Z) ◦ (τR,V,W ⊗ id)

= (τW,Z ⊗ id) ◦R12 ◦ (id⊗ τV,Z) ◦R23 ◦ (τV,W ⊗ id) ◦R12

= (τW,Z ⊗ id) ◦R12 ◦ (id⊗ τV,Z) ◦ (τV,W ⊗ id) ◦R13 ◦R12

= (τW,Z ⊗ id) ◦ (id⊗ τV,Z) ◦R13 ◦ (τV,W ⊗ id) ◦R13 ◦R12

= (τW,Z ⊗ id) ◦ (id⊗ τV,Z) ◦ (τV,W ⊗ id) ◦R23 ◦R13 ◦R12

= (τW,Z ⊗ id) ◦ (id⊗ τV,Z) ◦ (τV,W ⊗ id) ◦R23 ◦R13 ◦R12.

On the other hand

(id⊗ τR,V,W ) ◦ (τR,V,Z ⊗ id) ◦ (id⊗ τR,W,Z)

= (id⊗ τV,W ) ◦R23 ◦ (τV,Z ⊗ id) ◦R12 ◦ (id⊗ τW,Z) ◦R23

= (id⊗ τV,W ) ◦R23 ◦ (τV,Z ⊗ id) ◦ (id⊗ τW,Z) ◦R13 ◦R23

= (id⊗ τV,W ) ◦ (τV,Z ⊗ id) ◦R13 ◦ (id⊗ τW,Z) ◦R13 ◦R23

= (id⊗ τV,W ) ◦ (τV,Z ⊗ id) ◦ (id⊗ τW,Z) ◦R12 ◦R13 ◦R23.

Clearly,

(τW,Z ⊗ id) ◦ (id⊗ τV,Z) ◦ (τV,W ⊗ id) =

(id⊗ τV,W ) ◦ (τV,Z ⊗ id) ◦ (id⊗ τW,Z).

Therefore, it suffices to prove that

R23R13R12 = R12R13R23.
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For this we compute

R12R13R23 = R12(∆⊗ id)R

= (R⊗ 1)(∆⊗ id)R

= (τA,A ⊗ id)(∆⊗ id)(R)R12

= (τA,A ⊗ id)(R13R23)R12

= R23R13R12.

This completes the proof. �X

Corollary 5.10. Let A be a quasi-triangular bialgebra with universal r-matrix
R, and V a module over A. Then τR,V,V ∈ AutA(V ) is a solution of the Yang-
Baxter equation. In particular, the vector space V ⊗n is a representation of the
braid group Bn.

5.2. The Drinfeld-Kohno Theorem

We have seen that modules over quasi-triangular bialgebras produce represen-
tations of the braid groups. However, so far we have not encountered nontrivial
examples of quasi-triangular bialgebras. A rich source of examples comes from
Lie theory: The universal enveloping algebra U(g) of a complex semisimple Lie
algebra g can be deformed to obtain a quantum enveloping algebra. These pro-
vide interesting examples of quasi-triangular bialgebras and of representations
of the braid groups.

In order to describe the Drinfeld-Jimbo bialgebras, it will be necessary to
review some facts regarding the classification of semisimple Lie algebras. A good
reference for this subject is Humphreys’ book [12]. Let g be a finite dimensional
complex semisimple Lie algebra. A Cartan subalgebra h ⊂ g is an abelian
subalgebra with the property that Ng(h) = h. Where Ng(h) is the normalizer
of h in g, i.e.,

Ng(h) :=
{
x ∈ g : [h, x] ⊂ h

}
.

Cartan subalgebras always exist and moreover, any two Cartan subalgebras
are conjugated to one another. Let us now on fix a Cartan subalgebra h ⊂ g.
For any element x ∈ h, the linear map ad(x) : g→ g is diagonalizable. Since h
is abelian, all the maps ad(x) commute and therefore g decomposes as a direct
sum of eigenspaces

g =
⊕
α∈h∗

gα,

for some functionals α ∈ h∗ so that

[h, y] = α(h)y, if y ∈ gα, h ∈ h.

The set of roots, denoted by ∆, is the set of nonzero α ∈ h∗ in the decom-
position above.
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Lemma 5.11. Let g be a finite dimensional complex semisimple Lie algebra
and h ⊂ g a Cartan subalgebra. For any α ∈ h∗ set

gα := {x ∈ g : [h, x] = α(h)x, for all h ∈ h}.

Then

[gα, gβ ] ⊂ gα+β .

If x ∈ gα for α 6= 0, ad(x) is nilpotent. If α + β 6= 0 then gα is orthogonal to
gβ with respect to the Killing form. In particular, the restriction of κ to h = g0

is nondegenerate.

Proof. The first claim follows from direct computation. Take h ∈ h, x ∈ gα
and y ∈ gβ

[h[x, y]] = [[h, x], y] + [x, [h, y]] =
(
α(x) + β(x)

)
[x, y].

For the second claim, consider y ∈ gβ , then

ad(x)n(y) ∈ gnα+β ,

since gγ is nonzero only for finitely many γ, we conclude that ad(x)n = 0 for n
sufficiently large. Let us now prove the last statement. We choose a basis for g
compatible with the decomposition g =

⊕
γ gγ then if x ∈ gα and y ∈ gβ then

ad(x) ◦ ad(y) : gγ → gγ+α+β ,

so if α+ β 6= 0 the matrix associated to ad(x) ◦ ad(y) has zeros in the diagonal
and therefore

κ(x, y) = 0. �X

The set ∆ ⊂ h∗ of roots of g has a beautiful combinatorial structure which
makes it an abstract root system. Let us recall this definition

Definition 5.12. Let E be a finite dimensional real vector space with a sym-
metric positive definite bilinear form ( , ). A root system in E is a finite subset
∆ ⊂ E which spans E and does not containing zero, such that:

(1) If α ∈ ∆ then −α ∈ ∆, and no other multiple of α is in ∆.

(2) For each α ∈ ∆ the reflection σα with respect to the plane orthogonal to
α fixes the set ∆.

(3) If α, β ∈ ∆ then
2(α, β)

(α, α)
∈ Z.
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Coming back to the roots of the Lie algebra g, since the Killing form κ is
nondegenerate when restricted to h, it induces a bilinear form in h∗ which we
still denote by κ.

Proposition 5.13. The set ∆ spans a real vector space E ⊂ h∗ of dimension
equal to the complex dimension of h∗. Moreover, the bilinear form κ is positive
definite when restricted to E, and the set ∆ is an abstract root system in E.

Proof. The interested reader may find the proof of this proposition in
Humphreys’ book [12]. �X

The complete structure of an abstract root system ∆ ⊂ E can be described
by its Cartan matrix, which is defined as follows. Given v ∈ E denote by Tv
the space of vectors orthogonal to v. We say that v ∈ E is singular if v ∈ Tα for
some α ∈ ∆. We say that v ∈ E is regular if it is not singular. Clearly, regular
vectors exist since E is not the union of finitely many hyperplanes. Given a
regular element v ∈ E, the set ∆ decomposes into positive and negative roots

∆ = ∆+
∐

∆−,

where

∆+ := {α ∈ ∆ : (v, α) > 0} and ∆− := {α ∈ ∆ : (v, α) < 0}.

We say that a positive root α is simple if it cannot be written in the form
α = β1 + β2 where β1, β2 are positive roots.

Definition 5.14. Let ∆ be an abstract root system in E and v ∈ E a regular
element. Fix an ordering α1, . . . , αl of the simple roots. The Cartan matrix of
∆ with respect to v is the matrix

Ci,j :=
2(αi, αj)

(αi, αi)
.

Proposition 5.15. The Cartan matrix C of the root system ∆ is well defined,
up to conjugation by a permutation matrix. Moreover, C has the following
properties:

(1) The entries Cij are non-positive integers if i 6= j and Cii = 2.

(2) There exists a unique diagonal matrix D = Diag(d1, . . . , dl) with di ∈
{1, 2, 3}, such that DC is symmetric and positive definite.

Proof. The interested reader can find the proof in Humphreys’ book [12]. �X
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We are ready to define the quantum enveloping algebra of a complex semisim-
ple Lie algebra. These algebras are topological in the sense that all tensor prod-
ucts appearing in the definition are topological tensor products, which we now
define. We denote by C[[h]] the algebra of formal power series in the variable
h with complex coefficients. A module M over C[[h]] has the structure of a
topological vector space: A basis of neighborhoods for zero is {hnM}n≥0.

Definition 5.16. Let M and N be C[[h]]-modules. The topological tensor
product of M and N , denoted M⊗̂N is the C[[h]]-module

M⊗̂N := lim←−
M ⊗C[[h]] N

hn(M ⊗C[[h]] N)
.

There is a natural map M ⊗C[[h]] N →M⊗̂N .

Definition 5.17. A topological quasi-triangular bialgebra is a C[[h]]-module
A together with structure maps and universal r-matrix as in the definition of
quasi-triangular bialgebra, where all tensor products are replaced by topological
tensor products and structure maps are required to be continuous.

The following notation will be useful in describing the Drinfeld-Jimbo con-
struction. Given an invertible element q in an algebra A and a positive integer
n, we set:

[n]q :=
qn − q−n

q − q−1
,

[n]q! := [n]q[n− 1]q · · · [1]q,(
n

k

)
q

:=
[n]q!

[n− k]q![k]q!
.

Definition 5.18. Let g be a finite dimensional complex semisimple Lie algebra
with Cartan matrix C of size l × l. The Drinfeld-Jimbo algebra Uh(g) is the
quotient of the free algebra over C[[h]] on the set {Hi, Ei, Fi}i≤l by the closure
of the two sided ideal generated by the following relations:

[Hi, Hj ] = 0,

[Ei, Fj ]− δij

(
sinh

(
hdiHi

2

)
sinh

(
hdi
2

) ) = 0,

[Hi, Ej ]− CijEj = 0,

[Hi, Fj ] + CijFj = 0,
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1−Cij∑
k=0

(−1)k
(

1− Cij
k

)
qi

Ei
kEjE

1−Cij−k
i = 0, for i 6= j,

1−Cij∑
k=0

(−1)k
(

1− Cij
k

)
qi

Fi
kFjF

1−Cij−k
i = 0, for i 6= j.

Here qi := exp
(
hdi
2

)
.

Theorem 5.19 (Drinfeld [7]-Jimbo [13]). The algebra Uh(g) is a topological
bialgebra with structure maps characterized by the following properties:

∆h(Hi) = Hi ⊗ 1 + 1⊗Hi,

∆h(Ei) = Ei ⊗ exp

(
hdiHi

4

)
+ exp

(
−hdiHi

4

)
⊗ Ei,

∆h(Fi) = Ei ⊗ exp

(
hdiHi

4

)
+ exp

(
−hdiHi

4

)
⊗ Fi,

εh(Hi) = εh(Ei) = εh(Fi) = 0.

There exists a universal r-matrix Rh, which can be written explicitly, making
Uh(g) a topological quasi-triangular bialgebra. Moreover, there is a canonical
isomorphism of algebras

Uh(g)

h
(
Uh(g)

) ∼= U(g).

Proof. The proof of this theorem can be found in [7]. �X

Given a finite dimensional representation V of the complex semisimple Lie
algebra g, there exists a corresponding representation of the Drinfeld-Jimbo
algebra Uh(g). This fact can be deduced from the following result

Theorem 5.20. Let g be a finite dimensional complex semisimple Lie algebra
with Drinfeld-Jimbo algebra Uq(g). There exists an isomorphism of topological
algebras

ϕ : Uh(g)→ U(g)[[h]],

which is the identity modulo h. Moreover, given any other such isomorphism
ϕ′ there exists an invertible element F ∈ U(g)[[h]], congruent to 1 modulo h,
such that for any x ∈ Uh(g)

ϕ′(x) = Fϕ(x)F−1.

Proof. The proof of this theorem can be found in Kassel’s book [14]. �X
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The theorem above implies that given a complex finite dimensional represen-
tation V of g, the C[[h]]-module V [[h]] is a representation of Uh(g), well defined
up to isomorphism. Indeed, V [[h]] is a module over U(g)[[h]] and we can choose
the isomorphism ϕ as above to make it a module over the Drinfeld-Jimbo alge-
bra. Since ϕ is unique up to conjugation, the isomorphism class of the represen-
tation is well defined. Because Uh(g) is a topological quasi-triangular bialgebra,
the universal r-matrix Rh ∈ Uh(g)⊗̂Uh(g) defines an r-matrix on V [[h]]⊗̂V [[h]].

We conclude that for each n ≥ 2 the C[[h]]-module V [[h]]⊗̂n ∼= V ⊗n[[h]] is a rep-
resentation of the braid group Bn by C[[h]]-linear automorphisms. We denote
this representation by

ρDJ : Bn → AutC[[h]]

(
V ⊗n[[h]]

)
.

For a finite dimensional representation V of a complex semisimple Lie al-
gebra g, there are two different constructions of representations of the braid
groups. On the one hand, the monodromy of the Knizhnik-Zamolodchikov con-
nections gives the vector space V ⊗n the structure of a representation of Bn. On
the other hand, the universal r-matrix in the Drinfeld-Jimbo algebra Uh(g) pro-
vides a representation of Bn on V ⊗n[[h]]. The relationship between these two
seemingly unrelated constructions is provided by the Drinfeld-Kohno theorem.
For a complex number h, let θn,h be the Knizhnik-Zamolodchikov connection
with parameter h defined by

θn,h :=
h

2πi
θn.

Since dθn = 0 = [θn, θn], the connection θn,h is flat. As before, for each h ∈ C
we obtain a representation of the braid group ρh : Bn → V ⊗n. The monodromy
of the connection θn,h can be computed explicitly in terms of iterated integrals
and in particular, depends on h in an analytic manner. Therefore, by taking
Taylor series with respect to the parameter h, we obtain a representation

ρKZ : Bn → AutC[[h]]

(
V ⊗n[[h]]

)
.

Theorem 5.21 (Drinfeld [8] - Kohno [17]). Let g be a finite dimensional com-
plex semisimple Lie algebra and V a finite dimensional complex representation.
For each n ≥ 2, the Knizhnik-Zamolodchikov representation of the braid group
Bn

ρKZ : Bn → AutC[[h]]

(
V ⊗n[[h]]

)
,

obtained by taking Taylor series on the monodromy of the Knizhnik-Zamolodchikov
connection is equivalent to the Drinfeld-Jimbo representation

ρDJ : Bn → AutC[[h]]

(
V ⊗n[[h]]

)
,

obtained via the universal r-matrix of the Drinfeld-Jimbo algebra Uh(g).
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Proof. The interested reader may refer to Kassel’s book [14]. �X
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