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Abstract. These are notes of the mini-course I gave during the CIMPA sum-
mer school at Villa de Leyva, Colombia, in July 2014. The subject was my
joint work with Damien Gayet on the topology of random real hypersurfaces,
restricting myself to the case of projective spaces and focusing on our lower
estimates. Namely, we estimate from (above and) below the mathematical
expectation of all Betti numbers of degree d random real projective hypersur-
faces. For any closed connected hypersurface Σ of Rn, we actually estimate
from below the mathematical expectation of the number of connected com-
ponents of these degree d random real projective hypersurfaces which are
diffeomorphic to Σ.

Key words and phrases. Random polynomials, Real algebraic manifolds, Ran-
dom matrices.
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Resumen. Las siguientes son las notas de un mini curso que d́ı durante la
escuela de verano CIMPA en Villa de Leyva, Colombia, en julio de 2014. El
tema fue el trabajo que en conjunto se desarrolló con Damien Gayet sobre
la topoloǵıa de las hipersuperficies reales aleatorias, restringiéndonos al caso
de los espacios proyectivos y enfocándonos en nuestras estimaciones inferiores.
Particularmente, estimamos (por arriba y) por abajo la esperanza matemática
de todos los números de Betti de las hipersuperficies reales proyectivas aleato-
rias de grado d. De hecho, para cualquier hipersuperficie cerrada y conexa Σ
de Rn, estimamos por abajo la esperanza del número de componentes conexas

aThe research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under grant
agreement No. [258204].
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140 JEAN-YVES WELSCHINGER

de éstas hipersuperficies reales proyectivas aleatorias de grado d, las cuales
son difeomorfas a Σ.

Palabras y frases clave. Polinomos aleatorios, variedades algebraicas reales, ma-
trices aleatorias.

1. Random Real Polynomials

1.1. In One Variable

Let P ∈ Rd[X] be a polynomial in one variable, of degree d and with real
coefficients. Let VP = {x ∈ R : P (x) = 0} be the set of its real roots. Everybody
knows the following:

Theorem 1.1. Let P ∈ Rd[X]. Then 0 ≤ #VP ≤ d and moreover #VP ≡
d mod (2) provided P is generic enough.

This theorem already raises a question which is going to be the main theme
of this course.

Question 1.2. What is the typical number of roots of P , choosing P at ran-
dom?

The mathematical expectation of this number of real roots reads as the
average

E(#VP ) =

∫
Rd[X]

(
#VP

)
dµ(P ),

where µ denotes some probability measure on Rd[X].

First answer: A first answer to Question 1.2 has been given by M. Kac in
the 40′s

Theorem 1.3 (M. Kac, 1943, [11]).

E
(
#VP

)
∼d→+∞

2

π
log(d).

In order to provide this answer, Kac did consider that the space Rd[X] of
polynomials is Euclidean, a canonical orthonormal basis being given by the
monomials 1, X,X2, . . . , Xd. Now, since this space is Euclidean, it carries a
canonical probability measure, the Gaussian measure associated to its scalar
product. The latter reads

dµ(P ) =
1

√
π
d+1

exp
(
− ‖P‖2

)
dP,

where d + 1 corresponds to the dimension of Rd[X] and dP to its Lebesgue
measure which is associated to the scalar product but has infinite volume. This

Volumen 49, Número 1, Año 2015



i
i

“v49n1a07-Welschinger” — 2015/7/8 — 19:14 — page 141 — #3 i
i

i
i

i
i

TOPOLOGY OF RANDOM REAL HYPERSURFACES 141

Gaussian measure is thus the Lebesgue measure weighted with some exponen-
tial which reduces its total volume to one. It has the great property to be a
product measure which is invariant under the orthogonal group.

Second answer: A second answer to Question 1.2 has been given by E. Kost-
lan.

Theorem 1.4 (Kostlan, Shub-Smale, 1993, [14], [22]). For every d > 0,

E(#VP ) =
√
d.

In order to provide this answer, E. Kostlan also did equip the space Rd[X] of
polynomials with some Gaussian measure, but associated to a different scalar
product. For this new scalar product, an orthonormal basis is given by the

monomials
√(

d
k

)
Xk, 0 ≤ k ≤ d. This scalar product turns out to be more

natural geometrically. I will give a geometric definition in §2.4, but let me
already point out a nice property.

The space Rd[X] is well known to be isomorphic to the space Rhom
d [X,Y ]

of homogeneous polynomials of degree d in two variables and real coefficients.
This isomorphism reads Xk ∈ Rd[X] 7→ XkY d−k ∈ Rhom

d [X,Y ]. If we push
forward the new scalar product under this isomorphism, then we get one which
is invariant under the action of the orthogonal group of the plane, by compo-
sition on the right. That is, for every Q ∈ Rhom

d [X,Y ] and every h ∈ O2(R),
‖Q‖ =

∥∥Q ◦ h−1
∥∥.

Let me explain the proof of Kostlan, which also recovers the result of Kac.

Proof. (see [4]) Let us fix the isomorphism (a0, . . . , ad) ∈ Rd+1 7→
∑d
i=0 aiX

i ∈
Rd[X] and focus on two objects of Rd+1. First, the unit sphere Sd and for ev-
ery a = (a0, . . . , ad) ∈ Sd, let us denote by λa the linear form (y0, . . . , yd) ∈
Rd+1 7→

∑d
i=0 aiyi ∈ R.

Secondly, let us consider the curve γ̃ : t ∈ R 7→ (1, t, . . . , td) ∈ Rd+1 in the

case of Kac, or γ̃ : t ∈ R 7→
(

1,
√(

d
1

)
t, . . . ,

√(
d
d

)
td
)
∈ Rd+1 in the case of

Kostlan.

If P =
∑d
i=0 aiX

i ∈ Rd[X], then, as a function on the real line, P = λa ◦ γ̃
(in the case of Kac), so that VP ∼= kerλa ∩ Im(γ̃). �X

The observation of Kostlan is then the following.

Theorem 1.5 ([4]).

E
(
#VP

)
=

1

π
length(γ), where γ : t ∈ R 7→ γ̃(t)

‖γ̃(t)‖
∈ Sd.

Revista Colombiana de Matemáticas
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Proof. (see [4]) This is a version of Crofton’s formula, the length of a curve
is the average of the number of intersection points with the hyperplanes. Here,
the hyperplanes are given by unit vectors orthogonal to them, providing a 2 : 1
map from Sd to the space of hyperplanes of Rd+1. The measure on this set
of unit vectors is the normalized volume form 1

Vol(Sd)

∣∣dvol(Sd)
∣∣. Note that the

formula is obvious when the curve is a closed geodesic on the sphere, that is
a great circle on the sphere, since the length of this geodesic is 2π while every
hyperplane intersects it at two points. If we cut such a geodesic into n equal
pieces, we check from additivity of both terms of the formula and its invariance
under the isometry group of Sd that it also holds true for every piece of the
geodesic. The formula then follows from the fact that every smooth curve can
be approximated by some piecewise geodesic curve.

The end of the proof of Theorem 1.5 is just a computation of the length of
the curve γ, which gives length(γ) ∼d→+∞ 2 log(d) in the case of Kac (a bit
tough) and length(γ) = π

√
d in the case of Kostlan (easy). �X

1.2. In Several Variables

What about polynomials in several variables?

If P ∈ Rd[X1, . . . , Xn] is a polynomial in n variables, degree d and real
coefficients, then VP = {x ∈ Rn : P (x) = 0} is no more a finite set (in gen-
eral), but rather an affine real algebraic hypersurface. It is not compact in
general, but has a standard compactification. Namely, this space of polynomial
is again canonically isomorphic to the space Rhom

d [X0, . . . , Xn] of homogeneous
polynomials of degree d, n + 1 variables and real coefficients. This isomor-
phism reads Xα1

1 · · ·Xαn
n ∈ Rd[X1, . . . , Xn] 7→ Xd−α1−···−αn

0 Xα1
1 · · ·Xαn

n ∈
Rhom
d [X0, . . . , Xn] and if Q ∈ Rhom

d [X0, . . . , Xn] r {0}, then VQ = {x ∈ RPn :
Q(x) = 0} is a compact hypersurface, smooth for generic polynomials and
which then contains VP as a dense subset. I will come back to projective spaces
in §2.1.

Again, the topology of VQ depends on the choice of Q, as in one variable.
For example, in degree d = 2 and n = 3 variables, VQ is a quadric surface which
may be empty, homeomorphic to a sphere in the case of the ellipsoid or to a
torus in the case of the hyperboloid. If we denote, for every i ∈ {0, . . . , n−1}, by
bi(VQ;Z/2Z) = dimHi(VQ;Z/2Z) the i-th Betti number with Z/2Z coefficients
of VQ, then

Theorem 1.6 (Smith-Thom’s inequality, 1965, [23]).

0 ≤
n−1∑
i=0

bi(VQ;Z/2Z) ≤
2n−2∑
i=0

bi

(
V C
Q ;Z/2Z

)
= dn + o(dn).

Moreover,
∑n−1
i=0 bi(VQ;Z/2Z) ≡

∑2n−2
i=0 bi

(
V C
Q ;Z/2Z

)
mod (2), provided Q ∈

Rhom
d [X0, . . . , Xn] is generic enough for VQ to be smooth.

Volumen 49, Número 1, Año 2015
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In Theorem 1.6, V C
Q = {x ∈ CPn : Q(x) = 0} denotes the set of complex

roots of Q in the complex projective space. Theorem 1.6 extends Theorem 1.1,
which corresponds to the case n = 1. The case n = 2 was also previously
known as the (famous in real algebraic geometry) Harnack-Klein’s inequality,
see [9, 13].

Again, this raises the question

Question 1.7. What is the typical topology of VQ, choosing Q at random in
Rhom
d [X0, . . . , Xn]? e.g. which Betti numbers to expect?

Let me give a formulation of our joint results with Damien Gayet.

For every i ∈ {0, . . . , n− 1}, let me set

bi(VQ;R) = dimHi(VQ;R),

mi(VQ) = inf
f Morse on VQ

#Criti(f).

Here, Criti(f) denotes the number of critical points of index i of the Morse
function f . Recall that a real function of class C2 is said to be Morse if and
only if all of its critical points are non-degenerate. This means that the Hessian
of this function at all of its critical points is a non-degenerate quadratic form.
The index of such a quadratic form is then the maximal dimension of a linear
subspace of the tangent space at the critical point where it restricts to a negative
definite one, see [18]. The latter is called the index of the critical point.

It follows from Morse theory that bi(VQ;R) ≤ bi(VQ;Z/2Z) ≤ mi(VQ), see
[18].

The mathematical expectations for these Betti or Morse numbers read as
the averages

E(bi) =

∫
Rhom
d [X0,...,Xn]

bi(VQ;R) dµ(Q),

E(mi) =

∫
Rhom
d [X0,...,Xn]

mi(VQ) dµ(Q).

The probability measure µ we consider extends the one considered in The-
orem 1.4. It is the Gaussian measure associated to the scalar product for which

the monomials
√

(d+n)!
n!α0!···αn!X

α0
0 · · ·Xαn

n , α0 + · · ·+αn = d, define an orthonor-

mal basis. Again, the action of the orthogonal group of the (n+ 1)-dimensional
Euclidean space by composition on the right preserves this scalar product. That
is, for every Q ∈ Rhom

d [X0, . . . , Xn] and every h ∈ On+1(R), ‖Q‖ = ‖Q ◦ h−1‖.
Let me finally observe that the coefficient (d+n)! instead of d! in the numerator
of the monomials has only the effect to rescale the scalar product and does not
affect the results. We will see in §2.4 how this scalar product shows up.

Revista Colombiana de Matemáticas
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Theorem 1.8 (joint with Damien Gayet, [5, 6]). There exist (universal) con-
stants c+i , c

−
i such that

c−i ≤ lim inf
d→+∞

E(bi)√
d
n

VolFS RPn
≤ lim sup

d→+∞

E(mi)√
d
n

VolFS RPn
≤ c+i .

I will only explain the proof of the lower estimates given by Theorem 1.8 in
this course. The term VolFSRPn denotes the total volume of the real projec-
tive space for the Fubini-Study metric, see §2.4. Though it is some constant,
I distinguish it from c±i . In fact, in [5], [6], we not only prove Theorem 1.8
for projective spaces, but for any smooth real projective manifold. The term
VolFSRPn has then to be replaced by the total Kählerian volume of the real
locus of the manifold, for the Kähler metric induced by the curvature form of
a metric with positive curvature chosen on some ample real line bundle, the
tensor powers of which we consider random sections. The constants c+i , c−i are,
they, unchanged and only depend on i and n, see §1.3.

Note that when n = 1, c+0 = 1√
π

and VolFSRP 1 =
√
π because the Fubini-

Study metric is normalized so that the volume of CP 1 equals one, see Re-
mark 2.3. We actually prove in this dimension that the liminf, limsup are true
limits which equal c+0 . A lower bound for c−i in every dimension is given by
Proposition 1.10, see §1.3.

1.3. The Universal Constants c+i , c−i

Let me tell you more about these universal constants c+i , c
−
i .

The constant c+i is related to random symmetric matrices. Namely, c+i =
1√
π
eR(i, n− 1− i), where

eR(i, n− 1− i) =

∫
Sym(i,n−1−i;R)

|det(A)| dµ(A). (1)

Here, Sym(i, n− 1− i;R) denotes the open cone of non-degenerate symmetric
matrices of size (n− 1)× (n− 1), signature (i, n− 1− i) and real coefficients.
It is included in the vector space Sym(n− 1;R) of real symmetric matrices of
size (n−1)× (n−1). The latter is Euclidean, equipped with the scalar product
(A,B) ∈ Sym(n− 1;R)2 7→ 1

2 tr(AB) ∈ R, see [17]. So again this space inherits
some Gaussian measure µ, which is the one we consider in the integral (1).

In particular,

n−1∑
i=0

c+i =
1√
π
E
(
|det(A)|

)
=

1√
π

∫
Sym(n−1;R)

|det(A)| dµ(A).

Theorem 1.9 (joint with Damien Gayet, [5]). The following statements hold:

Volumen 49, Número 1, Año 2015
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(1)
∑n−1
i=0 c

+
i ∼n→+∞

2
√

2
π Γ(n+1

2 ), where Γ denotes Euler’s function.

(2) For every α ∈ [0, 1
2 [, there exists cα > 0 such that for n large enough∑bαnc

i=0 c+i ≤ exp
(
− cαn2

)
.

Note that the first part of Theorem 1.9 was known for n even, see [17] and
[5], while the second part quickly follows from some large deviation estimates
established in [1].

For instance, for i = 0, bi(VQ;R) = b0(VQ;R) denotes the number of con-
nected components of VQ, Theorem 1.8 estimates the expected number of con-
nected components of VQ and c+i = c+0 provides the upper estimate. This
constant more than exponentially decreases as the dimension n grows to +∞.

As for the constant c−i , we set

Hn = {closed connected hypersurfaces of Rn}/diffeomorphisms.

For every [Σ] ∈ Hn, we set bi(Σ;R) = dimHi(Σ;R) and associate some posi-
tive constant c[Σ], see §2.7. This constant c[Σ] is defined via some quantitative
transversality, but turns out at the end to bound from below the expected
number of connected components of VQ that are diffeomorphic to Σ, which
is what we actually estimate from below, see §2.7. More precisely, for every
closed connected hypersurface Σ of Rn, included in some ball B(0, R) of radius
R > 0, we consider the probability that a degree d polynomial vanishes in the
ball of radius R√

d
and contains in this vanishing locus a hypersurface isotopic

to Σ. This probability gets bounded from below by a positive constant c̃Σ and
cΣ = 1

2nVol(B(0,R)) c̃Σ, see §2.7, while c[Σ] = supΣ∈[Σ] cΣ. Then, c−i is the infinite
serie

c−i =
∑

[Σ]∈Hn

c[Σ]bi(Σ;R).

This serie converges since it is bounded from above by c+i .

Proposition 1.10 (joint with Damien Gayet, [6]). For every i ∈ {0, . . . , n−1},
c−i ≥ c[Si×Sn−1−i] ≥ exp

(
− exp(5n+ 69)

)
.

Indeed, the product of the i-dimensional unit sphere with the (n − 1 − i)-
dimensional unit sphere turns out to embed as a closed connected hypersurface
of Rn. The i-th Betti number of this hypersurface is (at least) one and we will
see in §2.7 that the constant c[Σ] is actually explicit, so that it can be estimated
for this product of spheres, see [6].

2. The Lower Estimates

2.1. Projective Spaces

Recall that the n-dimensional projective space is by definition the space of
one-dimensional linear subspaces of the affine (n+ 1)-dimensional space. That

Revista Colombiana de Matemáticas
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is,

CPn =
{

space of lines in Cn+1
}

= Cn+1 r {0}/x ∼ λx, ∀λ ∈ C∗,

and likewise,

RPn =
{

space of lines in Rn+1
}

= Rn+1 r {0}/x ∼ λx, ∀λ ∈ R∗.

The points in CPn are represented by their homogeneous coordinates
[x0 : · · · : xn], where x0, . . . , xn ∈ C do not all vanish, being understood that
for every λ ∈ C∗, [x0 : · · · : xn] = [λx0 : · · · : λxn].

These complex projective spaces are smooth compact complex manifolds
without boundary. They are covered by n + 1 standard affine charts. Namely,
for every i ∈ {0, . . . , n}, set Ui =

{
[x0 : · · · : xn] ∈ CPn : xi 6= 0

}
. This dense

open subset Ui corresponds to the lines of Cn+1 that are not contained in the
hyperplane

{
(x0, . . . , xn) ∈ Cn+1 : xi = 0

}
. Every such line intersects the affine

hyperplane
{

(x0, . . . , xn) ∈ Cn+1 : xi = 1
}

at exactly one point, defining the
chart

φi : [x0 : · · · : xn] ∈ Ui 7→
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
∈ Cn.

2.2. Line Bundles

The projective space CPn is the space of lines of Cn+1, so that every point
x = [x0 : · · · : xn] of CPn represents a complex line γx ⊂ Cn+1, the line
generated by (x0, . . . , xn) in Cn+1. The collection of all lines γx, x ∈ CPn,
defines what is called a holomorphic line bundle γ over CPn. It is in particular
a complex manifold equipped with a holomorphic submersion onto the base
CPn, see [2, 7]. Since all these lines are included in Cn+1, the tautological line
bundle γ is a subline bundle of the trivial vector bundle CPn × Cn+1 → CPn
of rank n+ 1.

Now, every vector space comes with its dual space, the space of linear
forms over it. This defines the dual bundle γ∗ = {linear forms on γ} → CPn.
Likewise, for every d > 0, I denote by γ∗d the space of homogeneous forms
of degree d on γ, so that γ∗1 = γ∗. Again, all these define holomophic line
bundles over CPn. Note that another standard notation for these bundle is
γ = OCPn(−1), γ∗d = OCPn(d).

We denote by H0
(
CPn; γ∗d

)
the space of global holomorphic sections of the

bundle γ∗d , that is the space of holomorphic maps s : CPn → γ∗d such that
π ◦ s = idCPn , where π : γ∗d → CPn denotes the tautological projection. Hence,

Volumen 49, Número 1, Año 2015
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for every point x ∈ CPn, s(x) denotes a homogeneous form of degree d on the
complex line γx.

Now, complex homogeneous polynomials of degree d in n+ 1 variables de-
fine homogeneous functions of degree d on Cn+1. These thus restrict to ho-
mogeneous functions of degree d on every line γx, whatever x ∈ CPn is. As a
consequence, these complex homogeneous polynomials of degree d define global
holomorphic sections of the bundle γ∗d so that we get an injective morphism
Chom
d [X0, . . . , Xn] ↪→ H0(CPn; γ∗d). It is not that hard to prove that this injec-

tive morphism is also surjective, but requires though two theorems in complex
analysis, namely Hartog’s theorem and the decomposition of entire functions
into power series, see [2] or §3 of [7] or Corollary 9.1.2 of [12].

Upshot: It is important here to understand that a homogeneous polynomial
Q ∈ Chom

d [X0, . . . , Xn] does not define a holomorphic function CPn → C
(any such function would be constant due to maximum’s principle). Its
vanishing subset in Cn+1r{0} is a cone, and thus defines on the quotient
CPn the hypersurface V C

Q = {x ∈ CPn : Q(x) = 0}, provided Q is of

positive degree. But the other level sets of Q in Cn+1 r {0} are not left
invariants under homotheties and thus do not pass to the quotient CPn.

What is true is that these polynomials Q ∈ Chom
d [X0, . . . , Xn] define global

sections of γ∗d , and V C
Q coincides with the vanishing locus of these as sections

of γ∗d .

2.3. Fubini-Study Metric

Let me now equip Cn+1 with its standard Hermitian product, defined for every
v = (v0, . . . , vn) and w = (w0, . . . , wn) in Cn+1 by h(v, w) =

∑n
i=0 viwi ∈ C.

It restricts on every line γx of Cn+1 to a Hermitian product h. This is called
a Hermitian metric on the line bundle γ. It also induces then a Hermitian metric
hd on all the line bundles γ∗d , d > 0. Indeed, if x ∈ CPn and s(x) ∈ γ∗d |x, then
s(x) : γx → C is a homogeneous form of degree d and we set

‖s(x)‖ =
|s(x)(v)|
‖v‖d

,

where this definition does not depend on the choice of v ∈ γx r {0}.

Example 2.1. (fundamental) Let us compute the pointwise Fubini-study
norm of Q = Xd

0 ∈ Rhom
d [X0, . . . , Xn], viewed as a section of γ∗d .

I restrict myself to U0
∼= Cn, since it vanishes outside of U0. Let x =

[1 : x1 : · · · : xn] ∈ U0. Then, v = (1, x1, . . . , xn) generates γx and ‖v‖2 =
h(v, v) = 1 +

∑n
i=1 |xi|2. Since Q(v) = |Q(v)| = 1, we get

hd(Q,Q)|x =
1

(1 + ‖x‖2)d
= exp

(
− d log

(
1 + ‖x‖2

))
.

Revista Colombiana de Matemáticas
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This means that the norm of Q at the origin [1 : 0 : · · · : 0] ∈ U0 equals one, but
at every other point it decays exponentially fastly to zero as the degree grows to
+∞. Since log hd(Q,Q)|x = −d‖x‖2 + o(‖x‖2) near x = 0, we deduce that the
Fubini-Study norm of Q gets concentrated in a ball of radius 1√

d
centered at the

origin. Such a section defined by Q is called a peak section, and the scale 1√
d

is

a fundamental scale in Kähler geometry. Peak sections exist over any projective
or Stein manifolds, following the theory of L. Hörmander, see [10, 15].

Finally, it is possible to define sections of γ∗d which peak near any point
x ∈ CPn. Indeed, the group GLn+1(C) acts by linear automorphisms of Cn+1

and the unitary group Un+1(C) even by isometries. These actions are transitive
on lines of Cn+1 and thus they induce actions on CPn which are transitive on
points. Moreover, these actions lift to actions on γ and thus on any line bundle
γ∗d , d > 0.

For every x ∈ CPn, there exists r ∈ Un+1(C) such that x =
r([1 : 0 : · · · : 0]). Then, Q ◦ r−1 ∈ Chom

d [X0, . . . , Xn] defines a section of
γ∗d which peaks near x.

2.4. The Probability Measure µ Revisited

Let x ∈ CPn and γx ⊂ Cn+1 be the line it represents. Let y ∈ γx r {0} and
p : Cn+1 r {0} → CPn be the canonical projection. Then, the differential map
dyp : Ty

(
Cn+1 r {0}

)
= Cn+1 → TxCPn contains γx in its kernel and restricts

to an isomorphism γ⊥x → TxCPn, where γ⊥x stands for the orthogonal of γx
with respect to the standard Hermitian product of Cn+1, see §2.3.

This hyperplane γ⊥x does not depend on the choice of y ∈ γxr {0}, but the
isomorphism dyp|γ⊥x does. By the way, the quotient of the trivial vector bundle

CPn × Cn+1 by the tautological bundle γ is not isomorphic to the tangent
bundle TCPn.

Exercise 2.2. Prove that the latter tangent bundle TCPn is rather isomorphic
to the bundle of morphisms from γ to the former quotient bundle (while the
quotient bundle is isomorphic to the space of morphisms from the trivial line
bundle to itself).

Let us now choose y of norm one, so that it lies in the intersection of the
unit sphere with γx. This intersection is a circle, the orbit of the action of
the unitary group U1(C) by homothety. The circle fibration S2n+1 → CPn
this action produces is called the Hopf fibration. Still, the isomorphism dyp|γ⊥x
depends on the choice of y ∈ S2n+1 ∩ γx, but up to an isometry, so that if we
push forward under dyp the Hermitian product of γ⊥x , induced by restriction of
the ambient one of Cn+1, we get a well defined Hermitian product on TxCPn,
which does not depend on the choice of y ∈ S2n+1 ∩ γx. The collection of
all these Hermitian products on all tangent spaces of CPn defines a Hermitian
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metric on CPn called the Fubini-Study metric. Recall that such a metric indeed
makes it possible to measure the distance between two points of CPn as the
shortest length of a curve joining them, where the length of a curve is defined
via some parameterization as the integral of the norm of its tangent vectors,
a norm well defined thanks to the Hermitian products the tangent spaces of
CPn have just inherited. The action of Un+1(C) on CPn we already discussed
provides isometries for this metric.

Remark 2.3. A projective line for this Fubini-Study metric has total area π
(exercise). We actually rescale in [5, 6] this metric by a factor 1√

π
to normalize

this area to one. This is quite natural from another point of view, since this
Hermitian Fubini-Study metric, which is actually a Kähler metric, also orig-
inates from the curvature form of the canonical connection associated to the
Fubini-Study metric of γ introduced in §2.3. Since the cohomology class of this
form is the first Chern class of the line bundle γ, the volume of a projective line
gets one for this metric. This Fubini-Study metric restricts to a Riemannian
metric on RPn and the quantity VolFSRPn in Theorem 1.8 is the total volume
of RPn for this Riemannian Fubini-Study metric.

The line bundles γ∗d are now equipped with Hermitian metrics and their
base CPn with some volume form dx, induced by the Fubini-Study metric in
such a way that against any direct orthonormal basis, the form takes value one.
Recall indeed that complex vector spaces are canonically oriented. The spaces
H0(CPn; γ∗d) = Chom

d [X0, . . . , Xn] of global holomorphic sections of these bun-
dles then inherit some L2-Hermitian products, namely

(Q1, Q2) ∈ H0
(
CPn; γ∗d

)2 7→ ∫
CPn

hd(Q1, Q2) dx ∈ C.

These L2-Hermitian products restrict on the spaces RH0
(
CPn; γ∗d

)
=

Rhom
d [X0, . . . , Xn] of real holomorphic sections to the L2-scalar products

(Q1, Q2) ∈ RH0
(
CPn; γ∗d

)2 7→ ∫
CPn

hd(Q1, Q2) dx ∈ R.

Finally, now that the space of real homogeneous polynomials Rhom
d [X0, . . . , Xn]

is again Euclidean, it inherits some Gaussian measure dµ(P ) =
1√
πNd

exp
(
− ‖P‖2

)
dP , where Nd denotes the dimension of Rhom

d [X0, . . . , Xn]

and dP the Lebesgue measure associated to this L2-scalar product.

Exercise 2.4. The monomials Xα0
0 · · ·Xαn

n are orthogonal to each other and
in fact the probability measure µ is the one considered in Theorem 1.8, so that√

(d+n)!
n!α0!···αn!X

α0
0 · · ·Xαn

n is an orthonormal basis (provided the Fubini-Study

metric on CPn is normalized so that its total volume is one; it is πn/n! for the
metric just defined).
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2.5. Implementation of Affine Hypersurfaces

Let Σ ⊂ Rn be a closed hypersurface, not necessarily connected. It is a the-
orem of H. Seifert, see [21] or also [19], that there exists a polynomial P ∈
R[X1, . . . , Xn] of some degree k such that VP = P−1(0) contains a union of

connected components Σ̃ which is isotopic to Σ. This means that there ex-
ists a path (φt)t∈[0,1] of diffeomorphisms of Rn such that φ0 is the identity and

φ1(Σ̃) = Σ. Note that this theorem of Seifert is similar to the Stone-Weierstrass
theorem, except that one needs some approximation in C1-norm. Note also that
I could have immediately taken any polynomial P for which zero is a regular
value and then defined Σ to be any union of closed connected components of
VP . From now on, let me fix P and denote by Σ such a union of closed con-
nected components of VP . There exists R > 0 such that Σ is included in the
ball B(0, R) ⊂ Rn of radius R.

Lemma 2.5. For every d ≥ k and every x ∈ RPn, there exists a section σP ∈
Rhom
d [X0, . . . , Xn] such that σ−1

P (0) ∩B
(
x,R/

√
d
)

contains a union of compo-

nents Σ̃ for which the pair
(
B
(
x,R/

√
d
)
, Σ̃
)

gets diffeomorphic to
(
Rn,Σ

)
and

such that the Fubini-Study norm of σP exponentially decreases outside of this
ball B

(
x,R/

√
d
)
.

Note that since the radius of this ball converges to zero, the Riemannian
metric of RPn for which we take the ball does not matter.

Proof. Let me replace, for every d > 0, P by the rescalled polynomial
Pd = P

(√
d ·
)
. It is still a polynomial of degree k, whose coefficients are

O
(√

d
k
)

. Indeed, if P =
∑

(α1,...,αn)∈Nn aα1,...,αnX
α1
1 · · ·Xαn

n , then Pd =∑
(α1,...,αn)∈Nn aα1,...,αn

√
d
α1+···+αn

Xα1
1 · · ·Xαn

n .

Under the isomorphism Rk[X1, . . . , Xn] 7→ Rhom
k [X0, . . . , Xn], Pd is mapped

to the polynomial Qd =
∑

(α1,...,αn)∈Nn aα1,...,αn

√
d
α1+···+αn

Xk−α1−···−αn
0

Xα1
1 · · ·Xαn

n . After multiplication by Xd−k
0 , it provides a section σP = QdX

d−k
0

∈ Rhom
d [X0, . . . , Xn] = RH0

(
CPn; γ∗d

)
which vanishes in the ball B

(
[1 : 0 :

· · · : 0], R/
√
d
)
⊂ RU0 ⊂ RPn centered at the origin [1 : 0 : · · · : 0] and

of radius R/
√
d. Moreover, σ−1

P (0) ∩ B
(

[1 : 0 : · · · : 0], R/
√
d
)

contains a

union of components Σ̃ such that the pair
((

[1 : 0 : · · · : 0], R/
√
d
)
, Σ̃
)

gets diffeomorphic to (Rn,Σ). In addition, the pointwise Fubini-Study norm

hd(σP , σP ) = ‖Qd‖2
∥∥Xd−k

0

∥∥2
decays exponentially outside the origin as d grows

to +∞. This is indeed the case for Xd−k
0 as we saw in the previous paragraph,
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while Qd has fixed degree and coefficients O
(√

d
k
)

. We deduce that the Fubini-

Study norm of σP is concentrated in the ball B
(

[1 : 0 : · · · : 0], R/
√
d
)

. Finally,

after composition on the right by some suitable r ∈ On+1(R) ⊂ Un+1(C), we
get the result for every x ∈ RPn. �X

Example 2.6. What is the L2-norm of the section σP given by Lemma 2.5?

Recall that σP = QdX
d−k
0 , so that

‖σP ‖2 =

∫
CPn

hd(σP , σP ) dx

=

∫
U0

hd(σP , σP ) dx since dx(CPn r U0) = 0

=

∫
Cn

∣∣P (
√
dx)
∣∣2(

1 + ‖x‖2
)d dx

∼d→+∞
1

dn

∫
Cn
|P (y)|2 exp

(
− ‖y‖2

)
dy.

The last equivalence is obtained after the change of variable y =
√
dx and

dy = dx|[1:0:···:0] denotes the standard Lebesgue measure of Cn.

Now P has been fixed once for all, so that
∫
Cn |P (y)|2 exp

(
− ‖y‖2

)
dy is a

constant. From now on I will normalize σP by setting

σP =
√
d
n QdX

d−k
0√∫

Cn |P (y)|2 exp(−‖y‖2) dy
. (2)

This section has L2-norm one asymptotically, this L2-norm being still con-
centrated in a ball of radius R/

√
d, but near the origin [1 : 0 : · · · : 0], its

pointwise Fubini-Study norm is of the order
√
d
n
.

Note that the same holds true for the section
√

(d+n)!
n!d! X

d
0 above, which

corresponds to σP for P = 1 (modulo the normalization of the volume) and

this sheeds some light on the coefficients
√

(d+n)!
n!α0!···αn! instead of

√(
d

α0···αn

)
in the

orthonormal basis obtained in Exercise 2.4 and introduced before Theorem 1.8.

2.6. Probability of Presence of Σ

Recall that I did fix a closed hypersurface Σ ⊂ B(0, R) ⊂ Rn which does not
need to be connected. I then did construct, for every x ∈ RPn, a homogeneous
polynomial σP ∈ Rhom

d [X0, . . . , Xn] such that σ−1
P (0)∩B

(
x,R/

√
d
)

contains a
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union of components Σ̃ for which the pair
(
B
(
x,R/

√
d
)
, Σ̃
)

is diffeomorphic

to (Rn,Σ). I now claim much more.

Theorem 2.7 (joint with Damien Gayet, [6]). There exist c̃Σ > 0 such that
for every x ∈ RPn,

lim inf
d→+∞

µ

{
σ ∈ Rhom

d [X0, . . . , Xn] :
σ−1(0) ∩B

(
x,R/

√
d
)
⊃ Σ̃(

B
(
x,R/

√
d
)
, Σ̃
)
∼= (Rn,Σ)

}
≥ c̃Σ.

Hence, it is not just that there exists a polynomial σP ∈ Rhom
d [X0, . . . , Xn]

with our desired properties, but moreover we had a positive probability to
find one such, probability uniformely bounded from below by some positive
constant.

Proof.

First step: Let me choose tubular neighborhoods K and U of Σ, K being
compact, such that Σ ⊂ K ⊂ U ⊂ B(0, R) and

(1) |P |UrK > δ, so that in particular P does not vanish in U rK,

(2) If |P (y)| ≤ δ, y ∈ U , then |dyP | > ε,

for some δ, ε > 0. Note that dP does not vanish on the compact Σ by
hypothesis, so that it is indeed bounded from below by some ε > 0 in a
compact neighborhood K of it. When the latter is small enough, P does
not vanish on its boundary and gets bounded from below by some δ > 0.
This remains valid in a neighborhood of it and we deduce the existence
of U .

Now, let me denote by Σd, Kd, Ud the images of Σ, K and U under
the homothety of rate 1√

d
, so that Σd ⊂ Kd ⊂ Ud ⊂ B(0, R/

√
d). I get

likewise,

(1) |σP |UdrKd > δ
√
d
n

and

(2) If |σP (y)| ≤ δ
√
d
n
, y ∈ Ud, then |dyσP | > ε

√
d
n+1

,

for some may be slightly different constants δ, ε > 0. Here, the polynomial
σP is read in the affine chart U0 and the norms used are those given by

the charts, so that |dyσP |2 =
∑n
i=1

∣∣∣ ∂P∂xi ∣∣∣2, see Proposition 3.4 of [6].

This first step is called quantitative transversality. I knew that 0 is a
regular value of σP , but I am quantifying how much transversal to the
zero section σP is. Such kind of quantitative transversality played a key
role in the construction by S. K. Donaldson of symplectic divisors in any
closed symplectic manifold, see [3].
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Second step:

Proposition 2.8 (joint with Damien Gayet, [6]). There exist C1, C2 > 0
such that

E
(

sup
B(0,R/

√
d)

|σ|2
)
≤ C1d

n and E
(

sup
B(0,R/

√
d)

|dσ|2
)
≤ C2d

n+1.

Proof. We deduce from the mean value inequality that for every σ ∈
Rhom
d [X0, . . . , Xn] and every z ∈ U0, ‖z‖ ≤ R√

d
,

|σ(z)|2 ≤ 1

Vol
(
B
(
R√
d

)) ∫
B
(
z, R√

d

) ∣∣σ(z)
∣∣2|dz|

≤ 1

Vol
(
B
(
R√
d

)) ∫
B
(

0, 2R√
d

) ∣∣σ(z)
∣∣2|dz|.

Thus, sup
B
(

0, R√
d

) |σ|2 ≤ 1

Vol
(
B
(
R√
d

)) ∫
B
(

0, 2R√
d

) |σ|2|dz| and after exchange

of the integrals,

E
(

sup
B(0, R√

d
)

|σ|2
)
≤ 1

Vol
(
B
(
R√
d

)) ∫
B
(

0, 2R√
d

)E(|σ(z)|2
)
|dz|.

Now, for every z ∈ U0, let σz ∈ Rhom
d [X0, . . . , Xn] be orthogonal to the

hyperplane
{
σ ∈ Rhom

d [X0, . . . , Xn] : σ(z) = 0
}

which will be denoted by
σ⊥z . The polynomial σz is chosen to be of L2-norm one. Since the Gaussian

measure µ is a product measure, we get, for every z ∈ B
(

0, 2R√
d

)
,

E
(
|σ(z)|2

)
=

∫
〈σz〉⊕〈σ⊥z 〉

|σ(z)|2 dµ(σ)

=

∫
〈σz〉
|σ(z)|2 dµ(σ)

=
1√
π

(∫
R
a2 exp

(
− a2

)
da

)
|σz(z)|2.

It thus remains to estimate asymptotically |σz(z)|. Note that when z = 0,

we saw that σz =
√

(d+n)!
n!d! X

d
0 , so that its Fubini-Study norm at the ori-

gin equals
√

(d+n)!
n!d! . The action of the unitary group being transitive and

preserving the Fubini-Study norm, we deduce that for every z ∈ U0, the

Fubini-Study norm of σz at z equals
√

(d+n)!
n!d! ∼d→+∞

√
dn

n! . Finally, in or-

der to compare the Fubini-Study norm at z with its norm |·| given by the
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chart U0, we note that the norm of Xd
0 at z is |Xd

0 | = 1 while its Fubini-
Study norm equals exp

(
− d log(1 + ‖z‖2)

)
∼ exp

(
− d‖z‖2

)
, see Exam-

ple 2.1. We deduce that |σz(z)|2 ∼d→+∞
dn

n! exp
(
d‖z‖2

)
≤ dn

n! exp(4R2)

and finally that there exists C1 > 0 such that E
(

sup
B
(

0,R/
√
d
) |σ|2) ≤

C1d
n. The second inequality is proved along the same lines, see Proposi-

tion 3.1 of [6]. �X

Third step: (from now on I follow an approach similar to the one used by
Nazarov and Sodin in [20]). Recall the following.

Theorem 2.9 (Markov’s inequality). Let (Ω, µ) be a probability space
and f : Ω → R+ be a random variable. Let e = E(f) =

∫
Ω
f dµ be its

expectation. Then, for every C > 0, µ{ω ∈ Ω : f(ω) ≥ C} ≤ e/C.

Proof.

e =

∫
Ω

f dµ ≥
∫
{ω∈Ω:f(ω)≥C}

f dµ ≥ Cµ
{
ω ∈ Ω : f(ω) ≥ C

}
=⇒ µ{ω ∈ Ω : f(ω) ≥ C} ≤ e/C. �X

Application: Since E
(

supB(0,R/
√
d) |σ|

2
)
≤ C1d

n, from Markov’s inequality
we deduce that

µ

{
σ ∈ Rhom

d [X0, . . . , Xn] : sup
B
(

0,R/
√
d
) |σ|2 ≥ 4C1d

n

}
≤ 1

4

and likewise

µ

{
σ ∈ Rhom

d [X0, . . . , Xn] : sup
B
(

0,R/
√
d
) |dσ|2 ≥ 4C2d

n+1

}
≤ 1

4
,

so that

µ

{
σ ∈ Rhom

d [X0, . . . , Xn] :
sup

B
(

0,R/
√
d
) |σ|2 ≤ 4C1d

n

sup
B
(

0,R/
√
d
) |dσ|2 ≤ 4C2d

n+1

}
≥ 1

2
.

Last step: Recall that I have to find a subset E ⊂ Rhom
d [X0, . . . , Xn] of mea-

sure uniformely bounded from below by some positive constant, such that
any polynomial σ in E has the property that σ−1(0) ∩B

(
x,R/

√
d
)
⊃ Σ̃
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and
(
B
(
x,R/

√
d
)
, Σ̃
)
∼= (Rn,Σ). This subset is going to be the set

EM =

aσP + τ :

a ≥M
τ ∈ σ⊥P
sup

B
(

0,R/
√
d
) |τ |2 ≤ 4C1d

n

sup
B
(

0,R/
√
d
) |dτ |2 ≤ 4C2d

n+1

 ,

with M = sup
{

2
√
C1

δ , 2
√
C2

ε

}
. Since the Gaussian measure is a product

measure, the measure of EM satisfies

µ(EM ) = µ
(
[M,+∞[

)
µ

{
τ ∈ σ⊥P :

sup
B
(

0,R/
√
d
) |τ |2 ≤ 4C1d

n

sup
B
(

0,R/
√
d
) |dτ |2 ≤ 4C2d

n+1

}

≥ 1

2

∫ +∞

M

exp
(
− t2

) dt√
π

= c̃Σ > 0.

One checks indeed that

µ

{
τ ∈ σ⊥P :

sup
B
(

0,R/
√
d
) |τ |2 ≤ 4C1d

n

sup
B
(

0,R/
√
d
) |dτ |2 ≤ 4C2d

n+1

}
≥ 1

2

as

µ

{
σ ∈ Rhom

d [X0, . . . , Xn] :
sup

B
(

0,R/
√
d
) |σ|2 ≤ 4C1d

n

sup
B
(

0,R/
√
d
) |dσ|2 ≤ 4C2d

n+1

}
≥ 1

2
.

Now, let σ ∈ EM , σ = aσP + τ . For every t ∈ [0, 1], set σt = aσP + tτ ,
so that σ0 = σP and σ1 = σ. Then, for every t ∈ [0, 1], σt vanishes
transversely in the open set Ud. Indeed, let x ∈ Ud and t ∈ [0, 1] such
that σt(x) = 0. Then ∣∣aσP (x)

∣∣ = |tτ(x)| ≤ 2
√
C1dn

=⇒
∣∣σP (x)

∣∣ ≤ δ√dn
=⇒

∣∣dσP (x)
∣∣ > ε

√
d
n+1

,

so that

|dσt| = |adσP + tdτ(x)|
≥ |adσP | − |dτ(x)|

> 2
√
C2dn+1 − 2

√
C2dn+1

> 0.
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I deduce that the smooth vanishing locus σ−1
t (0) ∩ Ud = Σt remains

trapped in the compact setKd, thus cannot leave Ud. The family (Σt)t∈[0,1]

realizes an isotropy between Σ = σ−1
P (0) ∩ Ud and σ−1(0) ∩ Ud and the

topology of the pair
(
B
(
0, R/

√
d
)
,Σt
)

thus does not depend on t ∈ [0, 1].
Hence the result.

�X

2.7. Proof of the Lower Estimates

Let me address the following problem.

Question 2.10. Given a closed Riemannian manifold (M, g) and ε > 0, how
many disjoint balls of radius ε can be packed in M?

In our case, (M, g) is going to be the real projective space RPn equipped
with its Fubini-Study metric and ε is going to be R/

√
d. Note that if CPn is

the quotient of the unit sphere S2n+1 under the action of the unit circle U1(C)
by isometries, giving rise to the Hopf fibration, RPn is just the quotient of
the sphere Sn under the action of the group {±1} of unit elements of R. This
antipodal action is also isometric for the round metric of Sn and the Fubini-
Study metric of RPn is just the metric on the quotient RPn = Sn/{±1}
induced by this round metric.

Proposition 2.11. Let (M, g) be a closed Riemannian manifold of dimension
n and ε > 0. Let Nε be the maximal number of disjoint balls of radius ε that
can be packed in M . Then,

lim inf
ε→0

(εnNε) ≥
Volg(M)

2n Voleucl

(
B(0, 1)

) ,
where Volg(M) denotes the total Riemannian volume of M and Voleucl

(
B(0, 1)

)
the Euclidean volume of the unit ball in Rn.

Note that it is of course not possible to fill more than the total volume of
M by disjoint balls, so that

lim sup
ε→0

(εnNε) ≤
Volg(M)

Voleucl

(
B(0, 1)

) ,
but from Proposition 2.11 we know that it is possible to fill a fraction of it. This
packing problem is a classical one. For instance, in the case of the Euclidean
space Rn, the question may be, given a box, can we fill its whole volume with
apples. Of course not and actually even if the radius of the apples was converg-
ing to zero. The question then becomes what is the best way to fill the box in
order to loose the minimal amount of space, but I do not address this question.
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If instead of Euclidean balls, I just wanted to fill the manifolds with balls of a
given volume, that is by disjoint images of embeddings of the Euclidean balls
by diffeomorphisms which preserve the volume form, then it would be possi-
ble to fill the whole volume, say asymptotically due to Moser’s trick. Finally,
a famous theorem of M. Gromov establishes that it is not possible to fill the
whole Fubini-Study volume of CP 2 by packing two disjoint symplectic balls,
see [8, 16], meaning two disjoint embeddings of some ball of C2 into CP 2 which
preserve the symplectic form.

Proof. Let Λε be a subset of points of M with the property that for every
x 6= y ∈ Λε, d(x, y) > 2ε and that Λε is maximal with respect to this property.
Then, the balls centered at the points of Λε and of radius ε are disjoint to
each other, so that #Λε ≤ Nε. But the balls centered at the points of Λε and
of radius 2ε cover M since a point y in the complement of these balls in M
could be added to Λε to get a strictly larger set with our desired property,
contradicting the maximality of Λε. Thus

Volg(M) ≤
∑
x∈Λε

Volg
(
B(x, 2ε)

)
∼ε→0 #Λεε

n2nVoleucl

(
B(0, 1)

)
,

so that lim infε→0

(
εn#Λε

)
≥ Volg(M)

2nVoleucl(B(0,1)) . �X

Let me now come back to the proof of the lower estimates in Theorem 1.8.
Let ε = R/

√
d and Λε be a subset of (RPn, gFS) maximal with the property

that for every x 6= y ∈ Λε, d(x, y) > 2ε. For every closed connected hypersurface
Σ of Rn and P ∈ Rhom

d [X0, . . . , Xn], let NΣ(VP ) be the number of connected
components of VP = P−1(0) ⊂ RPn which are diffeomorphic to Σ. For every

x ∈ RPn, we set NΣ,x(VP ) to be one if VP∩B(x, ε) ⊃ Σ̃ such that
(
B(x, ε), Σ̃

) ∼=
(Rn,Σ) and NΣ,x(VP ) = 0 otherwise. We deduce in particular, NΣ(VP ) ≥∑
x∈Λε

NΣ,x(VP ). Then,

E(bi) =

∫
Rhom
d [X0,...,Xn]

bi(VP ) dµ(P )

≥
∫
Rhom
d [X0,...,Xn]

( ∑
[Σ]∈Hn

bi(Σ)NΣ(VP )

)
dµ(P )

≥
∑

[Σ]∈Hn

bi(Σ)
∑
x∈Λε

∫
Rhom
d [X0,...,Xn]

NΣ,x(VP ) dµ(P )

≥
∑

[Σ]∈Hn

bi(Σ)c̃Σ#Λε, from Theorem 2.7.
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Note that d being fixed, all the sums involved are finite. We then use Propo-
sition 2.11 to deduce

lim inf
ε→0

(
#Λε√
d
n

)
≥ VolFS(RPn)

2nVoleucl

(
B(0, R)

) .
We finally set

cΣ =
c̃Σ

2nVoleucl

(
B(0, R)

)
to get

lim inf
d→+∞

(
E(bi)√

d
n
VolFS(RPn)

)
≥

∑
[Σ]∈Hn

cΣbi(Σ) = c−i .

Note that I have actually proved that the expected number E(NΣ) of con-
nected components of VP diffeomorphic to Σ satisfies

lim inf
d→+∞

(
E(NΣ)

√
d
n
VolFS(RPn)

)
≥ cΣ.

I have even proved this lower estimate for a smaller quantity, the expected
number of disjoint balls B of RPn that contain a component Σ̃ of VP for which
the pair

(
B, Σ̃

)
gets diffeomorphic to (Rn,Σ).
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