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Central quasipolar rings
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Abstract. In this paper, we introduce a kind of quasipolarity notion for rings,
namely, an element a of a ring R is called central quasipolar if there exists p2 =
p ∈ R such that a+p is central in R, and the ring R is called central quasipolar
if every element of R is central quasipolar. We give many characterizations
and investigate general properties of central quasipolar rings. We determine
the conditions that some subrings of upper triangular matrix rings are central
quasipolar. A diagonal matrix over a local ring is characterized in terms of
being central quasipolar. We prove that the class of central quasipolar rings
lies between the classes of commutative rings and Dedekind finite rings, and a
ring R is central quasipolar if and only if it is central clean. Further we show
that several results of quasipolar rings can be extended to central quasipolar
rings in this general setting.
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central clean ring.
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Resumen. En este trabajo, se presenta una noción de un tipo de casi-polaridad
en anillos, esto es, un elemento a de un anillo R se dice casi-polar central si
existe p2 = p ∈ R tal que a + p es central en R, y el anillo R es llamado
casi-polar central si todo elemento de R es casi-polar central. Se dan algunas
caracterizaciones y se investigan propiedades generales de los anillos centrales
casi-polares. Se determinan las condiciones bajo las cuales algunos subanillos
de anillos de matrices triangulares superiores son casi-polares centrales. Una
matriz diagonal sobre un anillo local se caracteriza en términos de ser casi-
polar central. Se demuestra que la clase de anillos casi-polares centrales se
encuentra dentro de la clase de los anillos conmutativos y los anillos finitos
de Dedekind, y un anillo R es casi-polar central si es limpio central. Además
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se muestra que varios resultados de anillos casi-polares se pueden extender a
anillos casi-polares centrales en un contexto general.

Palabras y frases clave. Anillo casi-polar, anillo casi-polar central, anillo limpio,
anillo limpio central.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. Let R be a ring and a ∈ R. The commutant and double commutant of
a in R are defined by comm(a) = {b ∈ R | ab = ba} and comm2(a) = {b ∈
R | bc = cb for all c ∈ comm(a)} respectively, and Rqnil = {a ∈ R | 1 + ax is
invertible for each x ∈ comm(a)}. In [11], a is called quasipolar if there exists
p2 = p ∈ comm2(a) such that a + p is invertible and ap ∈ Rqnil. The ring R
is called quasipolar if every element of R is quasipolar. General properties of
quasipolar rings can be found in [3, 6, 14]. Quasipolar rings are generalized to
J-quasipolar in [4]. It is said that an element a ∈ R is J-quasipolar if there exists
an idempotent p ∈ R such that p ∈ comm2(a) and a+ p ∈ J(R) where J(R) is
the Jacobson radical of R. The ring R is J-quasipolar if every element of R is J-
quasipolar. Recently, nil-quasipolar rings are introduced in [7]. An element a ∈
R is said to be nil-quasipolar if there exists p2 = p ∈ comm2(a) such that a+p is
nilpotent, R is called nil-quasipolar in case each of its elements is nil-quasipolar.
Motivated by these concepts, in this paper, we define central quasipolarity
notion for rings and study basic properties of this class of rings. We present some
examples to show that there is no implication between quasipolarity and central
quasipolarity of rings. It is also proved that the class of central quasipolar rings
lies between those of commutative rings and Dedekind finite rings. Note that
being Dedekind finite is still an open problem for strongly clean rings. It is
seen that being a commutative ring and being a central quasipolar abelian
ring coincide. On the other hand, being a central quasipolar ring and being a
central clean ring are the same. We show that central quasipolarity is inherited
by homomorphic images, ring direct summands and finite ring direct sums. We
characterize an endomorphism of a module in terms of the central quasipolarity.
Corner rings, polynomial extensions and trivial extensions of rings are also
studied in terms of central quasipolarity. Lastly, we give some characterizations
of a central quasipolar diagonal matrix over a local ring.

In what follows, Z denotes the ring of integers. For a positive integer n, let
Matn(R) denote the ring of all n× n matrices and Tn(R) the ring of all n× n
upper triangular matrices over a ring R, and T (R,R) the trivial extension of
R by R. We write R[x] and J(R) for the polynomial ring and the Jacobson
radical of R, respectively.

2. Central Quasipolar Rings

In this section, we investigate general properties of central quasipolar rings.
The structure and several illustrative examples of this class of rings are given.
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We now begin with our main definition.

Definition 2.1. Let R be a ring. An element a of R is called central quasipolar
if there exists p2 = p ∈ R such that a+p is central. The ring R is called central
quasipolar if every element of R is central quasipolar.

Note that the idempotent p relating to a in Definition 2.1 is called central
spectral idempotent which is borrowed from spectral theory in Banach algebras
[9] and [11]. Although the idempotent which is attributed to a ∈ R where R is
a quasipolar (J-quasipolar, nil-quasipolar, respectively) ring is unique, this is
not the case for central quasipolar rings as the following shows.

Remark 2.2. Let R be a ring and a ∈ R central quasipolar. Then the central
spectral idempotent of a need not be unique.

Proof. 0 ∈ R is central quasipolar with central spectral idempotents 0 and
1. �X

Remark 2.3. Note that all versions of quasipolarity require spectral idempo-
tents p belong to comm2(a). In fact, for central quasipolarity, this condition is
unnecessary since the central spectral idempotent p with a + p central always
belongs to comm2(a).

The following examples illustrate that neither condition being a quasipo-
lar ring or being a central quasipolar ring imply the other in general. These
examples follow from a routine computation.

Examples 2.4. The following statements hold for a ring R.

(1) Every commutative ring is central quasipolar.

(2) Let R be a commutative local ring. Then the upper triangular matrix
ring T2(R) is quasipolar but not central quasipolar.

(3) Z is a central quasipolar ring which is not quasipolar.

While every commutative ring is central quasipolar, despite all our efforts,
we have not succeeded in giving a counterexample for the converse.

Question. Is there a central quasipolar ring which is not commutative?

Our next endeavor is to find conditions under which a central quasipolar ring
is commutative, also quasipolarity implies central quasipolarity. We show that
local rings, abelian rings and unit-central rings play important roles in these
directions. Recall that a ring R is called unit-central [10], if all unit elements
are central in R, and R is said to be abelian if every idempotent of R is central.

Theorem 2.5. A ring R is commutative if and only if it is central quasipolar
and abelian.
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Proof. The necessity is clear. For the sufficiency, let R be a central quasipolar
abelian ring and a ∈ R. Then there exists p2 = p ∈ R with a + p central, say
a+p = y. For any r ∈ R, since R is abelian, ar = (y−p)r = yr−pr = ry−rp =
r(y − p) = ra. Thus a is central in R. Therefore R is commutative. �X

Proposition 2.6. Every quasipolar unit-central ring is central quasipolar.

Proof. Clear by definitions. �X

The next result shows that central quasipolarity of elements a and −1− a
in a ring R coincide.

Lemma 2.7. Let R be a ring and a ∈ R. Then a is central quasipolar if and
only if −1− a is central quasipolar.

Proof. For the necessity, let a be central quasipolar. Then there exists p2 =
p ∈ R such that a+ p is central. Hence (1− p)2 = 1− p. So (−1− a) + (1− p)
is central. Thus −1 − a is central quasipolar. For the sufficiency, assume that
−1 − a is central quasipolar. There exists q2 = q ∈ R such that −1 − a + q is
central. Then (1− q)2 = 1− q and a+ (1− q) is central. Therefore a is central
quasipolar. �X

Now we prove that every corner ring of a central quasipolar ring inherits
this property.

Proposition 2.8. If R is a central quasipolar ring, then so is eRe for all
e2 = e ∈ R.

Proof. Let r ∈ eRe. Since R is central quasipolar, there exists p2 = p ∈ R
such that r+p is central in R. Then ep = pe. Hence (epe)2 = epe. Since r+p is
central in R, r+ epe is central in eRe. Therefore eRe is central quasipolar. �X

In [12], Nicholson defined clean elements and clean rings, also in [13] Nichol-
son introduced strongly clean rings. Other generalizations of clean notion of
rings investigated by many authors ([1], [2], [5], [8]). Namely, an element a ∈ R
is called clean provided that there exists e2 = e ∈ R and u ∈ U such that
a = e + u. In this direction, we call an element a ∈ R is central clean if there
exists an idempotent e2 = e and a central element u of R such that a = e+ u,
and a ring R is called central clean if each element of R is central clean. We
now give a relation between central quasipolar and central clean elements.

Theorem 2.9. Let R be a ring and a ∈ R. Then a is central quasipolar if and
only if a is central clean.
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Proof. Assume that a ∈ R is central quasipolar. Then there exists p2 = p ∈ R
such that a+ p = b is central. Since a = 1− p+ b− 1 and b is central, b− 1 is
central. Thus a is central clean. Conversely, assume that a is central clean. Then
there exists e2 = e ∈ R and central u such that a = e+u. Hence a+1−e = 1+u
is also central in R. Therefore a is central quasipolar. �X

The following result is an immediate consequence of Theorem 2.9, and it
reveals that the concepts of central cleanness and central quasipolarity for rings
are the same.

Corollary 2.10. A ring R is central quasipolar if and only if R is central
clean.

Lemma 2.11. Let R be a ring, a ∈ R and u invertible in R. Then a is central
quasipolar if and only if uau−1 is central quasipolar.

Proof. Assume that a is central quasipolar. There exists e2 = e ∈ R such that
a + e = b is central. Given any x ∈ R, [uau−1 + ueu−1]x = [u(a + e)u−1]x =
(a + e)x = x(a + e) = x[uau−1 + ueu−1]. So uau−1 + ueu−1 is central. The
converse is clear. �X

Central quasipolar property is inherited by homomorphic images as shown
below.

Proposition 2.12. Every homomorphic image of a central quasipolar ring is
central quasipolar.

Proof. Let f : R→ S be a ring epimorphism, R a central quasipolar ring and
s ∈ S. There exists a ∈ R such that f(a) = s and a+ p is central in R for some
p2 = p ∈ R. The image of any central element of R is contained in the center
of S. Then f(a+ p) = f(a) + f(p) is central and f(p)2 = f(p). Then f(p) is a
central spectral idempotent for s = f(a). This completes the proof. �X

By using Proposition 2.12, we obtain the next result related to a ring de-
composition of central quasipolar rings.

Corollary 2.13. Every ring direct summand of a central quasipolar ring is
central quasipolar.

Proof. Let R = I ⊕ K be a ring decomposition of a central quasipolar ring
R. Consider the natural projection π : R→ I. By Proposition 2.12, I is central
quasipolar. �X

Proposition 2.14. Let {Ri}i∈I be a class of rings for a finite index set I =

{1, 2, . . . , n} and R denote
n∏

i=1

Ri. Then R is central quasipolar if and only if

each Ri is central quasipolar for i ∈ I.
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Proof. One way is clear from Corollary 2.13. We may assume that n = 2
and R1 and R2 are central quasipolar. Let a = (x1, x2) ∈ R. There exists
idempotents pi ∈ Ri such that xi +pi is central in Ri for (i = 1, 2, . . . , n). Then
p = (p1, p2, . . . , pn) is an idempotent in R and a+ p is central in R. Hence R is
central quasipolar. �X

Recall that a ring R is called Dedekind finite (or directly finite) if for a,
b ∈ R, ab = 1 implies ba = 1. It is still an open problem whether strongly clean
rings are Dedekind finite. When we deal with central quasipolar rings, in the
next result, we give an affirmative answer for an analogues of this question.
This result also shows that the class of central quasipolar rings lies between
the classes of commutative rings and Dedekind finite rings.

Theorem 2.15. Every central quasipolar ring is Dedekind finite.

Proof. Let a, b ∈ R with ab = 1. There exists p2 = p, q2 = q ∈ R such that
a+p and b+ q are central in R. Then a(b+ q) = (b+ q)a = ab+aq = ba+ qa =
1 + aq = ba+ qa. Multiplying the latter from the left by a we have a2q = aqa
and so qa2q = qaqa. Then 1 + aq = ba+ qa implies

1− ba = qa− aq (1)

is an idempotent. Hence

qa− aq = (qa− aq)2

= qaqa− qa2q − aqa+ aqaq

= −aqa+ aqaq

= −aqa(1− q)
= −a2q(1− q)
= 0

Thus qa = aq. We have 1 = ba by (1.6). This completes the proof. �X

In [13], Nicholson gives several characterizations of strongly clean rings
through the endomorphism ring of a module. Analogously, in [4], Cui and Chen
do the same for J-quasipolar rings. In this vein, we have the following result
for central quasipolar rings.

Theorem 2.16. Let M be an R-module and α ∈ E = EndR(M). Then the
following are equivalent.

(1) α is central quasipolar.

(2) There exists π2 = π ∈ E such that π ∈ comm2(α), απ is central in πEπ
and (1 + α)(1− π) is central in (1− π)E(1− π).
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(3) M has a decomposition M = P ⊕Q where P and Q are β-invariant for
every β ∈ commE(α), α |P is central in EndR(P ) and (1+α) |Q is central
in EndR(Q).

(4) M has a decomposition M = P1 ⊕ P2 ⊕ · · · ⊕ Pn for some n ≥ 1, where
Pi is β-invariant for every β ∈ commE(α), α |Pi is central quasipolar in
EndR(Pi) for each i.

Proof. (1) ⇒ (2) Since α is central quasipolar in E, there exists π2 = π ∈
comm2

E(α) such that α + (1 − π) = η is central in E. Note that α, π and η
commute. Multiplying α+ (1− π) = η by π yields απ = ηπ = πη is central in
πEπ. Further, 1 + α = π + η, and so (1 + α)(1 − π) = η(1 − π) = (1 − π)η is
central in (1− π)E(1− π).

(2) ⇒ (3) Let P = Mπ and Q = M(1 − π). Then M = P ⊕ Q. Let
β ∈ commE(α). Since π ∈ comm2

E(α), βπ = πβ. Then P and Q are β-invariant.
As πα is central in πEπ and (1−π)α(1−π) is central in (1−π)E(1−π), α |P
is central in EndR(P ) and (1 + α) |Q is central in EndR(Q).

(3) ⇒ (4) Clear.

(4) ⇒ (1) We may assume that M = P ⊕ Q where P and Q are invariant
for every β ∈ commE(α). By hypothesis, α|P and α|Q are central quasipolar
and α|P (P ) ⊆ P and α|Q(Q) ⊆ Q. By hypothesis, there exists e2 = e ∈
EndR(P ), e ∈ comm2(α|P ) and f2 = f ∈ EndR(Q), f ∈ comm2(α|Q) such
that α|P + e is central in EndR(P ), and α|Q + f is central in EndR(Q). Then
α = α|P +α|Q and g = e+f is an idempotent in EndR(P ) and g ∈ comm2(e+f)
since comm2(e + f) = comm2(e) + comm2(f). On the other hand, α + g =
α|P + e + α|Q + f is central in EndR(M) since center of M is the ring direct
sum of center of EndR(P ) and center of EndR(Q). This implies that α is central
quasipolar, as asserted. �X

We close this section by observing the relations between a ring and its
polynomial ring extension in terms of central quasipolarity.

Theorem 2.17. Let R be a ring. Then the following hold.

(1) If the polynomial ring R[x] is central quasipolar, then R is central quasipo-
lar.

(2) If R is a central quasipolar local ring, then R[x] is central quasipolar.

Proof. (1) Let a ∈ R. Consider f(x) = a ∈ R[x]. There exists p(x)2 = p(x) ∈
R[x] such that a + p(x) is central in R[x]. Set p(x) = a0 + a1x + · · · + anx

n.
Then a2

0 = a0 and a1 = a2 = · · · = an = 0. Hence a + a0 is central. Therefore
R is central quasipolar.

(2) Let R be a central quasipolar local ring. Then R is commutative by
Theorem 2.5, and so R[x] is commutative. �X
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3. Central Quasipolarity of Matrices

Let R be any ring and n any positive integer. One may suspect that the matrix
ring Matn(R) of all n × n matrices and the ring Tn(R) of all n × n upper
triangular matrices with entries in R are central quasipolar. But the following
example illustrates that this is not the case.

Example 3.1. Let A denote the matrix

[
0 1

0 0

]
∈ Mat2(Z). For any idem-

potent matrix P , A + P can not be central in Mat2(Z). In fact, let P be an

idempotent with A + P central. Then P has the form

[
a b

c 1− a

]
for some

a, b, c ∈ Z. By commuting A+ P with

[
1 1

0 0

]
and

[
1 0

1 0

]
, we have a = 1/2.

This is a contradiction. Same proof also works for T2(Z). Therefore Mat2(Z)
and T2(Z) are not central quasipolar.

Although every corner ring of a central quasipolar ring is also central
quasipolar (see Proposition 2.8), the property being a central quasipolar ring
does not pass on the matrix rings as is seen from Example 3.1. Therefore this
property is not Morita invariant.

For any ring R,

T (R,R) =

{[
r t

0 r

]
| r, t ∈ R

}
denotes the trivial extension of R by R as a subring of 2× 2 upper triangular
matrix ring T2(R). The next example shows that T (R,R) need not be central
quasipolar.

Example 3.2. Let H denote the ring of the Hamilton quaternions over the
field of real numbers. Then T (H,H) is not central quasipolar.

Proof. Let A =

[
0 i

0 0

]
. By the same discussion as in Example 3.1, there is no

idempotent P with A+ P central in T (H,H). �X

Now we introduce a notation for some subrings of Tn(R) where R is a ring.
Let k be a natural number smaller than n. Say

T k
n (R) =


n∑

i=j

k∑
j=1

xje(i−j+1)i +

n−k∑
i=j

n−k∑
j=1

aijej(k+i) : xj , aij ∈ R


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where eij ’s are matrix units. Elements of T k
n (R) are in the form

x1 x2 x3 . . . xk a1(k+1) a1(k+2) . . . a1n

0 x1 x2 . . . xk−1 xk a2(k+2) . . . a2n

0 0 x1 . . . xk−2 xk−1 . . . . . . a3n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . x1


where xi ∈ R, ajs ∈ R, 1 ≤ i ≤ k, 1 ≤ j ≤ n ≤ k and k + 1 ≤ s ≤ n.

Example 3.3. Let R be a ring.

(i) If R is commutative, then Tn
n (R) is commutative and so it is central

quasipolar.

(ii) Assume that R is not commutative and A = (aij) ∈ Tn
n (R). If R is central

quasipolar and all aij are central in R, then A is central quasipolar in
Tn
n (R).

(iii) Assume that R is not commutative. Then for any k with k+1 ≤ n, T k
n (R)

is not central quasipolar.

(iv) If R is central quasipolar, then A ∈ Tn
n (R) is central quasipolar in Tn

n (R)
if and only if A = (aij) is diagonal, i.e., aij = 0 if i 6= j.

Proof. (ii) Let A = (aij) ∈ Tn
n (R). Set p2 = p ∈ R such that a11 + p is central

in R. Set P = (xij) where xij = p if i = j and xij = 0 otherwise. Then A+ P
is central in Tn

n (R).
(iii) Without loss generality, we may assume that n = 4 and k = 2. Let eij
denote the matrix unit with 1 in the (i, j)-entry and zero elsewhere. Let A =
e12 + e23 + e34. It is obvious that any idempotent P ∈ T 2

4 (R) is the zero matrix
or the identity matrix. Therefore A + P is not central in T 2

4 (R). A similar
discussion may be done for A = e13 + e24 and A = e14 to show that for any
idempotent P ∈ T 2

4 (R), A+ P is not central in T 2
4 (R).

(iv) If A ∈ T k
n (R) is not diagonal, a similar proof as in (iii), we may conclude

that A is not central quasipolar. So assume that A = (aii) ∈ T k
n (R) is diagonal.

Let pii ∈ R denote the spectral idempotent for aii. Let P denote the diagonal
matrix (pii). Then P is idempotent and AP = PA since aii + pii is central in
R. Then A+ P is central in Tn

n (R). �X

By Example 3.1, Mat2(R) is not central quasipolar in general. We now
investigate the central quasipolarity of single 2× 2 matrices over local rings.
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Theorem 3.4. Let R be a local ring. If A =

[
a 0

0 b

]
is central quasipolar in

Mat2(R), then one of the following conditions holds.

(1) A is central in Mat2(R).

(2) A+ I2 is central in Mat2(R).

(3) a and b+ 1 are central in R.

(4) a+ 1 and b are central in R.

The converse statement holds if a = b.

Proof. Assume that A is central quasipolar. Let P =

[
x y

z t

]
be an idempotent

in Mat2(R) such that A + P is central in Mat2(R) and AP = PA. Since
AP = PA and A + P is central, it is easily checked that x2 = x, t2 = t and
y = z = 0. There are some cases for x and t as the following.

Case (i) If x = t = 0, then P = 0 and A is central in Mat2(R).

Case (ii) If x 6= 0 and t 6= 0, then we take P = I2 identity matrix in Mat2(R)
and A+ P has the form (2).

Case (iii) If x = 0 and t 6= 0, then t = 1 and we take P =

[
0 0

0 1

]
. Since

A+ P is central, we have the case (3).

Case (iv) If x 6= 0 and t = 0, then x = 1 and we take P =

[
1 0

0 0

]
. Since

A+ P is central, we have the case (4).

Conversely, assume that a = b. Consider P = I2 or P = 0 or P =

[
0 0

0 1

]
or

P =

[
1 0

0 0

]
. Then AP = PA. If A is central in Mat2(R), we take P = 0 and

then A + P is central. If A + I2 is central in Mat2(R), then A is central and
we take P = I2 and then A+ I2 is central. If a is central (equivalently, a+ 1 is

central), then we take P =

[
1 0

0 0

]
and then A + P becomes central. If a + 1

is central (equivalently, a is central) in R, then we take P =

[
0 0

0 1

]
for A+ P

being central in Mat2(R). This completes the proof. �X

Volumen 49, Número 2, Año 2015



CENTRAL QUASIPOLAR RINGS 291

For a positive integer n and a ring R, consider the set

Dn(R) = {A = (aij) ∈Matn(R)|aij = 0 when i 6= j}.

Then Dn(R) is a subring of Matn(R) consisting of all diagonal matrices of
Matn(R). We end this paper by giving a characterization of central quasipolar
rings R in terms of the subring Dn(R).

Theorem 3.5. A ring R is central quasipolar if and only if D2(R) is central
quasipolar.

Proof. It is clear by Proposition 2.14 since R is central quasipolar if and only
if so is R(n). �X

Corollary 3.6. A ring R is central quasipolar if and only if Dn(R) is central
quasipolar where n is a positive integer.
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