Revista Colombiana de Matemáticas Volumen 50(2016)2, páginas 165-174

Construction of $B_h[g]$ sets in product of groups

Construcción de conjuntos $B_h[g]$ en producto de grupos

DIEGO RUIZ^{1,⊠}, CARLOS TRUJILLO¹

¹Universidad del Cauca, Popayán, Colombia

ABSTRACT. A subset \mathcal{A} of an abelian group G is a $B_h[g]$ set on G if the elements of G can be written in at most g ways as sum of h elements of \mathcal{A} . Given any field \mathbb{F} , this work presents constructions of $B_h[g]$ sets on the abelian groups $(\mathbb{F}^h, +), (\mathbb{Z}^d, +), \text{ and } (\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +), \text{ for } d \geq 2, h \geq 2, \text{ and } g \geq 1.$

Key words and phrases. Sidon sets, $B_h[g]$ sets.

2010 Mathematics Subject Classification. 11B50, 11B75.

RESUMEN. Un subconjunto \mathcal{A} de un grupo abeliano G es un conjunto $B_h[g]$ sobre G si todo elemento de G puede escribirse en a lo sumo de g formas como la suma de h elementos de \mathcal{A} . En este trabajo se presentan construcciones de conjuntos $B_h[g]$ sobre los grupos abelianos $(\mathbb{F}^h, +), (\mathbb{Z}^d, +), y$ $(\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +),$ para $d \geq 2, h \geq 2, y g \geq 1$, con \mathbb{F} cualquier campo.

Palabras y frases clave. Conjuntos de Sidon, Conjuntos B_h .

1. Introduction

Let g and h denote positive integers with $h \ge 2$. Let G be an abelian additive group denoted by (G, +). The set $\mathcal{A} = \{a_1, \ldots, a_k\} \subseteq G$ is a $B_h[g]$ set on G if every element of G can be written in at most g ways as sum of h elements in \mathcal{A} , that is, if given $x \in G$, the solutions of the equation $x = a_1 + \cdots + a_h$, with $a_1, \ldots, a_h \in \mathcal{A}$, are at most g (up to rearrangement of summands). If g = 1, \mathcal{A} is a B_h set, while if g = 1 and h = 2, \mathcal{A} is a Sidon set.

Let $F_h(G,g)$ denote the largest cardinality of a $B_h[g]$ on G. If g = 1 we write $F_h(G)$. Furthermore, if G is the direct product of $d \ge 2$ abelian groups and \mathcal{A} is a $B_h[g]$ set on G, sometimes we say that \mathcal{A} is a d-dimensional $B_h[g]$ set on G. For $N \in \mathbb{N}$, let $[0, N-1] := \{0, 1, \ldots, N-1\}$. If \mathbb{Z}^d denotes the set of

all d-tuples of integer numbers and $[0, N - 1]^d$ denotes the cartesian product of [0, N - 1] with itself d times, we define

$$F_h^d(N,g) := \max\{|\mathcal{A}| : \mathcal{A} \subseteq [0, N-1]^d, \, \mathcal{A} \in B_h[g]\}.$$

The main problem on $B_h[g]$ sets consists on establishing the largest cardinality of a $B_h[g]$ set on a finite group G. With analytical constructions it is possible to characterize lower bounds for $F_h(G,g)$, while using counting and combinatorial techniques, it is possible to characterize upper bounds. In this work we focus on constructions to obtain known lower bounds for $F_h(G,g)$ on particular groups $G((\mathbb{F}^h, +), (\mathbb{Z}^d, +), \text{ and } (\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +)$ for any field \mathbb{F} and $d \geq 2, h \geq 2$, $g \geq 1$), while other works are focused on upper bounds [1], [4], [11].

Different works have introduced constructions of $B_h[g]$ sets for particular values of h, and g. On $(\mathbb{Z}, +)$, the most obvious construction of Sidon sets is given by Mian–Chowla using the greedy algorithm [2]. This result is generalized by O'Bryant for any $h \geq 2$ and any $g \geq 1$ in [10].

Other constructions of B_h sets are due to Rusza, Bose, Singer, and Erdös & Turán. Rusza constructs a Sidon set on the group $(\mathbb{Z}_{(p^2-p)}, +)$ for p prime. Bose's construction initially consider h = 2 but could be generalized for any $h \ge 2$ and any prime power q on the group $(\mathbb{Z}_{q^{h-1}}, +)$. Similarly to Bose, Singer constructs a B_h set with q + 1 elements on $(\mathbb{Z}_{(q^{h+1}-1)/(q-1)}, +)$. Actually this construction can be established using Bose's construction [8]. Finally, based on quadratic residues modulo a fixed prime p, Erdös & Turán construct Sidon sets on $(\mathbb{Z}, +)$ [10].

In dimension d = 2 some constructions are due to Welch, Lempel, Golomb [6], Trujillo [12], and C. Gómez & Trujillo [8]. Welch constructs Sidon sets with p-1 elements on the groups $(\mathbb{Z}_{p-1} \times \mathbb{Z}_p, +)$, $(\mathbb{Z}_p \times \mathbb{Z}_{p-1}, +)$, generalized in [7] to the groups $(\mathbb{Z}_{q-1} \times \mathbb{F}_q, +)$ and $(\mathbb{F}_q \times \mathbb{Z}_{q-1}, +)$, respectively, where \mathbb{F}_q is the finite field with q elements. Golomb constructs Sidon sets with q-2 elements on the group $(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}, +)$ (Lempel's construction is a particular case of Golomb). Trujillo in [12] presents an algorithm to construct Sidon sets on $(\mathbb{Z} \times \mathbb{Z}, +)$ from a given Sidon set on $(\mathbb{Z}, +)$. Finally, C. Gómez & Trujillo construct B_h sets on $(\mathbb{Z}_p \times \mathbb{Z}_{p^{h-1}-1}, +)$ [8].

In higher dimensions, Cilleruelo in [4] presents a way of mapping Sidon sets in \mathbb{N} to Sidon sets in \mathbb{N}^d for $d \geq 2$, from which is possible to obtain a relation between the functions $F_h(N^d)$ and $F_h^d(N)$.

In this work we present constructions of d-dimensional $B_h[g]$ sets $(d \ge 2)$ on special abelian groups. The first construction uses the elementary symmetric polynomials and the Newton's identities to generalize a construction done initially for d = 2 [3]. In the second construction we generalize Trujillos's algorithm given in [12] to any dimension d and all $h \ge 2$, $g \ge 1$, obtaining lower bounds for $F_h^d(N,g)$ from a known lower bounds for $F_h(N^d,g)$. Finally, using

Volumen 50, Número 2, Año 2016

a homomorphism between abelian groups, we construct d-dimensional $B_h[g']$ sets from d-dimensional $B_h[g]$ sets, with g a divisor of g'.

The remainder of this work is organized as follows: For any finite field \mathbb{F} , Section 2 describes a construction of B_h sets on $(\mathbb{F}^h, +)$, where \mathbb{F}^h denotes the set of all h-tuples of elements of \mathbb{F} . Section 3 presents a construction of $B_h[g]$ sets on $(\mathbb{Z}^d, +)$, and in Section 4 we construct $B_h[g]$ sets on $(\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +)$. Furthermore, we present a generalization of a Golomb Costas array construction. Finally, Section 5 describes the concluding remarks of this work.

2. Construction of B_h sets on $(\mathbb{F}^h, +)$

Let p be a prime number. Note that $\mathcal{A} := \{(x, x^2) : x \in \mathbb{Z}_p\}$ is a B_2 set on $(\mathbb{Z}_p \times \mathbb{Z}_p, +)$ [3]. In this section we generalize this construction using h-tuples (h > 2). First we introduce the following notations and definitions.

Let n be a positive integer. The elementary symmetric polynomials in the variables x_1, \ldots, x_n , written by $\sigma_k(x_1, \ldots, x_n)$ for $k = 1, \ldots, n$, is defined as

$$\sigma_k(x_1,\ldots,x_n) := \sum_{1 \le j_1 < \cdots < j_k \le n} x_{j_1} \cdots x_{j_n}$$

If k = 0 we consider $\sigma_0(x_1, \ldots, x_n) = 1$. For n = 3 we have

$$\begin{aligned} \sigma_0(x_1, x_2, x_3) &= 1, \\ \sigma_1(x_1, x_2, x_3) &= x_1 + x_2 + x_3, \\ \sigma_2(x_1, x_2, x_3) &= x_1 x_2 + x_1 x_3 + x_2 x_3 \\ \sigma_3(x_1, x_2, x_3) &= x_1 x_2 x_3. \end{aligned}$$

Note that the elementary symmetric polynomials appear in the expansion of a linear factorization of a monic polynomial

$$\prod_{j=1}^{n} (\lambda - x_j) = \sum_{k=0}^{n} (-1)^k \sigma_k(x_1, \dots, x_n) \lambda^{n-k}.$$

Note also that if $p_k(x_1, \ldots, x_n) = x_1^k + \cdots + x_n^k$, the Newton's identities are given by

$$k\sigma_k(x_1,\ldots,x_n) = \sum_{i=1}^k (-1)^{i-1} \sigma_{k-i}(x_1,\ldots,x_n) p_i(x_1,\ldots,x_n), \qquad (1)$$

for each $1 \le k \le n$ and for an arbitrary number n of variables.

Theorem 2.1. Let \mathbb{F} be a field with characteristic zero or p > h. The set

$$\mathcal{A} := \{ (x, x^2, \dots, x^h) : x \in \mathbb{F} \},\$$

is a B_h set on $(\mathbb{F}^h, +)$.

Proof. Let $s \in \mathbb{F}^h$. Suppose there exist two different representations of s as sum of h elements of \mathcal{A} as follows

$$s = (a_1, \dots, a_1^h) + \dots + (a_h, \dots, a_h^h) = (b_1, \dots, b_1^h) + \dots + (b_h, \dots, b_h^h),$$

 $a_i, b_i \in \mathbb{F}$ for $i = 1, \ldots, h$. Note that for all $k = 1, \ldots, h$, $\sum_{i=1}^h a_i^k = \sum_{i=1}^h b_i^k$. Because $p_k(a_1, \ldots, a_h) = \sum_{i=1}^h a_i^k$ and $p_k(b_1, \ldots, b_h) = \sum_{i=1}^h b_i^k$, using (1) recursively we have $\sigma_i(a_1, \ldots, a_h) = \sigma_i(b_1, \ldots, b_n)$, for all $i = 1, \ldots, h$, that is

$$a_1 + \dots + a_h = b_1 + \dots + b_h,$$

$$a_1a_2 + \dots + a_{h-1}a_h = b_1b_2 + \dots + b_{h-1}b_h$$

$$\dots$$

$$a_1 \dots a_h = b_1 \dots b_h,$$

which implies that the elements of the sets $\{a_1, \ldots, a_h\}$ and $\{b_1, \ldots, b_h\}$ are roots of the same polynomial q(x) on $\mathbb{F}[x]$, i.e.,

$$q(x) = (x - a_1) \cdots (x - a_h) = (x - b_1) \cdots (x - b_h)$$

That is, $\{a_1, \ldots, a_h\} = \{b_1, \ldots, b_h\}$ ($\mathbb{F}[x]$ is a unique factorization domain). Thus, cannot be possible to have two different representations of $s \in \mathbb{F}$ as sum of h elements of \mathbb{F}^h and \mathcal{A} is a B_h set on ($\mathbb{F}^h, +$).

Consider the case when \mathbb{F} is the finite field \mathbb{F}_q , with $q = p^n$ for some $n \in \mathbb{N}$ and p prime. Note that the groups $(\mathbb{F}_{p^n}, +)$ and $(\mathbb{F}_p^n, +)$ are isomorphic, because if θ is a root of an irreducible polynomial of degree n over \mathbb{F}_p in an extension field, the function

$$\phi: \qquad \mathbb{F}_{p^n} \quad \to \quad \mathbb{F}_p^n \\
a_0 + \dots + a_{n-1} \theta^{n-1} \quad \mapsto \quad (a_0, \dots, a_{n-1})$$
(2)

defines an isomorphism between them.

Corollary 2.2. For all p > h prime and for all $n \in \mathbb{N}$ there exists a B_h set with p^n elements on $(\mathbb{Z}_p^{hn}, +)$.

Proof. It follows immediately from Theorem 2.1 and the isomorphism ϕ given in (2).

We illustrate these results in the following example.

Example 2.3. Consider h = n = 2 and p = 3. Let $p(x) = x^2 + 1$ be an irreducible polynomial on \mathbb{Z}_3 . Suppose that θ is a root of p(x) in an extension field of \mathbb{Z}_3 . The field with 9 elements is given by

$$\mathbb{F}_9 = \{a + b\theta : a, b \in \mathbb{Z}_3\}$$
$$= \{0, 1, 2, \theta, \theta + 1, \theta + 2, 2\theta, 2\theta + 1, 2\theta + 2\}.$$

Volumen 50, Número 2, Año 2016

Using Theorem 2.1 we know that

$$\mathcal{A} = \left\{ \begin{array}{c} (0,0), (1,1), (2,1), (\theta,2), (\theta+1,2\theta), (\theta+2,\theta), \\ (2\theta,2), (2\theta+1,\theta), (2\theta+2,2\theta) \end{array} \right\}$$

is a Sidon set on $(\mathbb{F}_9 \times \mathbb{F}_9, +) = (\mathbb{F}_9^2, +)$. Furthermore, using Corollary 2.2 we have

$$\mathcal{B} = \left\{ \begin{array}{c} (0,0,0,0), (0,1,0,1), (0,2,0,1), (1,0,0,2), (1,1,2,0), \\ (1,2,1,0), (2,0,0,2), (2,1,1,0), (2,2,2,0) \end{array} \right\}$$

is a Sidon set on $(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3, +) = (\mathbb{Z}_3^4, +).$

3. Construction of $B_h[g]$ sets on $(\mathbb{Z}^d, +)$

In this section we present a construction of $B_h[g]$ sets for all $h, g \geq 2$ on $(\mathbb{Z}^d, +)$. This construction generalizes a construction introduced by Trujillo in [12] which allows to obtain Sidon sets on $(\mathbb{Z} \times \mathbb{Z}, +)$ from a Sidon set on $(\mathbb{Z}, +)$. Our generalization also allows to construct d-dimensional $B_h[g]$ sets for all $h, g \geq 2$ and any dimension d, from which it is possible to determine a way to map $B_h[g]$ sets on $(\mathbb{Z}, +)$ into $B_h[g]$ sets on $(\mathbb{Z}^d, +)$.

Let d, N be positive integers greater than 1. Let \mathcal{A} denote a subset of \mathbb{Z}^+ . If $a \in \mathcal{A}, [a]_N = (n_k, \ldots, n_1, n_0)_N$ represents the integer $a = n_k N^k + \cdots + n_1 N + n_0$ in base N notation, where k is a nonnegative integer and $0 \leq n_j \leq N - 1$, for $j = 0, 1, \ldots, k$. We denote the set obtained from the representation of each element of \mathcal{A} in base N as $[\mathcal{A}]_N$. Because every positive integer can be written uniquely in base N, then

$$|\mathcal{A}| = |[\mathcal{A}]_N|.$$

Note that if $\mathcal{A} \subseteq [0, N^d - 1]$, then $[\mathcal{A}]_N \subseteq [0, N - 1]^d$.

Theorem 3.1. If \mathcal{A} is a $B_h[g]$ set contained in $[0, N^d - 1]$, then $[\mathcal{A}]_N$ is a $B_h[g]$ set contained in $[0, N - 1]^d$.

Proof. Let s be a d-tuple in \mathbb{Z}^d obtained as sum of h elements in $[\mathcal{A}]_N$. Suppose there exist g + 1 representations of s as follows

$$s = [a_{1,1}]_N + \dots + [a_{1,h}]_N = \dots = [a_{g+1,1}]_N + \dots + [a_{g+1,h}]_N, \qquad (3)$$

where $a_{i,j} \in \mathcal{A}$ for all $1 \leq i \leq g+1$, $1 \leq j \leq h$. Consider the representation of each $a_{i,j} \in \mathcal{A}$ in base N as $[a_{i,j}]_N = (n_{(d-1,i,j)}, \ldots, n_{(0,i,j)})$. Note that for any $1 \leq i \leq g+1$

$$[a_{i,1}]_N + \dots + [a_{i,h}]_N = (n_{(d-1,i,1)}, \dots, n_{(0,i,1)}) + \dots + (n_{(d-1,i,h)}, \dots, n_{(0,i,h)})$$
$$= (n_{(d-1,i,1)} + \dots + n_{(d-1,i,h)}, \dots, n_{(0,i,1)} + \dots + n_{(0,i,h)}).$$

Furthermore

$$(n_{(d-1,i,1)} + \dots + n_{(d-1,i,h)})N^{d-1} + \dots + (n_{(0,i,1)} + \dots + n_{(0,i,h)}) = a_{i,1} + \dots + a_{i,h}$$

which implies from (3) that

$$a_{1,1} + \dots + a_{1,h} = \dots = a_{g+1,1} + \dots + a_{g+1,h}.$$
 (4)

Because \mathcal{A} is a $B_h[g]$ set, using (4) we know there exist ℓ, m with $\ell \neq m$ and $1 \leq \ell, m \leq g+1$, such that

$$\{a_{\ell,1},\ldots,a_{\ell,h}\}=\{a_{m,1},\ldots,a_{m,h}\}$$

Since representation in base N notation is unique we have

$$\{[a_{\ell,1}]_N,\ldots,[a_{\ell,h}]_N\}=\{[a_{m,1}]_N,\ldots,[a_{m,h}]_N\},\$$

That is, it is not possible to have g+1 representations of s as sum of h elements of \mathcal{A} . Therefore $[\mathcal{A}]_N$ is a $B_h[g]$ set contained in $[0, N-1]^d \subset (\mathbb{Z}^d, +)$.

Example 3.2. Note that $\mathcal{A} = \{1, 2, 7\}$ is a Sidon set on $(\mathbb{Z}_8, +)$. In [12] Trujillo constructs a $B_2[2]$ set on $(\mathbb{Z}, +)$ as follows

$$\mathcal{B} := \mathcal{A} \cup (\mathcal{A} + m) \cup (\mathcal{A} + 3m) = \{1, 2, 7, 9, 10, 15, 25, 26, 31\},\$$

with m = 8. Because $\mathcal{B} \subseteq [0, 2^5 - 1]$, using Theorem 3.1 we have that

$$[\mathcal{B}]_2 = \left\{ \begin{array}{c} (0,0,0,0,1), (0,0,0,1,0), (0,0,1,1,1), (0,1,0,0,1), (0,1,0,1,0), \\ (0,1,1,1,1), (1,1,0,0,1), (1,1,0,1,0), (1,1,1,1,1) \end{array} \right\}$$

is a $B_2[2]$ set contained in $[0,1]^5$. Note also that $\mathcal{B} \subseteq [0,6^2-1]$, so

$$[\mathcal{B}]_6 = \{(0,1), (0,2), (1,1), (1,3), (1,4), (2,3), (4,1), (4,2), (5,1)\}$$

is a $B_2[2]$ set contained in $[0, 5]^2$.

4. Construction of
$$B_h[g]$$
 sets on $(\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +)$

This section extend a construction of $B_h[g]$ sets given in [5] for h = 2 and d = 1, to all $h \ge 2$ and any dimension d > 1. First, we introduce the following result.

Lemma 4.1. Let G and G' be two abelian groups and let $\phi : G \to G'$ define a homomorphism. If \mathcal{A} is a $B_h[g]$ set on G and $|Ker(\phi)| = g'$, then $\phi(\mathcal{A})$ is a $B_h[gg']$ set on $\phi(G)$, where gg' denotes the product between g and g'.

The proof is given in [9].

Now, let m_1, \ldots, m_d and g_1, \ldots, g_d be positive integers. Using Lemma 4.1 we have the following result.

Volumen 50, Número 2, Año 2016

Theorem 4.2. Let \mathcal{A} be a $B_h[g]$ set on $(\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +)$. If g_1, \ldots, g_d are divisors of m_1, \ldots, m_d , respectively, then

$$\mathcal{B} := \left\{ \left(a_1 \mod \frac{m_1}{g_1}, \dots, a_d \mod \frac{m_d}{g_d} \right) : (a_1, \dots, a_d) \in \mathcal{A} \right\}$$

$${}_h[gg_1 \cdots g_d] \text{ set on } \left(\mathbb{Z}_{\frac{m_1}{g_1}} \times \dots \times \mathbb{Z}_{\frac{m_d}{g_d}}, + \right).$$

Proof. Using notation used in Lemma 4.1, let $G = (\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}, +)$ and $G' = \left(\mathbb{Z}_{\frac{m_1}{g_1}} \times \cdots \times \mathbb{Z}_{\frac{m_d}{g_d}}, +\right)$ and define the homomorphism $\phi : G \to G'$ as $\phi(b_1, \ldots, b_d) = \left(b_1 \mod \frac{m_1}{g_1}, \ldots, b_d \mod \frac{m_d}{g_d}\right)$. We establish $Ker(\phi)$ as follows. Note that $(b_1, \ldots, b_n) \in Ker(\phi)$ if and only if $\phi(b_1, \ldots, b_n) = (0, \ldots, 0)$, that is, if

$$\left(b_1 \mod \frac{m_1}{g_1}, \dots, b_d \mod \frac{m_d}{g_d}\right) = (0, \dots, 0)$$

Note also that $b_i \mod \frac{m_i}{g_i} = 0$ if and only if $b_i = k_i \frac{m_i}{g_i}$, for $k_i \in [1, g_i]$ and for all $i = 1, \ldots, d$, which implies that $b_i \mod \frac{m_i}{g_i} = 0$ in exactly g_i values. Thus, $|Ker(\phi)| = \prod_{i=1}^d g_i$. Finally, using Lemma 4.1 we have that $\mathcal{B} = \phi(\mathcal{A})$ is a $B_h[gg_1 \cdots g_d]$ set on $\left(\mathbb{Z}_{\frac{m_1}{g_1}} \times \cdots \times \mathbb{Z}_{\frac{m_d}{g_d}}, +\right)$.

Given q a prime power and \mathbb{F} a field, to illustrate Theorem 4.2 we present a construction of Sidon sets on $(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}, +)$, which is based on the discrete logarithm¹ on \mathbb{F}_q .

Proposition 4.3. Let $q = p^n$ a prime power. If α, β are primitive elements of \mathbb{F}_q^* and $a \in \mathbb{F}_q^*$, then

$$\mathcal{G}(\alpha,\beta,a) := \{ (i, \log_\beta (a - \alpha^i)) : i = 1, \dots, q - 1, \, \alpha^i \neq a \}$$

$$\tag{5}$$

is a Sidon set on $(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}, +)$.

is a B

Proof. Suppose there exist $u, v, w, y \in \mathcal{G}(\alpha, \beta, a)$ such that u + v = w + y. Using (5) we know that there exist $i, j, k, \ell \in [1, q - 1]$ such that

$$(i, \log_{\beta}(a - \alpha^{i})) + (j, \log_{\beta}(a - \alpha^{j})) = (k, \log_{\beta}(a - \alpha^{k})) + (\ell, \log_{\beta}(a - \alpha^{\ell}))$$
(6)

where $\alpha^i, \alpha^j, \alpha^k, \alpha^\ell$ are not equal to a. From (6) we have

$$(i+j) \equiv (k+\ell) \bmod (q-1),$$

$$\log_{\beta}(a - \alpha^{i}) + \log_{\beta}(a - \alpha^{j}) \equiv (\log_{\beta}(a - \alpha^{k}) + \log_{\beta}(a - \alpha^{\ell})) \mod (q - 1),$$

¹If θ is a primitive of \mathbb{F}_q , $\log_{\theta}(x)$ denotes the unique integer $k \in [1, q-1]$ such that $\theta^k = x$ on \mathbb{F}_q .

what implies that $(a - \alpha^i)(a - \alpha^j) = (a - \alpha^k)(a - \alpha^\ell)$. We have in \mathbb{F}_q^*

$$\alpha^{i}\alpha^{j} = \alpha^{k}\alpha^{\ell},$$
$$\alpha^{i} + \alpha^{j} = \alpha^{k} + \alpha^{\ell}.$$

that is, α^i, α^j , and α^k, α^ℓ are roots of a polynomial $q(x) \in \mathbb{F}[x]$ of degree 2 (i.e., $q(x) = (x + \alpha^i)(x + \alpha^j) = (x + \alpha^k)(x + \alpha^\ell)$). Therefore, $\{\alpha^i, \alpha^j\} = \{\alpha^k, \alpha^\ell\}$ and $\{i, j\} = \{k, \ell\}$, which implies that is not possible to have two representations of an element in $\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}$ as sum of two elements of $\mathcal{G}(\alpha, \beta, a)$. That is, $\mathcal{G}(\alpha, \beta, a)$ is a Sidon set on $(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}, +)$.

Example 4.4. First we apply Proposition 4.3 to construct a Sidon set on $\langle \mathbb{Z}_{16} \times \mathbb{Z}_{16}, + \rangle$. Let q = p = 17, and let $\alpha = 3$, $\beta = 5$ be primitive elements of \mathbb{Z}_{17}^* . With a = 1

$$\mathcal{G}(3,5,1) = \left\{ \begin{array}{c} (1,14), (2,10), (3,2), (4,1), (5,4), (6,13), (7,15), (8,6), \\ (9,12), (10,7), (11,11), (12,5), (13,3), (14,8), (15,9) \end{array} \right\}$$

is a Sidon set on $(\mathbb{Z}_{16} \times \mathbb{Z}_{16}, +)$. Now, if $g_1 = g_2 = 2$, using Theorem 4.2,

$$\mathcal{A} = \left\{ \begin{array}{c} (1,6), (2,2), (3,2), (4,1), (5,4), (6,5), (7,7), (0,6), \\ (1,4), (2,7), (3,3), (4,5), (5,3), (6,0), (7,1) \end{array} \right\}$$

is a $B_2[4]$ set on $(\mathbb{Z}_8 \times \mathbb{Z}_8, +)$.

5. Concluding remarks

Using the constructions given in this work we can obtain lower bounds and closed formulas for $F_h^d(G,g)$, for some abelian group G and some values of d, h and g.

Note from Theorem 2.1 and Corollary 2.2 that $F_2^h(\mathbb{F}_q^h) \geq q$ for q a prime power. Particularly if h = 2 and q = p prime we have $F_2^2(\mathbb{Z}_p \times \mathbb{Z}_p) \geq p$, but it is easy to establish that $F_2^2(\mathbb{Z}_p \times \mathbb{Z}_p) = p$ [7]. A natural question to state is the following: Can we obtain a similar result, as the last one, on the group $(\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p, +)$? That is,

$$F_2^3(\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p) \sim p^{3/2}?$$

Now, using Theorem 3.1, for integers $d, g, N \ge 1$ and $h \ge 2$ we know that

$$F_h(N^d, g) \le F_h^d(N, g)$$

Particularly, if d = 2, h = 2, and g = 1 we have that $F_2^1(N^2) \leq F_2^2(N)$, which implies that good constructions of Sidon sets on \mathbb{Z} give good lower bounds for Sidon sets on $\mathbb{Z} \times \mathbb{Z}$. Furthermore, an interesting work consists in to analyze the behavior of the difference $F_2^2(N) - F_2^1(N^2)$ when N grows.

Volumen 50, Número 2, Año 2016

CONSTRUCTION OF $B_H[G]$ SETS IN PRODUCT OF GROUPS

Finally, from Proposition 4.3 we can establish that $F_2^2(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}) \ge q-2$, which lead us to wonder if is it possible to state that $F_2^2(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}) = q-1$?

Acknowledgment. We thank to COLCIENCIAS and Universidad del Cauca for the support to our research group "Algebra, Teoría de Números y Aplicaciones-ALTENUA ERM" under the projects 110356935047 and VRI-3744. We also thank to the anonymous referee for their helpful comments. This work is dedicated to the memory of Javier Cilleruelo (1961-2016).

References

- [1] J. Bravo, D. Ruiz, and C. Trujillo, *Cardinality of sets associated to* B_3 and B_4 sets, Revista colombiana de matemáticas **46** (2012), no. 1, 27–37.
- [2] S. Chowla and A. Mian, Solution of a problem of Erdös and Turán in additive-number theory, Proc. Nat. Acad. Sci. India Series A 14 (1944), 3-4.
- [3] J. Cilleruelo, Conjuntos de enteros con todas las diferencias distintas, La Gaceta de la RSME 11 (2008), no. 1, 151–170.
- [4] _____, Sidon sets in N^d, Journal of Combinatorial Theory Series A 117 (2010), no. 7, 857–871.
- [5] G. Garcia, C. Trujillo, and J. Velasquez, B[±]₂[g] finite sets, Journal Of Algebra, Number Theory And Applications 4 (2004), no. 3, 593–604.
- [6] S. Golomb and G. Gong, *The status of Costas arrays*, IEEE Transactions on Information Theory 53 (2007), no. 11, 4260–4265.
- [7] A. Gómez, D. Ruiz, and C. Trujillo, Construcción de conjuntos de Sidon en dimensión dos, XVIII Congreso Colombiano de Matemáticas, Universidad Industrial de Santander (Colombia), Julio 2011.
- [8] C. Gómez and C. Trujillo, Una nueva construcción de conjuntos B_h modulares, Matemáticas: Enseñanza Universitaria 19 (2011), no. 1, 53–62.
- [9] J. Gómez, Construcción de conjuntos $B_h[g]$, Master thesis, Universidad del Valle, Colombia, 2011.
- [10] K. O'Bryant, A complete annotated bibliography of work related to sidon sequences, The electronic Journal of Combinatorics–Dynamic Surveys 11 (2004), 39.
- [11] L. Rackham and P. Šarka, B_h sequences in higher dimensions, The Electronic Journal of Combinatorics 17 (2010), no. 1, R35 (electronic), 15.

DIEGO RUIZ & CARLOS TRUJILLO

[12] C. Trujillo, Sucesiones de sidon, Ph.D. thesis, Universidad Politécnica de Madrid, España, 1998.

(Recibido en abril de 2016. Aceptado en julio de 2016)

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DEL CAUCA CALLE 5 NO. 4-70 POPAYÁN, COLOMBIA *e-mail:* dfruiz@unicauca.edu.co *e-mail:* trujillo@unicauca.edu.co

Volumen 50, Número 2, Año 2016