
Revista Colombiana de Matemáticas
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Resumen. En esta nota vamos a caracterizar los operadores multiplicación que
son continuos, invertibles y que tienen rango cerrados sobre los espacios de
Lebesgue con exponente variable.
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1. Introduction

Variable Lebesgue spaces are a generalization of Lebesgue spaces where we
allow the exponent to be a measurable function and thus the exponent may
vary. It seems that the first occurence in the literature is in the 1931 paper of
Orlicz [29]. The seminal work on this field is the 1991 paper of Kováčik and
Rákosńık [27] where many basic properties of Lebesgue and Sobolev spaces were
shown. To see a more detailed history of such spaces see, e.g., [17, §1.1]. These
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variable exponent function spaces have a wide variety of applications, e.g., in
the modeling of electrorheological fluids [4, 5, 31] as well as thermorheological
fluids [6], in the study of image processing [1, 2, 10, 11, 14, 15, 34] and in
differential equations with non-standard growth [23, 28]. For details on variable
Lebesgue spaces one can refer to [16, 17, 21, 27, 30] and the references therein.

The multiplication operator, defined roughly speaking as the pointwise mul-
tiplication by a real-valued measurable function, is a well-studied transfor-
mation. This operator received considerable attention over the past several
decades, specially on Lebesgue and Bergman spaces and they played an impor-
tant role in the study of operators on Hilbert spaces. For more details on these
operators we refer to [3, 9, 18, 22, 32]. Studies of the multiplication operator
on various spaces can be seen, e.g. [7, 8, 13, 12, 25, 26, 33], in particular on
Lp space in [25, 33], on Orlicz space in [26], on Lorentz space in [7] and on
Lorentz-Bochner space in [8, 20]. It is natural to extend the study to variable
Lebesgue spaces.

The main goal of the present note is to establish boundedness, invertibility,
compactness and closedness of multiplication operators in the framework of
variable Lebesgue spaces Lp(·)(X,µ).

2. Preliminaries

2.1. On Lebesgue spaces with variable exponent

The basics on variable Lebesgue spaces may be found in the monographs [16, 17]
(see also [24, 27]), but we recall here some necessary definitions. Let (X,Σ, µ)
be a σ-finite, complete measure space. For A ⊂ X we put p+

A := ess supx∈A p(x)
and p−A := ess infx∈A p(x); we use the abbreviations p+ = p+

X and p− = p−X .
For a measurable function p : X → [1,∞), we call it a variable exponent, and
define the set of all variable exponents with p+ < ∞ as P(X,µ). In this note,
all the variable exponents are tacitly assumed to belong to the class P(X,µ).

For a real-valued µ-measurable function ϕ : X → R we define the modular

ρp(·)(ϕ) :=

∫
X

|ϕ(x)|p(x) dµ(x)

and the Luxemburg norm

‖ϕ‖Lp(·)(X,µ) := inf
{
λ > 0 : ρp(·)

(ϕ
λ

)
6 1
}
. (1)

Definition 2.1. Let p ∈ P(X,µ). The variable Lebesgue space Lp(·)(X,µ) is
introduced as the set of all real-valued µ-measurable functions ϕ : X → R for
which ρp(·)(ϕ) <∞. Equipped with the Luxemburg norm (1) this is a Banach
space.
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We gather here some useful properties of variable exponent Lebesgue spaces,
see [17, p. 77]

Remark 2.2. We say that a function is simple if it is the linear combination of
indicator functions of measurable sets with finite measure,

∑k
i=1 siχAi

(x) with
µ(A1) < ∞, . . . , µ(Ak) < ∞ and s1, . . . , sk ∈ R. We denote the set of simple
functions by S(X,µ).

Proposition 2.3. Let p ∈ P(X,µ). Then the set of simple functions S(X,µ)
is contained in Lp(·)(X,µ) and

min{1, µ(E)} 6 ‖χE‖Lp(·)(X,µ) 6 max{1, µ(E)}

for every measurable set E ⊂ X.

Proposition 2.4. If p ∈ P(X,µ), then the set of simple functions is dense in
Lp(·)(X,µ).

Remark 2.5. The previous proposition is explicitly stated in [17, Corollary
3.4.10] for a domain Ω ⊂ Rn, but the result can be stated in full general-
ity as done above, since the result is a corollary of Theorem 2.5.9 and Theo-
rem 3.4.1(c) from [17] which are given for a σ-finite, complete measure spaces
(X,Σ, µ).

Proposition 2.6. The variable Lebesgue space Lp(·)(X,µ) is circular, solid,
satisfies Fatou’s lemma (for the norm) and has the Fatou property, namely:

circular ‖f‖Lp(·)(X,µ) = ‖|f |‖Lp(·)(X,µ) for all f ∈ Lp(·)(X,µ);

solid If f ∈ Lp(·)(X,µ), g ∈ L0(X,µ) (where L0(X,µ) stands for the space of
all real-valued, µ-measurable functions on X) and 0 6 |g| 6 |f | µ-almost
everywhere, then g ∈ Lp(·)(X,µ) and ‖g‖Lp(·)(X,µ) 6 ‖f‖Lp(·)(X,µ);

Fatou’s lemma If fk → f µ-almost everywhere, then we have the following:
‖f‖Lp(·)(X,µ) 6 lim infk→∞ ‖fk‖Lp(·)(X,µ);

Fatou property If |fk| ↗ |f | µ-almost everywhere with fk ∈ Lp(·)(X,µ)
and supk ‖fk‖Lp(·)(X,µ) < ∞, then f ∈ Lp(·)(X,µ) and ‖fk‖Lp(·)(X,µ) ↗
‖f‖Lp(·)(X,µ).

3. Multiplication operators

Definition 3.1. Let F (X) be a function space on a non-empty set X. Let
u : X → C be a function such that u · f ∈ F (X) whenever f ∈ F (X). Then the
aplication f 7→ u · f on F (X) is denoted by Mu. In case F (X) is a topological
space and Mu is continuous we call it a multiplication operator induced by u.
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Multiplication operators generalize the notion of operator given by a diag-
onal matrix. More precisely, one of the results of operator theory is a spectral
theorem, which states that every self-adjoint operator on a Hilbert space is
unitarily equivalent to a multiplication operator on an L2 space.

Consider the Hilbert space X = L2[−1, 3] of complex-valued square inte-
grable functions on the interval [−1, 3]. Define the operator

Mu(x) = u(x)x2,

for any function u ∈ X. This will be a self-adjoint bounded linear operator
with norm 9. Its spectrum will be the interval [0, 9] (the range of the function
x → x2 defined on [−1, 3]). Indeed, for any complex number λ, the operator
Mu − λ is given by

(Mu − λ)(x) = (x2 − λ)u(x).

It is invertible if and only if λ is not in [0, 9], and then its inverse is

(Mu − λ)−1(x) =
u(x)

x2 − λ
.

which is another multiplication operator.

For a systematic study of the multiplication operators on different spaces
we refer, e.g., to [3, 7, 9, 26].

Remark 3.2. In general, the multiplication operators on measure spaces are
not 1−1. Indeed, let (X,Σ, µ) be a measure space and

A = X\supp (u) = {x ∈ X : u(x) = 0}.

If µ(A) 6= 0 and f = χA then for any x ∈ X we have f(x)u(x) = 0 which
implies that Mu(f) = 0, therefore ker(Mu) 6= {0} and hence Mu is not 1−1.

If, on the contrary, Mu is 1−1, then µ(X\supp(u)) = 0. On the other hand,
if µ(X\supp(u)) = 0 and µ is a complete measure, then Mu(f) = 0 implies
f(x)u(x) = 0 ∀ x ∈ X, then {x ∈ X : f(x) 6= 0} ⊆ X\supp(u) and so f = 0
µ-a.e. on X.

Hence, if µ(X\supp(u)) = 0 and µ is a complete measure, then Mu is 1−1.

Proposition 3.3. Mu is 1−1 on Y = Lp(·)(supp (u)).

Proof. Let Y = Lp(·)(supp (u)) = {fχsupp (u) : f ∈ Lp(·)(X,µ)}. Indeed, if

Mu(f̃) = 0 with f̃ = fχsupp (u) ∈ Y , then f(x)χsupp (u)(x)u(x) = 0 for all
x ∈ X, and so

f(x)u(x) = 0 ∀ x ∈ supp (u),

⇒ f(x) = 0 ∀ x ∈ supp (u),

⇒ f(x)χsupp (u)(x) = 0 ∀ x ∈ X.

Then f̃ = 0 and the proof is complete. �X
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In this section we want to characterize the boundedness and compactness of
the multiplication operator Mu in variable Lebesgue space Lp(·)(X,µ) in terms
of the boundedness and invertibility of the real-valued measurable u function.

3.1. Boundedness results

In the next theorems we will obtain necessary and sufficient conditions related
with boundedness and invertibility of the multiplication operator in the frame-
work of variable Lebesgue spaces.

Theorem 3.4. The linear transformation Mu : Lp(·)(X,µ) → Lp(·)(X,µ) is
bounded if and only if u is essentially bounded. Moreover

‖Mu‖Lp(·)(X,µ)→Lp(·)(X,µ) = ‖u‖L∞(X,µ).

Proof. Letting u ∈ L∞(X,µ) we then have the pointwise estimate |(u·f)(x)| 6
‖u‖L∞(X,µ)|f(x)|. Using the fact that Lp(·)(X,µ) is solid, we have

‖Muf‖Lp(·)(X,µ) 6 ‖u‖L∞(X,µ)‖f‖Lp(·)(X,µ). (2)

On the other hand, suppose that Mu is a bounded operator. If u is not
essentially bounded, then for every n ∈ N, the set Un = {x ∈ X : |u(x)| > n}
has positive measure. Since the measure is σ-finite, there exists a measur-
able subset of Un with finite positive measure, denote it by Ũn. Then χŨn

∈
Lp(·)(X,µ) and since Lp(·)(X,µ) is solid and (|u|χŨn

)(x) > nχŨn
(x) we obtain

‖MuχŨn
‖Lp(·)(X,µ) > n‖χŨn

‖Lp(·)(X,µ). This contradicts the supposition that
Mu is bounded, therefore u is essentially bounded.

To evaluate the norm of the operator Mu we proceed as follows. For a fixed
ε > 0, let us define U = {x ∈ X : |u(x)| > ‖u‖L∞(X,µ) − ε} which has positive
measure. Since the variable Lebesgue space is solid, we have∥∥∥∥∥ (‖u‖L∞(X,µ) − ε)χU

‖MuχU‖Lp(·)(X,µ)

∥∥∥∥∥
Lp(·)(X,µ)

6 1

which yields ‖Mu‖Lp(·)(X,µ)→Lp(·)(X,µ) > ‖u‖L∞(X,µ)−ε. Since ε > 0 is arbitrary

and taking (2) into account, we prove that the norm is equal to ‖u‖∞. �X

Theorem 3.5. Let (X,Σ, µ) be a finite measure space. The set of all multiplica-
tion operators on Lp(·)(X,µ) is a maximal Abelian subalgebra of B(Lp(·)(X,µ)),
the algebra of all bounded operators on Lp(·)(X,µ).

Proof. Let

H = {Mu : u ∈ L∞(X,µ)} (3)
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and consider the operator product

Mu ·Mv = Muv,

where Mu,Mv ∈ H . Let us check that H is a Banach algebra. Let u, v ∈
L∞(X,µ), then by the pointwise estimates |u| 6 ‖u‖L∞(X,µ), |v| 6 ‖v‖L∞(X,µ)

we have
‖uv‖L∞ 6 ‖u‖L∞(X,µ)‖v‖L∞(X,µ)

which implies that product is an inner operation, moreover, the usual function
product is associative, commutative and distributive with respect to the sum
and scalar product, thus H is a subalgebra of B(Lp(·)(X,µ)).

We will now prove that it is a maximal Abelian subalgebra. Consider the
unit function e : X → R given by x 7→ 1 for all x ∈ X. Let N ∈ B(Lp(·)(X,µ))
be an operator which commutes with H and let χE be the indicator function
of a measurable set E. Then

N(χE) = N [MχE
(e)] = MχE

[N(e)] = χE ·N(e) = N(e) · χE = Mw(χE)

where w := N(e). Similarly

N(s) = Mw(s), (4)

for any simple function.

Now, let us check that w ∈ L∞(X,µ). By way of contradiction, we assume
that w /∈ L∞(X,µ), then the set

Wn = {x ∈ X : |w(x)| > n},

has positive measure for each n ∈ N. Note that we have the pointwise estimate

Mw(χWn)(x) = (wχWn)(x) > nχWn(x) (5)

for all x ∈ X. Using the fact that Lp(·)(X,µ) is solid and the pointwise estimate
(5) we obtain

‖Mw(χWn)‖Lp(·)(X,µ) = ‖w(χWn)‖Lp(·)(X,µ) > n‖χWn‖Lp(·)(X,µ). (6)

Using (4) and (6) we obtain

‖N(χWn
)‖Lp(·)(X,µ) > n‖χWn

‖Lp(·)(X,µ)

which contradicts the fact that N is a bounded operator. Therefore w ∈
L∞(X,µ) and by Theorem 3.4 Mw is bounded.

To obtain the result for all functions in Lp(·)(X,µ) we proceed with a lim-
iting argument. Taking, without loss of generality, a non-negative function
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u ∈ Lp(·)(X,µ), there exists a nondecreasing sequence {sn}∞s=1 of measurable
simple functions such that limn→∞ sn = u. Using (4) we have

N(u) = N
(

lim
n→∞

sn

)
= lim
n→∞

N(sn) = lim
n→∞

Mw(sn) = Mw

(
lim
n→∞

sn

)
= Mw(u),

which gives that N(u) = Mw(u) for all u ∈ Lp(·)(X,µ) and thus N ∈H . �X

Corollary 3.6. Let (X,Σ, µ) be a finite measure space. The multiplication op-
erator Mu in Lp(·)(X,µ) is invertible if and only if u is invertible in L∞(X,µ).

Proof. Let Mu be invertible, then there exists N ∈ B(Lp(·)(X,µ)) such that

Mu ·N = N ·Mu = 1 (7)

where 1 represents the identity operator. Let us check that N commutes with
H (where H is defined in (3)). Let Mw ∈H , then

Mw ·Mu = Mu ·Mw. (8)

Applying N to both sides of (8) and using (7) we obtain

N ·Mw = N ·Mw ·1 = N ·Mw ·Mu ·N = N ·Mu ·Mw ·N = 1 ·Mw ·N = Mw ·N,

and thus we conclude that N commutes with H . Then N ∈ H by Theorem
3.5 and using again Theorem 3.5 we have that there exists g ∈ L∞(X,µ) such
that N = Mg, hence

Mu ·Mg = Mg ·Mu = 1

and this implies ug = gu = 1 µ-almost everywhere, this means that u is
invertible in L∞(X,µ).

On the other hand, assume that u is invertible on L∞(X,µ), that is, u−1 ∈
L∞(X,µ), then

Mu ·Mu−1 = Mu−1 ·Mu = Mu−1u = M1 = 1

which means that Mu is invertible on B(Lp(·)(X,µ)). �X

3.2. Compactness results

In the next theorems we will obtain necessary and sufficient conditions related
with compactness of the multiplication operator in the framework of variable
Lebesgue spaces. We need some definitions for further results, namely

Definition 3.7. For the set X, the real-valued essentially bounded function u
and non-negative ε we define the set

X (u, ε) := {x ∈ X : |u(x)| > ε}.
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With this newly defined set X (u, ε) we restrict our space Lp(·)(X,µ), namely

Definition 3.8. We define the space Lp(·)(X (u, ε)) as

Lp(·)(X (u, ε)) := {fχX (u,ε) : f ∈ Lp(·)(X,µ)}.

Lemma 3.9. The space Lp(·)(X (u, ε)) is a closed invariant subspace of the
variable Lebesgue space Lp(·)(X,µ) under Mu.

Proof. Let h, s ∈ Lp(·)(X (u, ε)) and α, β ∈ R. Then h = fχX (u,ε) and s =

gχX (u,ε), where f, g ∈ Lp(·)(X,µ), thus

αh+ βs = α
(
fχX (u,ε)

)
+ β

(
gχX (u,ε)

)
= (αf + βg)χX (u,ε) ∈ Lp(·)(X (u, ε))

yielding that Lp(·)(X (u, ε)) is a subspace of Lp(·)(X,µ).

We have that

Muh = uh = ufχX (u,ε) = (uf)χX (u,ε)

where uf ∈ Lp(·)(X,µ). Therefore, Muh ∈ Lp(·)(X (u, ε)), which means that
Lp(·)(X (u, ε)) is an invariant subspace of Lp(·)(X,µ) under Mu.

Now, let us show that Lp(·)(X (u, ε)) is a closed set. Indeed, let us take

a function g ∈ Lp(·)(X (u, ε)) which also belongs to Lp(·)(X,µ) since it is a
Banach space. Then there exists a sequence {gn}∞n=1 in Lp(·)(X (u, ε)) such
that gn → g in Lp(·)(X (u, ε)). It remains just to show that g belongs to
Lp(·)(X (u, ε)). Note that

g = gχX (u,ε) + gχ(X (u,ε)){ .

Next, we want to show that gχ(X (u,ε)){ = 0. In fact, given ε1 > 0 there exists
n0 ∈ N such that

‖gχ(X (u,ε)){‖Lp(·)(X,µ) = ‖(g− gn0
+ gn0

)χ(X (u,ε)){‖Lp(·)(X,µ)

= ‖(g− gn0
)χ(X (u,ε)){‖Lp(·)(X,µ)

6 ‖g− gn0
‖Lp(·)(X,µ)

< ε1

implying that gχ(X (u,ε)){ = 0, hence g ∈ Lp(·)(X (u, ε)). �X

Theorem 3.10. Let u ∈ L∞(X,µ). Then the operator Mu is compact if and
only if the space Lp(·)(X (u, ε)) is finite dimensional for each ε > 0.

Proof. For each f ∈ Lp(·)(X,µ), we have the pointwise estimate

|ufχX (u,ε)(x)| > ε|f |χX (u,ε)(x).
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Since Lp(·)(X,µ) is solid, we obtain

‖MufχX (u,ε)‖Lp(·)(X,µ) > ε‖fχX (u,ε)‖Lp(·)(X,µ). (9)

From Lemma 3.9 we have that Lp(·)(X (u, ε)) is a closed invariant subspace of
Lp(·)(X,µ) under Mu which implies that

Mu

∣∣
Lp(·)(X (u,ε))

is a compact operator. Then by (9) the operator Mu

∣∣
Lp(·)(X (u,ε))

has closed

range in Lp(·)(X (u, ε)) and it is invertible, being compact, Lp(·)(X (u, ε)) is
finite dimensional.

Conversely, suppose that Lp(·)(X (u, ε)) is finite dimensional for each ε > 0.
In particular, for n ∈ N, Lp(·)(X (u, 1/n)) is finite dimensional, then for each
n, define

un : X → R

as

un(x) =

{
u(x), if |u(x)| > 1

n ,

0, if |u(x)| < 1
n .

Then we find that

|Mun
f −Muf | = |(un − u) · f | 6 ‖un − u‖∞|f |,

yielding, since Lp(·)(X,µ) is solid,

‖Munf −Muf‖Lp(·)(X,µ) 6 ‖un − u‖∞‖f‖Lp(·)(X,µ).

Consequently

‖Munf −Muf‖Lp(·)(X,µ) 6
1

n
‖f‖Lp(·)(X,µ)

which implies that Mun converges to Mu uniformly. Therefore Mu is compact
since it is the limit of operators with finite range. �X

Theorem 3.11. Let u ∈ L∞(X,µ). Then Mu has closed range if and only if
there exists a δ > 0 such that |u(x)| > δ µ-almost everywhere on supp (u).

Proof. If there exists δ > 0 such that |u(x)| > δ µ-almost everywhere on
supp (u), then for all f ∈ Lp(·)(X,µ) we have

‖Mufχsupp (u)‖Lp(·)(X,µ) > δ‖fχsupp (u)‖Lp(·)(X,µ)

and hence Mu has closed range.
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Conversely, by [19, Lemma VI.6.1], if Mu has closed range, then there exists
an ε > 0 such that

‖Muf‖Lp(·)(X,µ) > ε‖f‖Lp(·)(X,µ)

for all f ∈ Lp(·)(supp (u)), where

Lp(·)(supp (u)) :=
{
fχsupp (u) : f ∈ Lp(·)(X,µ)

}
.

Let E = {x ∈ supp (u) : |u(x)| < ε/2}. If µ(E) > 0, then by the σ-finiteness of
measure we can find a measurable set F ⊆ E such that χF ∈ Lp(·)(supp (u)),
implying that

‖MuχF ‖Lp(·)(X,µ) 6
ε

2
‖χF ‖Lp(·)(X,µ)

which is a contradiction. Therefore µ(E) = 0, and this completes the proof. �X
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Universidad de Oriente
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Pontificia Universidad Javeriana

Facultad de Ciencias, Cra 7a No 43-82
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