
Revista Colombiana de Matemáticas
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Abstract. Existence theorems about bifurcation points of solutions for non-
linear operator equation in Banach spaces are proved. The sufficient conditions
of bifurcation of solutions of boundary-value problem for Vlasov-Maxwell sys-
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employed.
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Resumen. Se prueban teoremas de existencia de puntos de bifurcación en las
soluciones de algunos operadores no lineales en espacios de Banach. Condi-
ciones suficientes de bifurcación son obtenidas para las soluciones del problema
de valor de frontera del sistema de Vlasov-Maxwell. Se emplea el método de
Lyapunov-Schmidt-Trenogon.
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1. Introduction

One of the current problems in natural sciences is the study of kinetic Vlasov-
Maxwell (VM) system [20] describing a behavior of many-component plasma.
A great number of literature about the existence of solutions for the VM sys-
tem is available, for example see [1, 3, 11, 21, 35] and the references therein.
Nevertheless, the problem of bifurcation analysis of VM system, which was first
formulated by A. A. Vlasov [20], has appeared very complicated on the back-
ground of progress of bifurcation theory in other fields and it remains open until
the present time. There are only some isolated results. In [10, 9] the VM system
is reduced to the system of semilinear elliptical equations for special classes of
distribution functions introduced in [12]. The relativistic version of VM system
for such distributions was considered in [1]. One simple existence theorem of
a point of bifurcation is announced in [13], and another one is proved for this
system in [14].

Vladilen A. Trenogin laid out the fundamentals of the modern analytical
branch theory of nonlinear equations. Here readers may refer to his monograph
[19], chapters 7-10. The bifurcation theory have been developed by various
authors [5, 6, 16, 17, 15, 25, 18, 21, 22, 30], etc. The approximate methods of
construction branching solutions were constructed in [33, 26, 25, 27, 24, 21,
22, 34, 32, 28, 31, 30], [36, 37]. Readers may refer to the pioneering research
contributions presented in original paper [13, 23, 14, 29], in the monograph
[21] as well as in recently published monograph [35] in the field of bifurcation
analysis of the Vlasov-Maxwell systems.

The objective of the present paper is to offer the survey of general existence
theorems of bifurcation points of VM system with the given boundary condi-
tions on potentials of an electromagnetic field both the densities of charge and
current. Here we apply our results of bifurcation theory from [17, 15, 21, 22, 23]
and we use the index theory [2, 7, 22] for the study of bifurcation points of the
VM system.

We consider the many-component plasma consisting of electrons and pos-
itively charged ions of various species, which described by the many-particle
distribution function fi = fi(r, v), i = 1, N . The plasma is confined to a do-
main D ⊂ R3 with smooth boundary. The particles are to interact only by
self-consistent force fields, collisions among particles being neglected.

The behavior of plasma is governed by the following version of the stationary
VM system [20]

v · ∂rfi + qi/mi(E +
1

c
v ×B) · ∂vfi = 0, (1)

r ∈ D ⊂ R3, i = 1, . . . , N,

curlE = 0,
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divB = 0

divE = 4π

N∑
k=1

qk

∫
R3

fk(r, v)dv
4
= ρ, (2)

curlB =
4π

c

N∑
k=1

qk

∫
R3

vfk(r, v)dv
4
= j.

Here ρ(r), j(r) are the densities of charge and current, and E(r), B(r) are the
electrical and the magnetic fields.

We seek the solution E, B, f of VM system (1)-(2) for r ∈ D ⊂ R3 with
boundary conditions on the potentials and the densities

U |∂D= u01, (A, d) |∂D= u02; (3)

ρ |∂D=0, j |∂D= 0, (4)

where E = −∂rU , B = curlA, and U, A be scalar and vector potentials.

We call a solution E0, B0, f0 for which ρ0 = 0 and j0 = 0 in domain D,
trivial.

In the present paper we investigate the case of distribution functions of the
special form [9]

fi(r, v) = λf̂i(−αiv2 + ϕi(r), v · di + ψi(r))
4
= λf̂i(R,G) (5)

ϕi : R3 → R; ψi : R3 → R; r ∈ D ⊆ R3; v ∈ R3;

λ ∈ R+; αi ∈ R+ 4= [0,∞); di ∈ R3, i = 1, . . . , N,

where functions ϕi, ψi, generating the appropriate electromagnetic field (E, B),
has to be defined.

We are interested in the dependence of unknown functions ϕi, ψi upon
parameter λ in distribution (5). Here we study the case, when λ in (5) does
not depend on physical parameters αi and di. The general case of a bifurcation
problem with αi = αi(λ), di = di(λ), ϕi = ϕi(λ, r), ψi = ψi(λ, r) will be
considered in the following paper.

Definition 1.1. The point λ0 is called a bifurcation point of the solution of VM
system with conditions (3), (4), if in any neighborhood of vector (λ0, E0, B0, f0),
corresponding to the trivial solution with ρ0 = 0, j0 = 0 in domain D, there is
a vector (λ,E,B, f) satisfying to the system (1)-(2) with (3), (4) and for which

‖ E − E0 ‖ + ‖ B −B0 ‖ + ‖ f − f0 ‖> 0.
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Let ϕ0
i , ψ

0
i are such constants that the corresponding ρ0 and j0, induced

by distributions fi in the medium for ϕ0
i , ψ

0
i , are equal to zero in domain D.

Then VM system has the trivial solution

f0
i = λf̂i(−αiv2 + ϕ0

i , v · di + ψ0
i ), E0 = 0, B0 = βd1, β − const for ∀λ.

The organization of the present paper is as follows. In Section 2 two theorems
of existence of bifurcation points for the nonlinear operator equation in Banach
space generalizing known results on a bifurcation point are proved. The method
of proof of these theorems uses the index theory of vector fields [2, 7] and allows
to research not only the point, but also the bifurcation surfaces with minimum
restrictions on equation.

In Section 3 we reduce the problem on a bifurcation point of VM system
to the problem on bifurcation point of semilinear elliptic system. Last one is
treated as the operator equation in Banach space. We derive the branching
equation (BEq) which allows to prove the principal theorem of existence of
bifurcation points of VM system because of results of the Section 2. An essential
moment here is that the semilinear system of elliptic equations is potential that
reduces to potentiality of BEq.

It follows from our results that for the original problem (1)–(4) the bifur-
cation is possible only in the case, when number of species of particles N ≥ 3.

2. Bifurcation of solutions of nonlinear equations in Banach spaces

Let E1, E2 are real Banach spaces; Υ be normalized space. Consider the equa-
tion

Bx = R(x, ε). (6)

Here B : D ⊂ E1 → E2 be closed linear operator with a dense range of
definition in E1. The operator R(x, ε) with values in E2 is defined, is continuous
and Frechet continuously differentiable with respect to x in a neighborhood

Ω = {x ∈ E1, ε ∈ Υ :‖ x ‖< r, ‖ ε ‖< %}.

Thus, R(0, ε) = 0, Rx(0, 0) = 0. Let operator B be Fredholm. Let us introduce
the basis {ϕi}n1 in a subspace N(B), the basis {ψi}n1 in N(B∗), and also the
systems {γi}n1 ∈ E∗1 , {zi}n1 ∈ E2 which are biorthogonal to these bases.

Definition 2.1. The point ε0 is called a bifurcation point of the equation (6),
if in any neighbourhood of point x = 0, ε0 there is a pair (x, ε) with x 6= 0
satisfying to the equation (6).

It is well known [19] that the problem on a bifurcation point of (6) is equiv-
alent to the problem on bifurcation point of finite-dimensional system

L(ξ, ε) = 0, (7)
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where ξ ∈ Rn, L : Rn ×Υ→ Rn. We call equation (7) the branching equation
(BEq). We wright (6) as the system

B̃x = R(x, ε) +

n∑
s=1

ξszs (8)

ξs = 〈x, γs〉, s = 1, . . . , n, (9)

where B̃
def
= B +

∑n
s=1 < ·, γs > zs has inverse bounded. The equation (8) has

the unique small solution

x =

n∑
s=1

ξsϕs + U(ξ, ε) (10)

at ξ → 0, ε→ 0. Substitution (10) into (9) yields formulas for the coordinates
of vector-function L : Rn ×Υ→ Rn

Lk(ξ, ε) =< R

( n∑
s=1

ξsϕs + U(ξ, ε), ε

)
, ψk > . (11)

Here derivatives

∂Lk
∂ξi
|ξ=0=< Rx(0, ε)(I − ΓRx(0, ε))−1ϕi, ψk >

def
= aik(ε)

are continuous in a neighbourhood of point ε = 0, ‖ ΓRx(0, ε) ‖< 1.

Let us introduce a set Ω = {ε | det[aik(ε)] = 0}, containing point ε = 0 and
the following condition:

A) Suppose that in a neighbourhood of point ε0 ∈ Ω there is a set S,
being Jordan continuum, representable as S = S+

⋃
S−, ε0 ∈ ∂S+

⋂
∂S−.

Moreover, there is a continuous map ε(t), t ∈ [−1, 1] such that ε : [−1, 0)→ S−,
ε : (0, 1]→ S+, ε(0) = ε0, det[aik(ε(t))]ni,k=1 = α(t), where α(t) : [−1, 1]→ R1

be continuous function vanishes only at t = 0.

Theorem 2.2. Assume condition A, and α(t) is monotone increasing func-
tion. Then ε0 be a bifurcation point of (6).

Proof. We take arbitrarily small r > 0 and δ > 0. Consider the continuous
vector field

H(ξ,Θ)
def
= L(ξ, ε((2Θ− 1)δ)) : Rn ×R1 → Rn,

defined at ξ,Θ ∈M , where M{ξ,Θ |‖ ξ ‖= r, 0 ≤ Θ ≤ 1}.
Case 1. If there is a pair (ξ∗,Θ∗) ∈ M for which H(ξ∗,Θ∗) = 0, then by

definition 2, ε0 will be a bifurcation point.
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Case 2. We assume that H(ξ,Θ) 6= 0 at ∀(ξ,Θ) ∈M and, hence, ε0 is not a
bifurcation point. Then vector fields H(ξ, 0) and H(ξ, 1) are homotopic on the
sphere ‖ ξ ‖= r. Consequently, their rotations [6] coincided

J(H(ξ, 0), ‖ ξ ‖= r) = J(H(ξ, 1), (‖ ξ ‖= r) (12)

Since vector fields H(ξ, 0), H(ξ, 1) and their linearizations

L−1 (ξ)
def
=

n∑
k=1

aik(ε(−δ))ξk |ni=1,

L+
1 (ξ)

def
=

n∑
k=1

aik(ε(+δ))ξk |ni=1

are nondegenerated on the sphere ‖ ξ ‖= r, then by smallness of r > 0, fields
(H(ξ, 0), H(ξ, 1) are homotopic to the linear parts L−1 (ξ) and L+

1 (ξ).

Therefore

J(H(ξ, 0), ‖ ξ ‖= r) = J(L−1 (ξ), ‖ ξ ‖= r) (13)

J(H(ξ, 1), ‖ ξ ‖= r) = J(L+
1 (ξ), ‖ ξ ‖= r). (14)

Because of nondegeneracy of linear fields L±1 (ξ), by the theorem about Kro-
necker index, the following equalities hold

J(L−1 (ξ), ‖ ξ ‖= r) = signα(−δ),

J(L+
1 (ξ), ‖ ξ ‖= r) = signα(+δ).

Since α(−δ) < 0, α(+δ) > 0, then the equality (12) is impossible by (13),
(14). Hence, we find a pair (ξ∗,Θ∗) ∈ M for which H(ξ∗,Θ∗) = 0 and ε0 be a
bifurcation point. �X

Remark 2.3. If the conditions of Theorem 2.2 are satisfied for ∀ε ∈ Ω0 ⊂ Ω,
then Ω0 be a bifurcation set of (6). If moreover, Ω0 is connected set and its
every point is contained in a neighbourhood, which is homeomorphic to some
domain of Rn, then Ω0 is called n-dimensional manifold of bifurcation.

For example, it is true, if Υ = Rn+1, n ≥ 1, Ω0 be a bifurcation set of (6)
containing point ε = 0 and ∇ε det[aik(ε)] |ε=0 6= 0. It follows from the Theorem
2.2 at Υ = R1 the generalization [17], and also other known strengthening of
M. A. Krasnoselskii theorem on a bifurcation point of odd multiplicity [6]. An
important results in the theory of bifurcation points was obtained for (6) with
potential BEq to ξ, when

L(ξ, ε) = gradξU(ξ, ε). (15)
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This condition is valid, if a matrix [∂Lk∂ξi
]ni,k=1 is symmetric. By differentiation

of superposition, one finds from (11) that

∂Lk
∂ξi

=< Rx

( n∑
s=1

ξsϕs + U(ξ, ε), ε

)(
ϕi +

∂U

∂ξi

)
, ψk >, (16)

where according to (8), (10)

ϕi +
∂U

∂ξi
= (I − ΓRx)−1ϕi. (17)

The operator I − ΓRx is continuously invertible because ‖ ΓRx ‖< 1 for suffi-
ciently small by norm ξ and ε. Substituting (17) into (16) we obtain equalities

∂Lk
∂ξi

=< Rx(I − ΓRx)−1ϕi, ψk >, i, k = 1, . . . , n.

It follows the following claim:

Lemma 2.4. In order BEq (7) to be potential it is sufficient that a matrix

Ξ = [< Rx(ΓRx)mϕi, ψk >]ni,k=1

to be symmetric at ∀(x, ε) in a neighborhood of point (0, 0).

Corollary 2.5. Let all matrices

[< Rx(ΓRx)mϕi, ψk >]ni,k=1, m = 0, 1, 2, . . .

are symmetric in some neighborhood of point (0, 0). Then BEq (7) be potential.

Corollary 2.6. Let E1 = E2 = H, H be Hilbert space. If operator B is sym-
metric in D, and operator Rx(x, ε) is symmetric for ∀(x, ε) in a neighbourhood
of point (0, 0) in D, then BEq be potential.

In the paper [16] more delicate sufficient conditions of BEq potentiality have
been proposed.

Suppose that BEq (7) is potential. Then it follows from the proof of Lemma
2.4 that the corresponding potential U in (15) has the form

U(ξ, ε) =
1

2

n∑
i,k=1

ai,k(ε)ξiξk + ω(ξ, ε),

where ‖ ω(ξ, ε) ‖= 0(| ξ |2) at ξ → 0.

Theorem 2.7. Let BEq (7) be potential. Assume condition A). Moreover, let
the symmetrical matrix [aik(ε(t))] possesses at least ν1 positive eigenvalues at
t > 0 and at least ν2 positive eigenvalues at t < 0, ν1 6= ν2. Then ε0 will be a
bifurcation point of (6).
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Proof. We take the arbitrary small δ > 0 and we consider the function
U(ξ, ε((2Θ− 1)δ)), defined at Θ ∈ [0, 1] in a neighborhood of the critical point
ξ = 0.

Case 1. If there is Θ∗ ∈ [0, 1] such that ξ = 0 is the nonisolated critical point of
the function U(ξ, ε((2Θ∗− 1)δ), then by Definition 2.1, ε0 will be a bifurcation
point.

Case 2. Assume that point ξ = 0 will be the isolated critical point of the
function U(ξ, ε((2Θ − 1)δ)) at ∀Θ ∈ [0, 1], where ε(t) be continuous function
from condition A). Then at ∀Θ ∈ [0, 1], the Conley index [2] KΘ of the critical
point ξ = 0 of this function is defined. Let us remind that

det ‖ ∂
2U(ξ, ε((2Θ− 1)δ))

∂ξi∂ξk
‖ξ=0= α((2Θ− 1)δ).

Since α((2Θ − 1)δ) 6= 0 at Θ 6= 1
2 , then the critical point ξ = 0 at Θ 6= 1

2 is
nonsingular. Therefore, index KΘ for any Θ 6= 1

2 by the definition (here readers
may refer to p.6 [2]), is necessary equal to the number of positive eigenvalues
of the corresponding Hessian. Thus, KΘ = ν1, K1 = ν2, where ν1 6= ν2 by
the condition of Theorem 2.7. Hence, KΘ 6= K1. Suppose that ε0 is not a
bifurcation point. Then ∇ξU(ξ, ε((2Θ− 1)σ) 6= 0 at 0 <‖ ξ ‖≤ r, where r > 0
is small enough, Θ ∈ [0, 1]. Because of homotopic invariancy of Conley index
(see in [2, Theorem 4, p.52]), KΘ is constant at Θ ∈ [0, 1] and K0 = K1. Hence,
in the second case we find a pair (ξ∗,Θ∗) for arbitrary small r > 0, δ > 0, where
0 <‖ ξ∗ ‖≤ r, Θ∗ ∈ [0, 1], satisfying to the equation ∇ξU(ξ, ε((2Θ − 1)δ) = 0
and ε0 is a bifurcation point. �X

Remark 2.8. Other proof of the Theorem 2.7 with application of the Roll
theorem is given in [18] for the case Υ = R1, ν+ = n, ν− = 0.

Remark 2.9. The Theorems 2.2, 2.7 (see Remark 2.3) allow to construct not
only the bifurcation points, but also the bifurcation sets, surfaces and curves
of bifurcation.

Corollary 2.10. Let Υ = R1 and BEq be potential. Moreover, let [aik(ε)]ni,k=1

be positively definite matrix at ε ∈ (0, r) and negatively defined at ε ∈ (−r, 0).
Then ε = 0 is a bifurcation point of (6).

Consider the connection of eigenvalues of matrix [aik(ε)] with eigenvalues
of operator B −Rx(0, ε).

Lemma 2.11. Let E1 = E2 = E, ε ∈ R1; ν = 0 be isolated Fredholm point of
operator-function B − νI. Then

sign4(ε) = (−1)ksign

k∏
i

νi(ε) = sign

n∏
i

µi(ε),
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where k be a root number of operator B; {µ}n1 are eigenvalues of matrix [aik(ε)],
4(ε) = det[aik(ε)].

Proof. Since {µi}n1 are eigenvalues of matrix [aik(ε)], then
∏n
i µi(ε) = 4(ε).

Thus, it is sufficient to prove the equality 4(ε) = (−1)k
∏k
i νi(ε). Since zero is

the isolated Fredholm point of operator-function B−νI, then operators B and
B∗ have the corresponding complete Jordan systems [19]

ϕ
(s)
i = (Γ)s−1ϕ

(1)
i , ψ

(s)
i = (Γ∗)s−1ψ

(1)
i , i = 1, . . . , n; s = 1, . . . , Pi. (18)

Here

< ϕ
(Pi)
i , ψj >= δij ; < ϕi, ψ

(Pj)
j >= δij , i, j = 1, . . . , n;

n∑
i=1

Pi = k.

Let us remind that

ϕ
(1)
i

4
= ϕi = Γϕ

(Pi)
i , ψ

(1)
i

4
= ψi = Γ∗ψ

(Pi)
i , Γ =

(
B+

n∑
1

< ·, ψ(Pi)
i > ϕ

(Pi)
i

)−1

,

(19)
where k = l1 + . . . + ln we call a root number of operator B − Rx(0, ε). The
small eigenvalues ν(ε) of operator B−Rx(0, ε) satisfy to the following branching
equation [19]

L(ν, ε)
4
= det |< Rx(0, ε) + νI)(I − ΓRx(0, ε)− νΓ)−1ϕi, ψj >|ni,j=1= 0. (20)

Because of preliminary Weierstrass theorem [19, P. 66], by the equalities (18),
(19), equation (20) in a neighbourhood of zero will be transformed to the form

L(ν, ε) ≡ (νk +Hk−1(ε)νk−1 + . . .+H0(ε))Ω(ε, ν) = 0,

where Hk−1(ε), . . . ,H0(ε) = 4(ε) are continuous functions of ε, Ω(0, 0) 6= 0,
H0(0) = 0. Consequently, operator B − Rx(0, ε) has k ≥ n small eigenvalues
νi(ε), i = 1, . . . , n, which we may define from the equation

νk +Hk−1(ε)νk−1 + . . .+4(ε) = 0.

Then
∏k
i νi(ε) = 4(ε)(−1)k.

Assume now ε ∈ R1. Consider the calculation of asymptotics of eigenvalues
µ(ε) and ν(ε). Let us introduce the block representation of matrix [aik]ni,k=1,
satisfying the following condition:

B) Let [aik(ε)]ni,k=1 = [Aik(ε)]li,k=1 ∼ [εrikA0
ik]li,k=1 at ε → 0, where [Aik]

are blocks of dimensionality [ni × nk], n1 + . . . + nl = n, min(ri1, . . . , ril) =

rii
4
= ri rik > ri at k > i (or at k < i), i = 1, . . . , l. Let

∏l
1 det[A0

ii] 6= 0. The
condition B) means that matrix [aik(ε)]ni,k=1 admits the block representation

being “asymptotically trianglar” at ε→ 0. �X
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Lemma 2.12. Assume B). Then

det[aik(ε)]ni,k=1 = εn1r1+...+nlrl

( l∏
1

det | A0
ii | +0(1)

)
,

formulas
µi = εri(Ci + 0(1)), i = 1, . . . , l (21)

define the principal terms of all n eigenvalues of matrix | aik(ε) |ni,k=1, where

µi, Ci ∈ Rni ; Ci be vector of eigenvalues of matrix A0
ii.

Proof. By B) and the property of linearity of determinant, we have

det[aik(ε)] = εn1r1+...+nlrl det

∣∣∣∣∣∣∣∣∣∣∣∣∣

A0
11 + 0(1), 0(1) . . . . . . , . . . . . . 0(1)

A0
21 + 0(1), A0

22 + 0(1), 0(1) . . . 0(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

A0
l1 + 0(1), . . . . . . , A0

ll + 0(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

εn1r1+...+nlrl

( l∏
i

det | A0
ii | +0(1)

)
.

Substituting µ = εric(ε), i = 1, . . . , l into equation det | aik(ε)− µδik |ni,k=1= 0
and using the property of linearity of determinant we obtain equation

εn1r1+...+ni−1ri−1+(ni+...+nl)ri{
i−1∏
j=1

det | A0
jj | ·

det(A0
ii − (ε)E)(ε)ni+1+...+nl + ai(ε)} = 0, i = 1, . . . , l, (22)

where ai(ε)→ 0 at ε→ 0. Hence, the coordinates of unknown principal terms
Ci in asymptotics (21) satisfy to the equations det | A0

ii −E |= 0, i = 1, . . . , l.
�X

If k = n, then operator B −Rx(0, ε), as well as the matrix [aik(ε)]ni,k=1 has
n small eigenvalues. In this case we state a result:

Corollary 2.13. Let operator B has not I- joined elements and let the condi-
tion B) holds. Then the formula

νi = −εri(Ci + 0(1)), i = 1, . . . , l, (23)

defines all n small eigenvalues of operator B − Rx(0, ε), where Ci ∈ Rni be
vector of eigenvalues of matrix A0

ii, i = 1, . . . , l, n1 + . . .+ nl = n.
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Proof. By Lemma 2.11 in this case
∑n

1 Pi = n (root number k = n) and

operator B − Rx(0, ε) possesses at least n small eigenvalues. Since
∑l

1 ni =
n, A0

ii is quadratic matrix, then formula (23) yields n eigenvalues, where the
principal terms coincide to within a sign with principal terms in (21). For
calculation of eigenvalues ν of operator B − Rx(0, ε) we transform (20) to the
form

L(ν, ε) ≡ det[aik(ε) +

∞∑
j=1

b
(j)
ik ν

j ]ni,k=1 = 0, (24)

where

b
(j)
ik =< [(I − ΓRx(0, ε))−1Γ]j−1(I − ΓRx(0, ε))−1ϕi, γk > .

Substituting ν = −εric(ε) into (24) and taking into account the property of
linearity of determinant we shall receive the equation, which differs from (22)
by error term ai(ε) only. Then in conditions of Corollary 2.13 the principal
terms of all small eigenvalues of operator B−Rx(0, ε) and matrix −[aik(ε)] are
defined from the same equations and therefore, are equal. �X

Conclusions. 1) By Lemma 2.12 we can replace condition A) in the The-
orem 1.2 with the following one:

A∗). Let E1 = E2 = E; ν = 0 be isolated Fredholm point of operator-
function B − νI. Let in a neighbourhood of point ε0 ∈ Ω there is a set S,
containing point ε0 and be continuum represented as S = S+

⋃
S−. Moreover,

assume

ε0 ∈ ∂S+

⋂
∂S−;

∏
i

νi(ε) |ε∈S+ ·
∏
i

νi(ε) |ε∈S−< 0,

where {νi(ε)} are small eigenvalues of operator B −Rx(0, ε).

2) If the principal terms of asymptotics of small eigenvalues of operator
B − Rx(0, ε) and matrix [aik(ε)]ni,k=1 coincide, then we may use eigenvalues
of such operator in the Theorem 1.2. By Corollary 1.13 it is possible, if E1 =
E2 = H, operators B and Rx(0, ε) are symmetric and condition B) is valid. Let
us note that condition B) is valid in papers [16, 17, 15, 18] about bifurcation
point with potential BEq, thus r1 = . . . = rn = 1.

3. Statement of boundary-value problem and problem on a
bifurcation point for the system (32) [9]

We begin with a preliminary result on reduction of VM system (1)-(2) with
conditions (3) to the quasilinear system of elliptical equations for distribution
(5), was first investigated in [10]. Assume the following condition:

C). f̂i(R,G) are fixed, differentiable functions in distribution (5); αi, di are
free parameters; | di |6= 0; ϕi = c1i + liϕ(r), ψi = c2i + kiψ(r); c1i, c2i- const;
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the parameters li, ki are connected by relations

li =
m1

α1q1

αiqi
mi

, ki
q1

m1
d1 =

qi
mi

di, k1 = l1 = 1, (25)

and the integrals
∫
R3 f̂idv,

∫
R3 f̂ivdv converge at ∀ϕi, ψi.

Let us introduce notations m1
4
= m, α1

4
= α, q1

4
= q.

Theorem 3.1. Let fi are defined as well as in (5) and the condition C) is
valid. Let the vector-function (ϕ,ψ) is a solution of the system of equations

4ϕ = µ

N∑
k=1

qk

∫
R3

fkdv, µ =
8παq

m
(26)

4ψ = ν

N∑
k=1

qk

∫
R3

(v, d)fkdv, ν = − 4πq

mc2

ϕ |∂D= −2αq

m
u01, ψ |∂D=

q

mc
u02 (27)

on a subspace

(∂rϕi, di) = 0, (∂rψi, di) = 0, i = 1, . . . , N. (28)

Then the VM system (1), (2) with conditions (5) possesses a solution

E =
m

2αq
∂rϕ, B =

d

d2
(β +

∫ 1

0

(d× J(tr), r)dt)− [d× ∂rψ]
mc

qd2
(29),

where

J
4
=

4π

c

N∑
k=1

qk

∫
R3

vfkdv, β − const.

The potentials

U = − m

2αq
ϕ, A =

mc

qd2
ψd+A1(r), (A1, d) = 0 (30)

satisfying condition (3) are defined through this solution.

The proof of Theorem 3.1 follows from [14, Theorem 1].

Introduce notations

ji =

∫
R3

vfidv, ρi =

∫
R3

fidv, i = 1, . . . , N

and the following condition:

Volumen 50, Número 1, Año 2016



BIFURCATION POINTS OF NONLINEAR OPERATORS 97

D). There are vectors βi ∈ R3 such that ji = βiρi, i = 1, . . . , N .

For example, the condition D holds for distribution

fi = fi(a(−αiv2 + ϕi) + b((di, v) + ψi)) (31)

for βi = b
2αia

di, a, b-const.

Suppose that condition D is valid. Then the system (26) will be transformed
to the following

4ϕ = λµ

N∑
i=1

qiAi, 4ψ = λν

N∑
i=1

qi(βi, d)Ai, (32)

where

Ai(liϕ, kiψ, αi, di)
4
=

∫
R3

f̂idv.

Further, we shall suppose that the auxiliary vector d in (5) is directed along axes
Z. Because of conditions (28) we put in system (32) ϕ = ϕ(x, y), ψ = ψ(x, y),
x, y ∈ D ⊂ R2. Moreover, let N ≥ 3 and ki

li
6= const.

Let D be bounded domain in R2 with the boundary ∂D of class C2,α,
α ∈ (0, 1]. The boundary conditions (4) on the densities of local charge and
current induce the equalities:

I.

N∑
k=1

qkAk(lkϕ
0, kkψ

0, αi, di) = 0;

N∑
k=1

qk(βk, d)Ak(lkϕ
0, kkψ

0, αi, di) = 0 (33)

for ∀ε ∈ ι, where ι is a neighbourhood of point ε = 0 and

ϕ0 = −2αq

m
u01, ψ0 =

q

mc
u02. (34)

Remark 3.2. If N = 2 and βi = di
2αi

, then by condition I and equalities

(βi, d) = d2

2α
ki
li

we have alternative: or in condition I: A1 = A2 = 0 or ki = li,

i = 1, 2. In this case, and also at ki
li

= const the system (32) is reduced to one
equation and bifurcation of solutions in such approach, as it is considered in
this paper is impossible.

By (33), (34) system (32) with boundary conditions

ϕ |∂D= ϕ0, ψ |∂D= ψ0 (35)

has a trivial solution ϕ = ϕ0, ψ = ψ0 at ∀λ ∈ R+.
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Then because of Theorem 3.1 the VM system with boundary conditions
(3), (4) has a trivial solution at ∀λ

E0 =
m

2αq
∂rϕ

0 = 0, B0 = βd1, r ∈ D ⊂ R2,

f0 = λf̂i(−αiv2 + c1i + liϕ
0, (v, di) + c2i + kiψ

0).

Thus, the densities ρ and j vanish at domain D.

Now our purpose is to find λ0 in neighborhood of which system (32), (35)
has a nontrivial solution. Then the corresponding densities ρ and j will be
identically vanished at domain D, and the point λ0 is a bifurcation point of
the VM system with conditions (4), (5).

Let functions fi are analytical in (5). Using the expansion in Taylor series

A(x, y) =

∞∑
i≥0

1

i!
((x− x0)

∂

∂x
+ (y − y0)

∂

∂y
)iA(x0, y0)

and selecting linear terms, we transform (32) to operator form

(L0 − λL1)u− λr(u) = 0. (36)

Here

L0 =

 4 0

0 4

 , u = (ϕ− ϕ0, ψ − ψ0)′; (37)

L1 =

N∑
s=1

qs

 µls
∂As
∂x µks

∂As
∂y

νls(βs, d)∂As∂x νks(βs, d)∂As∂y


x=lsϕ0,y=ksψ0

4
=

 µT1 µT2

νT3 νT4

 ; (38)

r(u) =

∞∑
i≥l

n∑
s=1

%is(u)bs, (39)

where

%is(u)
4
=
qs
i!

(Lsu1
∂

∂x
+ ksu2

∂

∂y
)iAs(lsϕ

0, ksψ
0)

are i homogeneous forms by u;

∂i1+i2

∂xi1∂yi2
As(x, y) |x=lsϕ0,y=ksψ0= 0 at

Volumen 50, Número 1, Año 2016



BIFURCATION POINTS OF NONLINEAR OPERATORS 99

2 ≤ i1 + i2 ≤ l − 1, s = 1, . . . , N ; l ≥ 2; bs
4
= (µ, ν(βs, d))′.

We study the problem of existence of a bifurcation point λ0 for (32), (34) as
the problem on bifurcation point for operator equation (36). Let us introduce
Banach spaces C2,α(D̄) and C0,α(D̄) with norms ‖ · ‖2,α, ‖ · ‖0,α and W 2,2(D),
which is usual L2 Sobolev space in D. Let us introduce Banach space E of

vectors u
4
= (u1, u2)′, where ui ∈ L2(D), L2 be real Hilbert space with internal

product ( , ) and the corresponding norm ‖ · ‖L2 (D). As a range of definition

D(L0) we take set of vectors u
4
= (u1, u2) with ui ∈

◦
W

2,2

(D). Here
◦
W

2,2

(D)
denotes W 2,2 functions with trace 0 on ∂D. Hence, L0 : D ⊂ E → E is a linear
self-adjoint operator. By virtue of embedding

W 2,2(D) ⊂ C0,α(D̄), 0 < α < 1 (40)

the operator r : W 2,2 ⊂ E → E be analytical in neighborhood of zero. The
operator L1 ∈ L(E → E) is linear bounded. For matrix corresponding to
operator L1 we shall keep same notations. By embedding (40) any solution of
the equation (36) will be Hölder in D(L0). Moreover, because the coefficients
of (36) are constant, then vector r(u) will be analytical, ∂D ∈ C2,α and thanks
to well-known results of the regularity theory of weak solutions [8], the being

searching generalized solutions of (36) in
◦
W

2,2

(D) belong to C2,α. By Theorem
3.1 on reduction of VM system, the bifurcation points of problem (32), (34)
are the bifurcation points of solutions of VM system (1), (2) with boundary
conditions (3), (4). Thanks to given conditions on L0 and L1, all singular points

of operator-function L(λ)
4
= L0 − λL1 be Fredholm. The bifurcation points of

nonlinear equation (36) we can found only among points of a spectrum for
linearized system

(L0 − λL1)u = 0. (41)

For study of spectrum problem (41) we preliminary find the eigenvalues and
the eigenfunctions of matrix L1 in (41) for physically admissible parameters.
With this purpose, we introduce the following condition:

II: (T1T4 − T2T3) > 0, T1 < 0.

Lemma 3.3. Let ∂Ai
∂x = ∂Ai

∂y > 0, i = 1, . . . , N at x = liϕ
0, y = kiψ

0. Assume

N∑
i=2

i−1∑
j=1

aiaj(ljki − kj li)(βi − βj , d) > 0,

where ai
4
= qi

∂Ai
∂x , then condition II is valid.

Proof. Without loss of generality we put q
4
= q1 < 0, qi > 0, i = 2, . . . , N .

Then via (25) signqili = signq. Further, because of definition of T1 (see.(38)),
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we verify that T1 < 0. The positiveness of T1T4 − T2T3 follows from equality

T1T4 − T2T3 =
∑

liai
∑

ki(βi, d)ai −
∑

kiai
∑

li(βi, d)ai =

N∑
i=2

i−1∑
j=1

aiaj(ljki − kj li)(βi − βj , d).

�X

Example 3.4. If βi = di
2αi

, then (βi, d) = d2

2α
ki
li

and

N∑
i=2

i−1∑
j=1

= aiaj(ljki − likj)2 · d2

2αlilj
> 0.

Lemma 3.5. Let distribution function has a form (31) and f
′

i > 0. Then
conditions D and II hold for βi = b

a
di

2αi
, and the system (32) will be transformed

to the potential form

4

 ϕ

ψ

 = λ

 a1 0

0 a2




∂V
∂ϕ

∂V
∂ψ

 , (42)

where

V =

N∑
k=1

qk
lk

∫ alkϕ+bkkψ

0

Ak(s)ds, a1 = µ/a, a2 =
νd2

2ab
. (43)

The proof is conducted by direct substitution (43) into the system (42).

Lemma 3.6. Let r
4
= x ∈ R1, v ∈ R2, d

4
= d2. Then the system (32) with

potential (43) can be written as Hamiltonian system

ṗϕ = −∂ϕH, ϕ̇ = ∂pϕH

ṗψ = −∂ψH, ψ̇ = ∂pψH

with Hamiltonian function of the form

H = −
p2
ϕ

2
−
p2
ψ

2
+ V (ϕ(x), ψ(x)).

Here

V (ϕ,ψ) = λa1

N∑
k=1

qk
lk

∫ alkϕ

0

∫
R2

A(s, ψ)ds+ λa2

N∑
k=1

qk
lk

∫ bkkψ

0

∫
R2

A(ϕ, s)ds.
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The proof follows from lemma 2.2 (p.1152) of work [4].

Lemma 3.7. Assume II. Then matrix L1 in (38) has one positive eigenvalue

χ+ = µT1 + 0(1)

and one negative

χ− = η
T1T4 − T2T3

T1
ε+O(ε), η =

4π | q |
m

> 0 (44)

at ε
4
= 1

c2 → 0.

Eigenvalue χ− induces the eigenvactors of matrices L1 and L′1 respectively c1

c2

 =

 −T2

T1

0

+O(ε),

 c∗1

c∗2

 =

 0

1

+O(ε).

The readers may refer to [14] for the proof.

Let us now consider the calculation of bifurcation points λ0 of equation
(36). Setting in (36) λ = λ0 + ε, we consider the equation

(L0 − (λ0 + ε)L1u− (λ0 + ε)r(u) = 0 (45)

in neighbourhood of point λ0. Let T2 6= 0 and T3 6= 0, or T2 = T3 = 0. With the
purpose of symmetrization of system at T2 6= 0 and T3 6= 0 having multiplicated
both parts of (45) on matrix

M =

 1 0

0 ã

 , where ã
4
≡ µT2

νT3
6= 0,

we write (45) as
Bu = εB1u+ (λ0 + ε)<(u). (46)

Here B = M(L0 − λ0L1); <(u)
4
= Mr(u)

4
= (r1(u), r2(u)); B1 ∈ L(E → E) be

Fredholm self-adjoint operator. If As = As(alsϕ+ bkkψ), then

∂As
∂y

= A′sb,
∂As
∂x

= A′sa, ã = µb/(ν
d2

2αa
), βs =

b

a

ds
2αs

.

In expansion (39)

%is =
qs
i!
A(i)
s (alsϕ

0 + bksψ
0)(alsu1 + bksu2)i.

Thus, in this case ∂r1
∂u2

= ∂r2
u1

matrix <u(u) will be symmetric for ∀u and
operator <u : E → E is self-adjoint for ∀u.
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Remark 3.8. If T2 = T3 = 0, then we put ã = 1. If T2 = 0, T3 6= 0 or T3 = 0,
T2 6= 0, then the problem (36) has not the property of symmetrization and
we should work with (45). In this case for study of the problem on bifurcation
point we may use our results from [13].

Let µ be eigenvalue of the Dirichlet problem

−4e = µe e |∂D= 0 (47)

and {e1, . . . , en} be orthonormalized basis in a subspace of eigenfunctions. De-
noted by c− = (c1, c2)′ the eigenvector of matrix L1, which corresponds to
eigenvalue χ− < 0.

Lemma 3.9. Let λ0 = −µ/χ−. Then λ0 > 0, dimN(B) = n and the system
{ei}ni=1, where ei = c−ei forms basis in a subspace N(B).

Proof. Let us introduce matrix of columns Λ, which are the eigenvectors of
matrix L1 corresponding to eigenvalues χ−, χ+. Moreover,

Λ−1L1Λ =

 χ− 0

0 χ+

 , L0Λ = ΛL0

and equation Bu = 0 by change u = ΛU will be transformed to the form

M [L0ΛU − λ0L1ΛU ] = M [Λ(L0U − λ0Λ−1L1ΛU)] = 0.

Hence, from here follows that the linear system (41) is decomposed onto two
linear elliptical equations

4U1 − λ0χ−U1 = 0, U1 |∂D= 0, 4U2 − λ0χ+U2 = 0, U2 |∂D= 0, (48)

where λ0χ− = −µ, λ0χ+ > 0. From (47) follows that µ ∈ σ(−4). Hence,
U1 =

∑n
i=1 αiei, αi − const, U2 = 0 and∣∣∣∣∣∣∣

u1

u2

∣∣∣∣∣∣∣ = ΛU =

∣∣∣∣∣∣∣
c1− c1+

c2− c2+

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
U1

0

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
c1−

c2−

∣∣∣∣∣∣∣
n∑
i=1

αiei.

Let us construct Lyapunov-Schmidt BEq for equation (46). �X

Without loss of generality we assume that the eigenvector c1− of matrix L1

is chosen such that χ−(c21− + Fc22−) = 1, where F = µT2

νT3
. Then the system of

vectors {B1ei}ni=1 is biorthogonal to {ei}ni=1. Thus, operator

B̆ = B +

n∑
1

< ·, γi > γi

Volumen 50, Número 1, Año 2016



BIFURCATION POINTS OF NONLINEAR OPERATORS 103

with γi
4
= B1ei has inverse bounded Γ ∈ L(E → E), Γ = Γ∗, Γγi = ei.

Rewrite (46) as the system

(B̆ − εB1)u = (λ0 + ε)<(u) +
∑
i

ξiγi (49)

ξi =< u, γi >, i = 1, . . . , n. (50)

By the theorem on inverse operator we have from (49)

u = (λ0 + ε)(I − εΓB1)−1Γ<(u) +
1

1− ε

n∑
i=1

ξiei. (51)

From (50) we have

ε

1− ε
ξi +

λ0 + ε

1− ε
< <(u), ei >= 0, (52)

where <(u) = <l(u)+<l+1(u)+. . .. Because of the theorem on implicit operator,
equation (51) has unique solution for sufficiently small ε, | ξ |.

u = u1(ξe, ε) + (λ0 + ε)(I − εΓB1)−1Γ{ul(ξe, ε) + ul+1(ξe, ε) + . . .}. (53)

Here

u1(ξe, ε) =
1

1− ε

n∑
i=1

ξiei,

ul(ξe, ε) = <l(u1(ξe, ε)),

ul+1(ξe, ε) = <l+1(u1(ξe, ε))+

+


0, l ≥ 2

Γ<′2(u1(ξe, ε))(λ0 + ε)(I − εΓB1)−1Γu2(ξe, ε), l = 2

and etc. Substituting the solution (53) into (52) we obtain the desired BEq

L(ξ, ε) = 0 (BEq)

with L = (L1, . . . , Ln),

Li =
ε

1− ε
ξi +

λ0 + ε

(1− ε)l+1
[< <l(ξe, ei) > +

1

1− ε
< <l+1(ξe, ei) >]+

0, l > 2

λ0+c
(1−ε)4 < <

′

2(ξe(I − εΓB1)−1Γ<2(ξe), ei >, l = 2

+ ri(ξ, ε),

ri = o(| ξ |l+1), i = 1, . . . , n. If L(ξ, ε) = gradU(ξ, ε), then we call BEq
potential. In potential case matrix Lξ(ξ, ε) is symmetric.

Let in (46) fi = fi(aliϕ+bkiψ), i = 1, . . . , N . Then from the explained above
matrix <u(u) will be symmetric at ∀u and we have the following statement:
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Lemma 3.10. Let conditions C), D), I-II and λ0 = −µ/χ− hold. Then equa-
tion (46) possesses so much small solutions u → 0 at λ → λ0, as small solu-
tions ξ → 0 possesses BEq at ε → 0. If in system (32) Ai = Ai(aliϕ + bkiψ),
i = 1, . . . , N ; a, b−-const, then BEq will be potential.

Theorem 3.11 (Principal theorem). Let N ≥ 3. Let conditions C, D, I-II
and λ0 = −µ/χ are valid, where µ is n multiple eigenvalue of Dirichlet problem
(47). Number χ− see in (44). If n is odd, or distribution function has the form
fi = fi(a(−αiv2 + ϕi) + b((di, v) + ψi)), i = 1, . . . , N , then λ0 be a bifurcation
point of VM system (1)− (2) with conditions (3)− (4).

Proof. Case 1. Let n is odd. Then in BEq

4(ε) ≡ det

∣∣∣∣∂Lk∂ξi
(0, ε)

∣∣∣∣n
i,k=1

=

(
ε

1− ε

)n
.

Since n is odd, then 4(ε) > 0 for ε ∈ (0, 1), and 4(ε) < 0 for ε ∈ (−1, 0) and
the statement of theorem follows from theorem 1.

Case 2. Let fi = fi(a(−αiv2 +ϕi) + b((di, v) +ψi)). Then BEq is potential,
moreover

∂Lk(0, ε)

∂ξi
=

ε

1− ε
δik, i, k = 1, . . . , n.

Hence, all eigenvalues of matrix ‖ ∂Lk(0,ε)
∂ξi

‖ are positive at ε > 0 and are
negative at ε < 0. Thus, the validity of the theorem in case 2 follows from
Theorem 3.1. �X

4. Conclusion

The distribution functions fi in VM system depend not only on λ, but also
on parameters αi, di, ki, li. It seems interesting to investigate a behavior of
solutions of (1)-(2) with conditions (3), (4) depending from these parameters.
Applying Theorems 2.2, 3.1 and their corollaries in the present paper, we can
prove the existence theorems of points and surfaces of bifurcation for a more
complicated case.
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