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ABsTRACT. In this paper we provide a lower bound for the first eigenvalue
of the Steklov problem in a star-shaped bounded domain in R™. This result
extends to higher dimensions a lower estimate of Kuttler-Sigillito in a two
dimensional star-shaped bounded domain.
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RESUMEN. En este trabajo proveemos una cota inferior para el primer valor pro-
pio del problema de Steklov en un dominio estrellado acotado en R". Este re-

sultado extiende a dimensiones altas un estimativo inferior de Kuttler-Sigillito
en un dominio estrellado acotado dos dimensional.

Palabras y frases clave. Valor propio, cota inferior, problema de Steklov.

1. Introduction

Let Q be a bounded domain of R™ with smooth boundary 9f). The following
problem is called the Steklov problem:

Ap =0, in

1
ai:l/, @ on 0, )
on

where v is a real number. This problem was studied by Steklov [7] for bounded
domains in the plane. The problem has physical origins; the function ¢ is

a steady state temperature in  where the flow over the boundary, 02, is
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proportional to the temperature. The set of eigenvalues for the Steklov problem
is the same as the set of eigenvalues for the Dirichlet-Neumann function. This
function associates to each function u defined on 0f2, the normal derivative of
its harmonic extension @ on 2. The set of eigenvalues of the Steklov problem
consists of an increasing sequence 0 = vy < 11 < g < ---, with v — +o00.
The first non-zero eigenvalue is known as the first eigenvalue of the Steklov
problem; the variational characterization of this eigenvalue is

vy = min W:@EC"O(Q)/ pdo=05. (2)
o | Joq@?do 5%

For the unit ball B™ C R", the eigenvalues of the Dirichlet-Neumann func-
tion are v, = k, k =0,1,2, ..., and the eigenfunctions are given by the space of
harmonics homogeneous polynomials of degree k restricted to the boundary of
the ball, the (n — 1)-dimensional unit sphere S"~1. The first Steklov eigenvalue
of the n-dimensional ball of radius r > 0, B, is v1(B,.) = % and the coordinate
functions {1, ...,2,} are the respective eigenfunctions.

As in the Dirichlet and the Neumann problem, Steklov geometric estimates
have been made in the Steklov problem for the first eigenvalue. For bounded
and simply connected domains in the plane zy, in 1954 Weinstock [8] proved
that 1y < %’T, where L represents the perimeter of the boundary curve, with
equality if and only if € is a disk. In 1970 for convex domains in the plane,
Payne [6] proved that 11 > k,, where k, is the minimum value of the curvature
on the boundary of the domain. In 1997, Escobar [2] generalized Payne’s result
to 2-dimensional Riemannian manifolds with non-negative Gaussian curvature
and with boundary such that the geodesic curvature k4 is bounded below by
a positive constant k,; with these hypotheses Escobar showed that vy > k,.
In higher dimensions, Escobar considered compact manifolds with nonnegative
Ricci curvature and again in the spirit of Payne’s theorem proved the following
result:

Theorem 1.1. If Q is an n-dimensional compact Riemannian manifold (n >
3) with nonnegative Ricci Curvature, with nonempty smooth boundary 02 and
whose second fundamental form m on 0} satisfies m > kI for some positive
constant k, then
vy > 5

For rotationally invariant metrics with nonnegative Ricci curvature in the
n-dimensional ball B,., Montano [5] proved that v; > h where h is the mean
curvature on 0B,. For rotationally invariant metrics with nonpositive Ricci
curvature in the n-dimensional ball B,., Montafo [4] proved that v; < h where
h is the mean curvature on 0B,. In both cases equality holds if and only if
(B, g) is isometric to the Euclidean ball.

Volumen 49, Nimero 1, Afio 2015



“v49n1a05-GarciaMontano” — 2015/6/30 — 10:01 — page 97 — #3

A LOWER BOUND FOR THE FIRST STEKLOV EIGENVALUE ON A DOMAIN 97

When ©Q C R™ is a star-shaped domain with respect to a point P, which,
without loss of generality we can assume that it is the origin, Bramble and
Payne [1] proved that

n—1

Vi Z oy
"m

where a is the radius of a ball centered at the origin contained in Q, rj; is

the maximum distance from P to border of €2, and h,, is the minimum of the
function h : 02 — R, defined by

h(z) = (z,n),
with 1 a outer unit normal to 0.
With a different idea for the 2-dimensional case Kuttler and Sigillito [3]

proved that
{1 " i3 >2}
14+4/14+4 min ( =5
141 > n

T max/R2+ (R')?

where R(0) = |z| for any x € 99 of the form z = |x|e®.

hm7

In this paper, following the idea of Sigillito and Kruttler we provide a lower
bound for the first Steklov eigenvalue in a star-shaped bounded domain ) C R"
with respect to a point P. This improvement of the Kuttler and Sigillito’s result
depends on two results which relate geometric quantities on 92 and on S” 1.

2. Preliminaries

Consider on the Euclidean space (R™, (,)) polar coordinates (r,w), where r €
Rt andw € S" 1. Ifu: U — S" ! is a local chart of the unit sphere, (,) writes
as
< ,> =dr? + 7’2§,’jdui ® duj,

where g;; are the components of the standard round metric on S"~! in the
chart u. Let © be a star-shaped bounded domain of R™ with respect to a
point P, which, without loss of generality we assume that it is the origin (see
Figure 1Star-shaped domain Q.figure.caption.1). Let 99 be the boundary of
with outer unit normal vector given by 1. By the character of star-shaped of (2
there exists a function R :S"~! — RT such that

Q={(rw) eR"~{0}:0<r < R(w)}

and

00 ={(rw) eR"~{0}:r=R(w)}.

In this work we assume that the boundary of {2 is smooth. In the following
proposition we get a result that relates the function R and its gradient, VR,
on the boundary of Q.
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n

FIGURE 1. Star-shaped domain €.

Proposition 2.1. Let G = (g;5) and G = (@]) be respectively the matrices of
the first fundamental forms for 9Q and S™~', in the given coordinate systems.
Then )
VA
R2
where 0 is the angle between the outer unit normal vector 1 and the radial vector

field 0O,

— tan?(6), (3)

Proof. The map ¥ : S"~! — R", given by ¥(w) = (R(w),w) realizes the
embedding of 2. The induced metric on OS2 therefore write, in the chart u as

\I/*< , > = U (d?“2 + 7“2§ijdui ® d’U,J) =dR% + RQ@jdui ® du;
= (RiR; + R*ij)du; @ duj = gijdu; @ du;.

Note that, setting t = log R, we can write
gij = €2t (titj + aij)' (4)

The inverse metric g/ therefore writes as g% = e~% (ﬁij — W2)7 where W =

2 . . J—
\/1 + |Vt| Vv +|vr| .t/ = g7Ft), and V is the connection on (S”fl,'g}j).

Since 0F2 is the zero set of the function F'(r,w) = r — R(w), then the normal
vector 7 is the normalized gradient VF', hence

It therefore follows that

cos(f) = (n,0y) = <I;/(87’ - Rzaj),&n> = %
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. . =2
Solving W2 cos?# = 1 in terms of |Vt| we deduce that

|§R|2 B —cos? 6
Rz Ccos2f

|vt’2 = 1 = tan20,

cos? 0
as claimed. ]

It is natural to ask for the relationship between the elements of area /g =

det(G) and /g = det(@). In this direction we have the following comparison
theorem; although its proof is standard, we include it for the convenience of
the reader.

Proposition 2.2.

| 2

\/g Rn—l |§R

Va e

Proof. Let us take a local chart of the unit sphere v : U — S"~! such that the
matrix G = ('j”) of the first fundamental form in the given chart is diagonal.

Consider the (n — 1) x (n — 1) matrix B = (b;;), where b;; = 1/¢;; and the
vector ¢ = (t1,ta, ... by 1)

By formula (4Preliminariesequation.2.4) we have

+ 1. (5)

gij = e (AA")

i’
where A is the (n — 1) x n matrix whose entries are

A=[B|1.

The determinant det g can be therefore obtained easily via Binet theorem
for det (AA")

n—1 2 =~
~ t7 det
det(G) = (11 (detG + i G)
‘ Gii
=1

n—1
= 2D det é(l + Z tfg”)

i=1

n—1
— 2(n=1t et 5(1 +>° titi>

i=1
= 2D et G 1+ [Ve])
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reaching the geometric relationship

VI _ g [Vl +1. (6)

N R?

3. Main Result

Using the results of the previous section, we establish the following theorem,
where we find a lower bound for the first eigenvalue of the Steklov problem in
a star-shaped bounded domain.

Theorem 3.1. Let Q) be a bounded star-shaped domain of R™ with smooth
boundary 0 and outer unit normal n. If 0 < 6 < a < 5, where cos(f) =
(n, Ory, then the first eigenvalue of Steklov for Q, v1(Q), satisfies the inequality

rn2\ {2 4 a - Va¥ ¥ )
ul(Q)z<%1) et ™)

where a = tan?(a), 7, = min R and rjs = max R.
U U

Proof. Without loss of generality let us assume that € is a star-shaped domain
with respect to the origin, £ : U — S™ ! is a standard parametrization of
Sn~1 C R™ and y : U — 05 is the associated parametrization to the boundary
of Q. If we define R : U — R for R(u) = |y(u)|, then y = R¢. Considering
the spherical coordinates z = ré(u), Q = {(u,r) : u € U,0 < r < R(u)} and
dr = r”_l\/ﬁvdr du. For ¢ : Q — R, we have the Rayleigh’s quotient

R . B
[IVelde [ [{(52)"+ & [Ve|" }rm /G dudr
_Q 0 U

U

o0
OR OR 2~
where 9ij = Tubﬁ + R 9ij

Making the change of variables u = u and r = pR(u) we obtain

Rlp] = (!s@Q\/ﬁdU> O/U/ ((?;)2+p12\vw|2 +

1 2p8(,0 8@ n— n— ~
p2{_Ra<v ,VR) + R2< )\VRy })p LR"2\/q du dp.
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From the Cauchy-Schwarz inequality,

_§%<V¢,VR> (v Vol + 2;('9 ) {VR|>

for any function 2. From here,

J¥*Vgdu
U

Making 1;—;’2 = B2, it follows that

1 . _

{JRTL_2{< ﬂQVR')(ap)2+plzlfgzlvw\z}p"‘lx/ﬁdudp
Je*Vgdu '
U

Rlp] >

From the equality (3equation.2.3), taking a = tan?(«a), we arrive to

Since 7, := min R and rj; := max R, we have
U U

Revista Colombiana de Matemadticas



“v49n1a05-GarciaMontano” — 2015/6/30 — 10:01 — page 102 — #38 EF

102 GONZALO GARC{A & OSCAR MONTANO

1 ~— ~
p=2 {J{(l — 320)(32)" + Bl Vel ot G dudp
Rlp] > m .
o= i Va1 [ ¢*\/gdu
U

Solving for 32 the equation 1 — 3%a = % we obtain

|- Pa = B2 :2+a—\/a2+4a -
1+ 62 2

0.

Consequently,

Cﬁ2>{2+avﬁlww}!5{@w + 5[Vl por G dudy

Rlp] >
A=) e (i
U
2
V| dx
R {2+a—\/M} Bl{o) | ’
R 2vVa+1 | ¢*do,
S'n.fl

If ¢ is feasible for the ball B;(0) then

gl > (rfnj> {2+a-Va?+da}

T 2v/a+1
J ei1dos
If we take p = 1 — %, where ¢, is a first eigenfunction for the Steklov
sn—1

problem on 2 we get

22\ {2 +a—Va® +4a Vol dv
Rlp] = R[p1 — 1] > (T;n_1> { N } JB, | 2|d
"M a+1 Sfi1 w2 do,
2
d
S{‘VSD].’ X N (7‘7,,11_2>{2+a—\/a2+—4a}
Joaltor 1) dow = it 2Va+1
2
d
§f2|V901| : < (T?@_2>{2+a—\/a2+74a}
[ (pi+21%) doe — \r ! SN ,

o0

hence
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f|V<p1|2da: f|Vg01|2d:c
Q Q

>
[ oldo. = [ (92 +712)do,
o0 o0

(r?n_z) {2+a—Va®+4a}
2Va+1 ’

>

n—1
"M

and therefore

ey > (T ) B Vet

83

where a = tan?(«a). v

Observe from here that, in the ball of radius r, a = 0, and in this case our

estimative is sharp.
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