Construction of $B_{h}[g]$ sets in product of groups

Construcción de conjuntos $B_{h}[g]$ en producto de grupos

Diego Ruiz ${ }^{1, \boxtimes}$, Carlos Trujillo ${ }^{1}$
${ }^{1}$ Universidad del Cauca, Popayán, Colombia

Abstract

A subset \mathcal{A} of an abelian group G is a $B_{h}[g]$ set on G if the elements of G can be written in at most g ways as sum of h elements of \mathcal{A}. Given any field \mathbb{F}, this work presents constructions of $B_{h}[g]$ sets on the abelian groups $\left(\mathbb{F}^{h},+\right),\left(\mathbb{Z}^{d},+\right)$, and $\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$, for $d \geq 2, h \geq 2$, and $g \geq 1$. Key words and phrases. Sidon sets, $B_{h}[g]$ sets. 2010 Mathematics Subject Classification. 11B50, 11B75.

Resumen. Un subconjunto \mathcal{A} de un grupo abeliano G es un conjunto $B_{h}[g]$ sobre G si todo elemento de G puede escribirse en a lo sumo de g formas como la suma de h elementos de \mathcal{A}. En este trabajo se presentan construcciones de conjuntos $B_{h}[g]$ sobre los grupos abelianos $\left(\mathbb{F}^{h},+\right),\left(\mathbb{Z}^{d},+\right)$, y $\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$, para $d \geq 2, h \geq 2$, y $g \geq 1$, con \mathbb{F} cualquier campo.

Palabras y frases clave. Conjuntos de Sidon, Conjuntos B_{h}.

1. Introduction

Let g and h denote positive integers with $h \geq 2$. Let G be an abelian additive group denoted by $(G,+)$. The set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\} \subseteq G$ is a $B_{h}[g]$ set on G if every element of G can be written in at most g ways as sum of h elements in \mathcal{A}, that is, if given $x \in G$, the solutions of the equation $x=a_{1}+\cdots+a_{h}$, with $a_{1}, \ldots, a_{h} \in \mathcal{A}$, are at most g (up to rearrangement of summands). If $g=1, \mathcal{A}$ is a B_{h} set, while if $g=1$ and $h=2, \mathcal{A}$ is a Sidon set.

Let $F_{h}(G, g)$ denote the largest cardinality of a $B_{h}[g]$ on G. If $g=1$ we write $F_{h}(G)$. Furthermore, if G is the direct product of $d \geq 2$ abelian groups and \mathcal{A} is a $B_{h}[g]$ set on G, sometimes we say that \mathcal{A} is a d-dimensional $B_{h}[g]$ set on G. For $N \in \mathbb{N}$, let $[0, N-1]:=\{0,1, \ldots, N-1\}$. If \mathbb{Z}^{d} denotes the set of
all d-tuples of integer numbers and $[0, N-1]^{d}$ denotes the cartesian product of $[0, N-1]$ with itself d times, we define

$$
F_{h}^{d}(N, g):=\max \left\{|\mathcal{A}|: \mathcal{A} \subseteq[0, N-1]^{d}, \mathcal{A} \in B_{h}[g]\right\} .
$$

The main problem on $B_{h}[g]$ sets consists on establishing the largest cardinality of a $B_{h}[g]$ set on a finite group G. With analytical constructions it is possible to characterize lower bounds for $F_{h}(G, g)$, while using counting and combinatorial techniques, it is possible to characterize upper bounds. In this work we focus on constructions to obtain known lower bounds for $F_{h}(G, g)$ on particular groups $G\left(\left(\mathbb{F}^{h},+\right),\left(\mathbb{Z}^{d},+\right)\right.$, and $\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$ for any field \mathbb{F} and $d \geq 2, h \geq 2$, $g \geq 1$), while other works are focused on upper bounds [1], [4], [11].

Different works have introduced constructions of $B_{h}[g]$ sets for particular values of h, and g. On $(\mathbb{Z},+)$, the most obvious construction of Sidon sets is given by Mian-Chowla using the greedy algorithm [2]. This result is generalized by O'Bryant for any $h \geq 2$ and any $g \geq 1$ in [10].

Other constructions of B_{h} sets are due to Rusza, Bose, Singer, and Erdös \& Turán. Rusza constructs a Sidon set on the group $\left(\mathbb{Z}_{\left(p^{2}-p\right)},+\right)$ for p prime. Bose's construction initially consider $h=2$ but could be generalized for any $h \geq 2$ and any prime power q on the group $\left(\mathbb{Z}_{q^{h}-1},+\right)$. Similarly to Bose, Singer constructs a B_{h} set with $q+1$ elements on $\left(\mathbb{Z}_{\left(q^{h+1}-1\right) /(q-1)},+\right)$. Actually this construction can be established using Bose's construction [8]. Finally, based on quadratic residues modulo a fixed prime p, Erdös \& Turán construct Sidon sets on $(\mathbb{Z},+)[10]$.

In dimension $d=2$ some constructions are due to Welch, Lempel, Golomb [6], Trujillo [12], and C. Gómez \& Trujillo [8]. Welch constructs Sidon sets with $p-1$ elements on the groups $\left(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p},+\right)$, $\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p-1},+\right)$, generalized in [7] to the groups $\left(\mathbb{Z}_{q-1} \times \mathbb{F}_{q},+\right)$ and $\left(\mathbb{F}_{q} \times \mathbb{Z}_{q-1},+\right)$, respectively, where \mathbb{F}_{q} is the finite field with q elements. Golomb constructs Sidon sets with $q-2$ elements on the group ($\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1},+$) (Lempel's construction is a particular case of Golomb). Trujillo in [12] presents an algorithm to construct Sidon sets on $(\mathbb{Z} \times \mathbb{Z},+)$ from a given Sidon set on $(\mathbb{Z},+)$. Finally, C. Gómez \& Trujillo construct B_{h} sets on $\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{h-1}-1},+\right)$ [8].

In higher dimensions, Cilleruelo in [4] presents a way of mapping Sidon sets in \mathbb{N} to Sidon sets in \mathbb{N}^{d} for $d \geq 2$, from which is possible to obtain a relation between the functions $F_{h}\left(N^{d}\right)$ and $F_{h}^{d}(N)$.

In this work we present constructions of d-dimensional $B_{h}[g]$ sets $(d \geq 2)$ on special abelian groups. The first construction uses the elementary symmetric polynomials and the Newton's identities to generalize a construction done initially for $d=2$ [3]. In the second construction we generalize Trujillos's algorithm given in [12] to any dimension d and all $h \geq 2, g \geq 1$, obtaining lower bounds for $F_{h}^{d}(N, g)$ from a known lower bounds for $F_{h}\left(N^{d}, g\right)$. Finally, using
a homomorphism between abelian groups, we construct d-dimensional $B_{h}\left[g^{\prime}\right]$ sets from d-dimensional $B_{h}[g]$ sets, with g a divisor of g^{\prime}.
The remainder of this work is organized as follows: For any finite field \mathbb{F}, Section 2 describes a construction of B_{h} sets on $\left(\mathbb{F}^{h},+\right)$, where \mathbb{F}^{h} denotes the set of all h-tuples of elements of \mathbb{F}. Section 3 presents a construction of $B_{h}[g]$ sets on $\left(\mathbb{Z}^{d},+\right)$, and in Section 4 we construct $B_{h}[g]$ sets on $\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$. Furthermore, we present a generalization of a Golomb Costas array construction. Finally, Section 5 describes the concluding remarks of this work.

2. Construction of B_{h} sets on $\left(\mathbb{F}^{h},+\right)$

Let p be a prime number. Note that $\mathcal{A}:=\left\{\left(x, x^{2}\right): x \in \mathbb{Z}_{p}\right\}$ is a B_{2} set on $\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p},+\right)[3]$. In this section we generalize this construction using h-tuples $(h>2)$. First we introduce the following notations and definitions.

Let n be a positive integer. The elementary symmetric polynomials in the variables x_{1}, \ldots, x_{n}, written by $\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)$ for $k=1, \ldots, n$, is defined as

$$
\sigma_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n} x_{j_{1}} \cdots x_{j_{n}} .
$$

If $k=0$ we consider $\sigma_{0}\left(x_{1}, \ldots, x_{n}\right)=1$. For $n=3$ we have

$$
\begin{aligned}
& \sigma_{0}\left(x_{1}, x_{2}, x_{3}\right)=1 \\
& \sigma_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3} \\
& \sigma_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& \sigma_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3} .
\end{aligned}
$$

Note that the elementary symmetric polynomials appear in the expansion of a linear factorization of a monic polynomial

$$
\prod_{j=1}^{n}\left(\lambda-x_{j}\right)=\sum_{k=0}^{n}(-1)^{k} \sigma_{k}\left(x_{1}, \ldots, x_{n}\right) \lambda^{n-k}
$$

Note also that if $p_{k}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{k}+\cdots+x_{n}^{k}$, the Newton's identities are given by

$$
\begin{equation*}
k \sigma_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k}(-1)^{i-1} \sigma_{k-i}\left(x_{1}, \ldots, x_{n}\right) p_{i}\left(x_{1}, \ldots, x_{n}\right), \tag{1}
\end{equation*}
$$

for each $1 \leq k \leq n$ and for an arbitrary number n of variables.
Theorem 2.1. Let \mathbb{F} be a field with characteristic zero or $p>h$. The set

$$
\mathcal{A}:=\left\{\left(x, x^{2}, \ldots, x^{h}\right): x \in \mathbb{F}\right\}
$$

is a B_{h} set on $\left(\mathbb{F}^{h},+\right)$.

Proof. Let $s \in \mathbb{F}^{h}$. Suppose there exist two different representations of s as sum of h elements of \mathcal{A} as follows

$$
s=\left(a_{1}, \ldots, a_{1}^{h}\right)+\cdots+\left(a_{h}, \ldots, a_{h}^{h}\right)=\left(b_{1}, \ldots, b_{1}^{h}\right)+\cdots+\left(b_{h}, \ldots, b_{h}^{h}\right),
$$

$a_{i}, b_{i} \in \mathbb{F}$ for $i=1, \ldots, h$. Note that for all $k=1, \ldots, h, \sum_{i=1}^{h} a_{i}^{k}=\sum_{i=1}^{h} b_{i}^{k}$. Because $p_{k}\left(a_{1}, \ldots, a_{h}\right)=\sum_{i=1}^{h} a_{i}^{k}$ and $p_{k}\left(b_{1}, \ldots, b_{h}\right)=\sum_{i=1}^{h} b_{i}^{k}$, using (1) recursively we have $\sigma_{i}\left(a_{1}, \ldots, a_{h}\right)=\sigma_{i}\left(b_{1}, \ldots, b_{n}\right)$, for all $i=1, \ldots, h$, that is

$$
\begin{aligned}
a_{1}+\cdots+a_{h} & =b_{1}+\cdots+b_{h}, \\
a_{1} a_{2}+\cdots+a_{h-1} a_{h} & =b_{1} b_{2}+\cdots+b_{h-1} b_{h}, \\
& \cdots \\
a_{1} \ldots a_{h} & =b_{1} \ldots b_{h},
\end{aligned}
$$

which implies that the elements of the sets $\left\{a_{1}, \ldots, a_{h}\right\}$ and $\left\{b_{1}, \ldots, b_{h}\right\}$ are roots of the same polynomial $q(x)$ on $\mathbb{F}[x]$, i.e.,

$$
q(x)=\left(x-a_{1}\right) \cdots\left(x-a_{h}\right)=\left(x-b_{1}\right) \cdots\left(x-b_{h}\right)
$$

That is, $\left\{a_{1}, \ldots, a_{h}\right\}=\left\{b_{1}, \ldots, b_{h}\right\}$ ($\mathbb{F}[x]$ is a unique factorization domain). Thus, cannot be possible to have two different representations of $s \in \mathbb{F}$ as sum of h elements of \mathbb{F}^{h} and \mathcal{A} is a B_{h} set on $\left(\mathbb{F}^{h},+\right)$.

Consider the case when \mathbb{F} is the finite field \mathbb{F}_{q}, with $q=p^{n}$ for some $n \in \mathbb{N}$ and p prime. Note that the groups $\left(\mathbb{F}_{p^{n}},+\right)$ and $\left(\mathbb{F}_{p}^{n},+\right)$ are isomorphic, because if θ is a root of an irreducible polynomial of degree n over \mathbb{F}_{p} in an extension field, the function

$$
\begin{array}{cccc}
\phi: & \mathbb{F}_{p^{n}} & \rightarrow & \mathbb{F}_{p}^{n} \tag{2}\\
& a_{0}+\cdots+a_{n-1} \theta^{n-1} & \mapsto & \left(a_{0}, \ldots, a_{n-1}\right)
\end{array}
$$

defines an isomorphism between them.
Corollary 2.2. For all $p>h$ prime and for all $n \in \mathbb{N}$ there exists a B_{h} set with p^{n} elements on $\left(\mathbb{Z}_{p}^{h n},+\right)$.

Proof. It follows immediately from Theorem 2.1 and the isomorphism ϕ given in (2).

We illustrate these results in the following example.
Example 2.3. Consider $h=n=2$ and $p=3$. Let $p(x)=x^{2}+1$ be an irreducible polynomial on \mathbb{Z}_{3}. Suppose that θ is a root of $p(x)$ in an extension field of \mathbb{Z}_{3}. The field with 9 elements is given by

$$
\begin{aligned}
\mathbb{F}_{9} & =\left\{a+b \theta: a, b \in \mathbb{Z}_{3}\right\} \\
& =\{0,1,2, \theta, \theta+1, \theta+2,2 \theta, 2 \theta+1,2 \theta+2\} .
\end{aligned}
$$

Using Theorem 2.1 we know that

$$
\mathcal{A}=\left\{\begin{array}{l}
(0,0),(1,1),(2,1),(\theta, 2),(\theta+1,2 \theta),(\theta+2, \theta), \\
(2 \theta, 2),(2 \theta+1, \theta),(2 \theta+2,2 \theta)
\end{array}\right\}
$$

is a Sidon set on $\left(\mathbb{F}_{9} \times \mathbb{F}_{9},+\right)=\left(\mathbb{F}_{9}^{2},+\right)$. Furthermore, using Corollary 2.2 we have

$$
\mathcal{B}=\left\{\begin{array}{l}
(0,0,0,0),(0,1,0,1),(0,2,0,1),(1,0,0,2),(1,1,2,0), \\
(1,2,1,0),(2,0,0,2),(2,1,1,0),(2,2,2,0)
\end{array}\right\}
$$

is a Sidon set on $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3},+\right)=\left(\mathbb{Z}_{3}^{4},+\right)$.

3. Construction of $B_{h}[g]$ sets on $\left(\mathbb{Z}^{d},+\right)$

In this section we present a construction of $B_{h}[g]$ sets for all $h, g \geq 2$ on $\left(\mathbb{Z}^{d},+\right)$. This construction generalizes a construction introduced by Trujillo in [12] which allows to obtain Sidon sets on $(\mathbb{Z} \times \mathbb{Z},+)$ from a Sidon set on $(\mathbb{Z},+)$. Our generalization also allows to construct d-dimensional $B_{h}[g]$ sets for all $h, g \geq 2$ and any dimension d, from which it is possible to determine a way to map $B_{h}[g]$ sets on $(\mathbb{Z},+)$ into $B_{h}[g]$ sets on $\left(\mathbb{Z}^{d},+\right)$.

Let d, N be positive integers greater than 1 . Let \mathcal{A} denote a subset of \mathbb{Z}^{+}. If $a \in \mathcal{A},[a]_{N}=\left(n_{k}, \ldots, n_{1}, n_{0}\right)_{N}$ represents the integer $a=n_{k} N^{k}+\cdots+n_{1} N+n_{0}$ in base N notation, where k is a nonnegative integer and $0 \leq n_{j} \leq N-1$, for $j=0,1, \ldots, k$. We denote the set obtained from the representation of each element of \mathcal{A} in base N as $[\mathcal{A}]_{N}$. Because every positive integer can be written uniquely in base N, then

$$
|\mathcal{A}|=\left|[\mathcal{A}]_{N}\right| .
$$

Note that if $\mathcal{A} \subseteq\left[0, N^{d}-1\right]$, then $[\mathcal{A}]_{N} \subseteq[0, N-1]^{d}$.
Theorem 3.1. If \mathcal{A} is a $B_{h}[g]$ set contained in $\left[0, N^{d}-1\right]$, then $[\mathcal{A}]_{N}$ is a $B_{h}[g]$ set contained in $[0, N-1]^{d}$.

Proof. Let s be a d-tuple in \mathbb{Z}^{d} obtained as sum of h elements in $[\mathcal{A}]_{N}$. Suppose there exist $g+1$ representations of s as follows

$$
\begin{equation*}
s=\left[a_{1,1}\right]_{N}+\cdots+\left[a_{1, h}\right]_{N}=\cdots=\left[a_{g+1,1}\right]_{N}+\cdots+\left[a_{g+1, h}\right]_{N}, \tag{3}
\end{equation*}
$$

where $a_{i, j} \in \mathcal{A}$ for all $1 \leq i \leq g+1,1 \leq j \leq h$. Consider the representation of each $a_{i, j} \in \mathcal{A}$ in base N as $\left[a_{i, j}\right]_{N}=\left(n_{(d-1, i, j)}, \ldots, n_{(0, i, j)}\right)$. Note that for any $1 \leq i \leq g+1$

$$
\begin{aligned}
{\left[a_{i, 1}\right]_{N}+\cdots+\left[a_{i, h}\right]_{N} } & =\left(n_{(d-1, i, 1)}, \ldots, n_{(0, i, 1)}\right)+\cdots+\left(n_{(d-1, i, h)}, \ldots, n_{(0, i, h)}\right) \\
& =\left(n_{(d-1, i, 1)}+\cdots+n_{(d-1, i, h)}, \ldots, n_{(0, i, 1)}+\cdots+n_{(0, i, h)}\right) .
\end{aligned}
$$

Furthermore
$\left(n_{(d-1, i, 1)}+\cdots+n_{(d-1, i, h)}\right) N^{d-1}+\cdots+\left(n_{(0, i, 1)}+\cdots+n_{(0, i, h)}\right)=a_{i, 1}+\cdots+a_{i, h}$
which implies from (3) that

$$
\begin{equation*}
a_{1,1}+\cdots+a_{1, h}=\cdots=a_{g+1,1}+\cdots+a_{g+1, h} \tag{4}
\end{equation*}
$$

Because \mathcal{A} is a $B_{h}[g]$ set, using (4) we know there exist ℓ, m with $\ell \neq m$ and $1 \leq \ell, m \leq g+1$, such that

$$
\left\{a_{\ell, 1}, \ldots, a_{\ell, h}\right\}=\left\{a_{m, 1}, \ldots, a_{m, h}\right\}
$$

Since representation in base N notation is unique we have

$$
\left\{\left[a_{\ell, 1}\right]_{N}, \ldots,\left[a_{\ell, h}\right]_{N}\right\}=\left\{\left[a_{m, 1}\right]_{N}, \ldots,\left[a_{m, h}\right]_{N}\right\}
$$

That is, it is not possible to have $g+1$ representations of s as sum of h elements of \mathcal{A}. Therefore $[\mathcal{A}]_{N}$ is a $B_{h}[g]$ set contained in $[0, N-1]^{d} \subset\left(\mathbb{Z}^{d},+\right)$.

Example 3.2. Note that $\mathcal{A}=\{1,2,7\}$ is a Sidon set on $\left(\mathbb{Z}_{8},+\right)$. In [12] Trujillo constructs a $B_{2}[2]$ set on $(\mathbb{Z},+)$ as follows

$$
\mathcal{B}:=\mathcal{A} \cup(\mathcal{A}+m) \cup(\mathcal{A}+3 m)=\{1,2,7,9,10,15,25,26,31\},
$$

with $m=8$. Because $\mathcal{B} \subseteq\left[0,2^{5}-1\right]$, using Theorem 3.1 we have that

$$
[\mathcal{B}]_{2}=\left\{\begin{array}{l}
(0,0,0,0,1),(0,0,0,1,0),(0,0,1,1,1),(0,1,0,0,1),(0,1,0,1,0) \\
(0,1,1,1,1),(1,1,0,0,1),(1,1,0,1,0),(1,1,1,1,1)
\end{array}\right\}
$$

is a $B_{2}[2]$ set contained in $[0,1]^{5}$. Note also that $\mathcal{B} \subseteq\left[0,6^{2}-1\right]$, so

$$
[\mathcal{B}]_{6}=\{(0,1),(0,2),(1,1),(1,3),(1,4),(2,3),(4,1),(4,2),(5,1)\}
$$

is a $B_{2}[2]$ set contained in $[0,5]^{2}$.

4. Construction of $B_{h}[g]$ sets on $\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$

This section extend a construction of $B_{h}[g]$ sets given in [5] for $h=2$ and $d=1$, to all $h \geq 2$ and any dimension $d>1$. First, we introduce the following result.

Lemma 4.1. Let G and G^{\prime} be two abelian groups and let $\phi: G \rightarrow G^{\prime}$ define a homomorphism. If \mathcal{A} is a $B_{h}[g]$ set on G and $|\operatorname{Ker}(\phi)|=g^{\prime}$, then $\phi(\mathcal{A})$ is a $B_{h}\left[g g^{\prime}\right]$ set on $\phi(G)$, where $g g^{\prime}$ denotes the product between g and g^{\prime}.

The proof is given in [9].
Now, let m_{1}, \ldots, m_{d} and g_{1}, \ldots, g_{d} be positive integers. Using Lemma 4.1 we have the following result.

Theorem 4.2. Let \mathcal{A} be a $B_{h}[g]$ set on $\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$. If g_{1}, \ldots, g_{d} are divisors of m_{1}, \ldots, m_{d}, respectively, then

$$
\mathcal{B}:=\left\{\left(a_{1} \bmod \frac{m_{1}}{g_{1}}, \ldots, a_{d} \bmod \frac{m_{d}}{g_{d}}\right):\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}\right\}
$$

is a $B_{h}\left[g g_{1} \cdots g_{d}\right]$ set on $\left(\mathbb{Z}_{\frac{m_{1}}{g_{1}}} \times \cdots \times \mathbb{Z}_{\frac{m_{d}}{g_{d}}},+\right)$.
Proof. Using notation used in Lemma 4.1, let $G=\left(\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{d}},+\right)$ and $G^{\prime}=\left(\mathbb{Z}_{\frac{m_{1}}{g_{1}}} \times \cdots \times \mathbb{Z}_{\frac{m_{d}}{g_{d}}},+\right)$ and define the homomorphism $\phi: G \rightarrow G^{\prime}$ as $\phi\left(b_{1}, \ldots, b_{d}\right)=\left(b_{1} \bmod \frac{m_{1}}{g_{1}}, \ldots, b_{d} \bmod \frac{m_{d}}{g_{d}}\right)$. We establish $\operatorname{Ker}(\phi)$ as follows. Note that $\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{Ker}(\phi)$ if and only if $\phi\left(b_{1}, \ldots, b_{n}\right)=(0, \ldots, 0)$, that is, if

$$
\left(b_{1} \bmod \frac{m_{1}}{g_{1}}, \ldots, b_{d} \bmod \frac{m_{d}}{g_{d}}\right)=(0, \ldots, 0)
$$

Note also that $b_{i} \bmod \frac{m_{i}}{g_{i}}=0$ if and only if $b_{i}=k_{i} \frac{m_{i}}{g_{i}}$, for $k_{i} \in\left[1, g_{i}\right]$ and for all $i=1, \ldots, d$, which implies that $b_{i} \bmod \frac{m_{i}}{g_{i}}=0$ in exactly g_{i} values. Thus, $|\operatorname{Ker}(\phi)|=\prod_{i=1}^{d} g_{i}$. Finally, using Lemma 4.1 we have that $\mathcal{B}=\phi(\mathcal{A})$ is a $B_{h}\left[g g_{1} \cdots g_{d}\right]$ set on $\left(\mathbb{Z}_{\frac{m_{1}}{g_{1}}} \times \cdots \times \mathbb{Z}_{\frac{m_{d}}{g_{d}}},+\right)$.

Given q a prime power and \mathbb{F} a field, to illustrate Theorem 4.2 we present a construction of Sidon sets on $\left(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1},+\right)$, which is based on the discrete logarithm ${ }^{1}$ on \mathbb{F}_{q}.

Proposition 4.3. Let $q=p^{n}$ a prime power. If α, β are primitive elements of \mathbb{F}_{q}^{*} and $a \in \mathbb{F}_{q}^{*}$, then

$$
\begin{equation*}
\mathcal{G}(\alpha, \beta, a):=\left\{\left(i, \log _{\beta}\left(a-\alpha^{i}\right)\right): i=1, \ldots, q-1, \alpha^{i} \neq a\right\} \tag{5}
\end{equation*}
$$

is a Sidon set on $\left(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1},+\right)$.
Proof. Suppose there exist $u, v, w, y \in \mathcal{G}(\alpha, \beta, a)$ such that $u+v=w+y$. Using (5) we know that there exist $i, j, k, \ell \in[1, q-1]$ such that

$$
\begin{equation*}
\left(i, \log _{\beta}\left(a-\alpha^{i}\right)\right)+\left(j, \log _{\beta}\left(a-\alpha^{j}\right)\right)=\left(k, \log _{\beta}\left(a-\alpha^{k}\right)\right)+\left(\ell, \log _{\beta}\left(a-\alpha^{\ell}\right)\right) \tag{6}
\end{equation*}
$$

where $\alpha^{i}, \alpha^{j}, \alpha^{k}, \alpha^{\ell}$ are not equal to a. From (6) we have

$$
\begin{aligned}
(i+j) & \equiv(k+\ell) \bmod (q-1) \\
\log _{\beta}\left(a-\alpha^{i}\right)+\log _{\beta}\left(a-\alpha^{j}\right) & \equiv\left(\log _{\beta}\left(a-\alpha^{k}\right)+\log _{\beta}\left(a-\alpha^{\ell}\right)\right) \bmod (q-1),
\end{aligned}
$$

[^0]what implies that $\left(a-\alpha^{i}\right)\left(a-\alpha^{j}\right)=\left(a-\alpha^{k}\right)\left(a-\alpha^{\ell}\right)$. We have in \mathbb{F}_{q}^{*}
\[

$$
\begin{aligned}
\alpha^{i} \alpha^{j} & =\alpha^{k} \alpha^{\ell} \\
\alpha^{i}+\alpha^{j} & =\alpha^{k}+\alpha^{\ell}
\end{aligned}
$$
\]

that is, α^{i}, α^{j}, and $\alpha^{k}, \alpha^{\ell}$ are roots of a polynomial $q(x) \in \mathbb{F}[x]$ of degree 2 (i.e., $\left.q(x)=\left(x+\alpha^{i}\right)\left(x+\alpha^{j}\right)=\left(x+\alpha^{k}\right)\left(x+\alpha^{\ell}\right)\right)$. Therefore, $\left\{\alpha^{i}, \alpha^{j}\right\}=\left\{\alpha^{k}, \alpha^{\ell}\right\}$ and $\{i, j\}=\{k, \ell\}$, which implies that is not possible to have two representations of an element in $\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}$ as sum of two elements of $\mathcal{G}(\alpha, \beta, a)$. That is, $\mathcal{G}(\alpha, \beta, a)$ is a Sidon set on $\left(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1},+\right)$.

Example 4.4. First we apply Proposition 4.3 to construct a Sidon set on $\left\langle\mathbb{Z}_{16} \times \mathbb{Z}_{16},+\right\rangle$. Let $q=p=17$, and let $\alpha=3, \beta=5$ be primitive elements of \mathbb{Z}_{17}^{*}. With $a=1$

$$
\mathcal{G}(3,5,1)=\left\{\begin{array}{l}
(1,14),(2,10),(3,2),(4,1),(5,4),(6,13),(7,15),(8,6), \\
(9,12),(10,7),(11,11),(12,5),(13,3),(14,8),(15,9)
\end{array}\right\}
$$

is a Sidon set on $\left(\mathbb{Z}_{16} \times \mathbb{Z}_{16},+\right)$. Now, if $g_{1}=g_{2}=2$, using Theorem 4.2,

$$
\mathcal{A}=\left\{\begin{array}{l}
(1,6),(2,2),(3,2),(4,1),(5,4),(6,5),(7,7),(0,6), \\
(1,4),(2,7),(3,3),(4,5),(5,3),(6,0),(7,1)
\end{array}\right\}
$$

is a $B_{2}[4]$ set on $\left(\mathbb{Z}_{8} \times \mathbb{Z}_{8},+\right)$.

5. Concluding remarks

Using the constructions given in this work we can obtain lower bounds and closed formulas for $F_{h}^{d}(G, g)$, for some abelian group G and some values of d, h and g.

Note from Theorem 2.1 and Corollary 2.2 that $F_{2}^{h}\left(\mathbb{F}_{q}^{h}\right) \geq q$ for q a prime power. Particularly if $h=2$ and $q=p$ prime we have $F_{2}^{2}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \geq p$, but it is easy to establish that $F_{2}^{2}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)=p$ [7]. A natural question to state is the following: Can we obtain a similar result, as the last one, on the group $\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p},+\right)$? That is,

$$
F_{2}^{3}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \sim p^{3 / 2} ?
$$

Now, using Theorem 3.1, for integers $d, g, N \geq 1$ and $h \geq 2$ we know that

$$
F_{h}\left(N^{d}, g\right) \leq F_{h}^{d}(N, g)
$$

Particularly, if $d=2, h=2$, and $g=1$ we have that $F_{2}^{1}\left(N^{2}\right) \leq F_{2}^{2}(N)$, which implies that good constructions of Sidon sets on \mathbb{Z} give good lower bounds for Sidon sets on $\mathbb{Z} \times \mathbb{Z}$. Furthermore, an interesting work consists in to analyze the behavior of the difference $F_{2}^{2}(N)-F_{2}^{1}\left(N^{2}\right)$ when N grows.

Finally, from Proposition 4.3 we can establish that $F_{2}^{2}\left(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}\right) \geq q-2$, which lead us to wonder if is it possible to state that $F_{2}^{2}\left(\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}\right)=q-1$?

Acknowledgment. We thank to COLCIENCIAS and Universidad del Cauca for the support to our research group "Algebra, Teoría de Números y Aplicacio-nes-ALTENUA ERM" under the projects 110356935047 and VRI-3744. We also thank to the anonymous referee for their helpful comments. This work is dedicated to the memory of Javier Cilleruelo (1961-2016).

References

[1] J. Bravo, D. Ruiz, and C. Trujillo, Cardinality of sets associated to B_{3} and B_{4} sets, Revista colombiana de matemáticas 46 (2012), no. 1, 27-37.
[2] S. Chowla and A. Mian, Solution of a problem of Erdös and Turán in additive-number theory, Proc. Nat. Acad. Sci. India Series A 14 (1944), 3-4.
[3] J. Cilleruelo, Conjuntos de enteros con todas las diferencias distintas, La Gaceta de la RSME 11 (2008), no. 1, 151-170.
[4] \qquad , Sidon sets in \mathbb{N}^{d}, Journal of Combinatorial Theory Series A 117 (2010), no. 7, 857-871.
[5] G. Garcia, C. Trujillo, and J. Velasquez, $B_{2}^{ \pm}[g]$ finite sets, Journal Of Algebra, Number Theory And Applications 4 (2004), no. 3, 593-604.
[6] S. Golomb and G. Gong, The status of Costas arrays, IEEE Transactions on Information Theory 53 (2007), no. 11, 4260-4265.
[7] A. Gómez, D. Ruiz, and C. Trujillo, Construcción de conjuntos de Sidon en dimensión dos, XVIII Congreso Colombiano de Matemáticas, Universidad Industrial de Santander (Colombia), Julio 2011.
[8] C. Gómez and C. Trujillo, Una nueva construcción de conjuntos B_{h} modulares, Matemáticas: Enseñanza Universitaria 19 (2011), no. 1, 53-62.
[9] J. Gómez, Construcción de conjuntos $B_{h}[g]$, Master thesis, Universidad del Valle, Colombia, 2011.
[10] K. O'Bryant, A complete annotated bibliography of work related to sidon sequences, The electronic Journal of Combinatorics-Dynamic Surveys 11 (2004), 39.
[11] L. Rackham and P. Sarka, B_{h} sequences in higher dimensions, The Electronic Journal of Combinatorics 17 (2010), no. 1, R35 (electronic), 15.
[12] C. Trujillo, Sucesiones de sidon, Ph.D. thesis, Universidad Politécnica de Madrid, España, 1998.
(Recibido en abril de 2016. Aceptado en julio de 2016)
Departamento de Matemáticas
Universidad del Cauca
Calle 5 No. 4-70
Popayán, Colombia
e-mail: dfruiz@unicauca.edu.co
e-mail: trujillo@unicauca.edu.co

[^0]: ${ }^{1}$ If θ is a primitive of $\mathbb{F}_{q}, \log _{\theta}(x)$ denotes the unique integer $k \in[1, q-1]$ such that $\theta^{k}=x$ on \mathbb{F}_{q}.

