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1. Introduction

Topological quantum computation is based on the storage and manipulation of
information in the representation spaces of the braid group, which consist of
quantum states of certain topological phases of matter [23]. The most impor-
tant unitary braid group representations for topological quantum computation
are the Jones representations [11], which are described by Temperley-Lieb-
Jones theories. Temperley-Lieb Jones (TLJ) theories are the most ubiquitous
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examples of unitary modular categories. The Jones-Wenzl projectors, or idem-
potents, in TLJ theories can be used to model anyons, quasiparticle excitations
of a topological phase, like those believed to exist in fractional quantum Hall liq-
uids. Hence the proper mathematical language to discuss topological quantum
computation is unitary modular category (UMC) theory and the associated
topological quantum field theory (TQFT). Both UMC and TQFT are highly
technical subjects. However, the representations of the braid group from UMCs
or TQFTs are a more accessible point of entry to the subject. These notes pro-
vide an elementary introduction to some representations of the braid group
coming from UMCs and TQFTs, and their application to topological quantum
computation. We will use the braid group B∞ to mean the direct limit of all
n-strand braid groups Bn for all n ≥ 1, where a representation of the braid
group B∞ is a compatible sequence of representations of Bn.

Our focus is on the representations of the braid group discovered by Jones
in the study of von Neumann algebras [11]. Jones representations are unitary,
which is important for our application to quantum computing. These repre-
sentations also have a hidden locality and generically dense images. Unitarity,
locality, and density are important ingredients for the two main theorems that
we will present:

Theorem 1.1. The Jones representation of the braid group at q = e±2πi/r can
be used to construct a universal quantum computer for values of r not equal to
1, 2, 3, 4, or 6.

Theorem 1.2. The Jones polynomial of oriented links at q = e±2πi/r can be
approximated by a quantum computer efficiently for any integer r ≥ 1.

While unitarity and density are easy to understand mathematically, locality
is not formally defined in our notes as there are several interpretations, one of
which is discussed in Section 6. Essentially, a local representation of the braid
group is one coming from a local TQFT, whose locality is encoded in the
gluing formula. A first approximation of locality would mean a sequence of
representations of Bn with a compatible Bratteli diagram of branching rules.

We motivate our study of the Jones representation and its quantum ap-
plications with the Burau representation, which belongs to the classical world.
The Burau representation leads to the link invariant called the Alexander poly-
nomial, which can be computed in polynomial time on a classical computer.
On the other hand, the link invariant corresponding to the Jones representa-
tion, the Jones polynomial, is #P -hard to compute on a classical computer,
but can be approximated by a quantum computer in polynomial time. This
approximation of quantum invariants by a quantum computer is realized by
the amplitudes of the physical processes of anyons, whose worldlines include
braids.

The contents of these notes are as follows. In section 2, we cover the Burau
representation and Alexander polynomial. In section 3, we discuss the Jones
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representation and Jones polynomial. Section 4 discusses anyons and anyonic
quantum computation. In section 5, we explain the approximation of the Jones
polynomial by a quantum computer. Section 6 is on an explicit localization of
braid group representations. While full details are not included, our presenta-
tion is more or less self-contained with the exception of Thm. 4.21, which is
important for addressing the issue of leakage. An elementary inductive argu-
ment for Thm. 4.21 is possible and we will leave it to interested readers.

2. The Burau Representation and Alexander Polynomial

2.1. The braid group

The n-strand braid group Bn is given by the presentation

Bn =
〈
σ1, σ2, . . . , σn−1

∣∣∣ σiσj = σjσi for |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 1

〉
.

The first type of relation is known as far commutativity and the second is the
braid relation. Using the braid relation, one can check that all of the generators
of the n-strand braid group lie in the same conjugacy class. Therefore, each n-
strand braid group Bn is generated by a single conjugacy class when n ≥ 3.

The names of the relations are inspired by the geometric presentation of the
braid group, in which we picture braids on n “strands”, and the braid generators
σi correspond to crossing the ith strand over the i + 1 strand. Multiplication
bb′ of two braid diagrams b and b′ is performed by stacking b′ on top of b and
interpreting the result as a new braid diagram.

For example, B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉, where σ1 braids the first
two strands and σ2 the latter two.

σ1 = σ2 =

In these notes, we use the “right-handed convention” when drawing braid dia-
grams of braid group generators, so that the overstrand goes from bottom left
to top right. As a result,

σ−1
1 =

Swapping the definitions of σ1 and σ−1
1 would give the “left-handed conven-

tion”.

In the picture presentation, far commutativity expresses the fact that when
nonoverlapping sets of strands are braided, the result is independent of the
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order in which the strands were braided. The braid relation is given by

=

.

The braid relation is called the Yang-Baxter equation by some authors, but we
will reserve use of this phrase because, as will be explained shortly, there is a
subtle difference between the two.

Another useful perspective is to identify Bn with the motion group (fun-
damental group of the configuration space) of n points in the disk D2. Then
the braid relation can be interpreted as saying that given three distinct points
on a line in the disk, if one exchanges the first and third points while keeping
the middle one stationary, then the braid trajectories are the same whether the
exchange is performed in a clockwise or counterclockwise manner.

The braid group, denoted by B∞, is formed by taking the direct limit of the
n-strand braid groups with respect to the inclusion maps Bn ↪→ Bn+1 sending
σi 7→ σi. That is, we identify a braid word in Bn with the same braid word in
Bn+1. In pictures, this inclusion map Bn → Bn+1 adds a single strand after the
braid σ.

2.2. Representations of the Braid Group

For applications of braid group representations to quantum computing, the
braid group representations should be unitary and local. Moreover, for reasons
that are not a priori clear, since the images of the braid generators σi will
eventually be interpreted as quantum gates manipulating quantum bits, they
should be of finite order and have algebraic matrix entries.

Recall that a matrix U is unitary if U†U = UU† = I. We denote by U(r)
the group of r × r unitary matrices. A precise definition of locality requires
interpreting the images of elements of the braid group as quantum gates, and
is relegated to section 4 where quantum computation is discussed.

One important way to obtain representations of the braid group is to find
solutions to the Yang-Baxter equation.

2.2.1. The Yang-Baxter Equation and R-matrix

Let V be a finite dimensional complex vector space with a specified basis, and
let R : V ⊗ V → V ⊗ V be an invertible solution to the Yang-Baxter equation
(YBE):

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R)
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where I is the identity transformation of V . We call such a solution to the YBE
an R-matrix (as opposed to R-operator, since we have a basis with which to
work).

Any R-matrix gives rise to a (local) representation of the braid group via
the identification

σi 7→ · · · R · · ·

For example, in the 3-strand braid group, we can take

σ1 7→ R = R⊗ idV

where R⊗ idV is a map from V ⊗ V ⊗ V to itself.

In general one considers a Yang-Baxter operator as having parameters that
indicate what pair of factors in V ⊗n it acts on: Ri,i+1 = Ii−1⊗Ri,i+1⊗ In−i−1.
Then the Yang-Baxter equation is given by

Then the braid relation and Yang-Baxter equation differ by the choice of
indexing. In the former we keep track of the position of each strand, while in
the latter the labeling of the strands is fixed. For example, if we label the stand
as 1, 2, 3, the braid relation becomes

σ12σ13σ23 = σ23σ13σ12.

2.2.2. Locality and unitarity

The following R-matrix is a 4 × 4 solution to the Yang-Baxter equation for
V = C2 with the standard basis and a ∈ C, and as such is local.

R =


a 0 0 0

0 0 ā 0

0 ā a− ā3 0

0 0 0 a


If R is to be unitary, its columns must be orthonormal. In particular, ā = a−1

and
〈(0, 0, ā, 0)T , (0, ā, a− ā3, 0)〉 = a(a− ā3) = 0.

This implies that a4 = 1, whence the only possibilities for a are ±1 or ±i. One
can check that each of these choices results in R being a unitary matrix.

While representations of the braid group arising from R-matrices are always
local, unlike the example above they rarely unitary. There is a natural tension
between these two properties that make finding such a representation difficult.
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Conjeture 2.1. Any unitary R-matrix which has finite order and algebraic
entries leads to a representation of the braid group with finite image.

It is in general difficult to find nontrivial solutions to the Yang-Baxter equa-
tion. Historically, the theory of quantum groups was developed to address this
problem, but solutions that arise from the theory of quantum groups are rarely
unitary. The state of the art is that for dimV = 1 and dimV = 2, all uni-
tary solutions are known. While a classification for larger dimensions is yet
unknown, there do exist nice examples of 4×4 and 9×9 unitary solutions [23].

These considerations make representations coming from solutions to the
Yang-Baxter equations unlikely candidates for applications to quantum com-
putation. Next we consider the Burau representation.

2.3. The Burau representation of the braid group

There are two versions of the Burau representation: the unreduced representa-
tion, which denoted by ρ̃, and the reduced representation, for which we reserve
the notation ρ.

2.3.1. The unreduced Burau representation

There is a nice probabilistic interpretation of the unreduced Burau representa-
tion that is due to Jones, which we will use as an introduction to the subject
[12]. We start by defining the representation for positive braids, braids for which
all crossings are right-handed. More precisely, σ is positive if it can be written
σ = σskik · · ·σ

si
i1

where si > 0 for each i.

Imagine the braid diagram of a braid σ as a braided bowling alley with n
lanes, where lanes cross over and under one another and at every overcrossing
there is a trap door that will open with probability 1− t when a ball rolls over
it. Of course, due to gravity there is zero probability of a ball on a lower lane
jumping up onto a lane crossing over it. Then starting from the bottom of the
braid and bowling down lane i, it ends up in lane j with some probability,
which we can identify as the ijth entry of a matrix.

Then for positive braids the unreduced Burau representation ρ̃ : Bn →
GLn(Z[t, t−1]) can be defined by assigning each σ ∈ Bn to the matrix ρ̃(σ)
given by

ρ̃(σ)ij =
∑

paths p from i to j

w(p),

where w(p) is the probability corresponding to the path p, which is always of
the form tk(1− t)l for some nonnegative integers k and l.
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For a concrete example, take the following braid, call it σ, in B4.

1 2 3 4

1 2 3 4

Note that the labels mark the relative position of the strands, as opposed to
the strands themselves. The matrix representing σ in GL4(Z[t, t−1]) is then
given by

ρ̃(σ) =


1− t t(1− t) t2(1− t) t3

1 0 0 0

0 1 0 0

0 0 1 0

 .

While the probabilistic interpretation only makes sense for positive braids, the
representation of inverses of braid generators is already determined, for once
we define the representation of a generator, for example

ρ̃
( )

=


1− t t 0 0

1 0 0 0

0 0 1 0

0 0 0 1


,

using that ρ̃ is a group homomorphism it follows that ρ̃(σ1)ρ̃(σ−1
1 ) = I. There-

fore the representation of the σ−1
1 must be given by the inverse of ρ̃(σ1) :

ρ̃
( )

=


0 1 0 0

t̄ 1− t̄ 0 0

0 0 1 0

0 0 0 1


,

where t̄ = 1/t. Thus left-handed crossings are assigned a factor of t̄ for an
overcrossing and 1 − t̄ for an undercrossing. The remaining generators σi of
Bn and their inverses can be represented by extending the construction in the
natural way. Then the representation of an arbitrary braid b = σskik · · ·σ

s1
i1

is
given by multiplying the representations of the constituent σij in the braid
word. This defines the unreduced Burau representation of the braid group.
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As a fun example we introduce the following braid b = σ−1
3 σ2

2σ
−1
3 σ−1

1 , once
drawn by Gauss (see e.g. [5, Figure 2]).

The unreduced Burau representation of the Gauss braid is given by
0 1 0 0

tt̄+ (1− t)2t̄ t(1− t̄) + (1− t)2(1− t̄) 0 (1− t)t
0 0 t̄ (1− t̄)

t̄2(1− t) t̄(1− t)(1− t̄) (1− t̄)t̄ (1− t̄)2 + t̄t

 ,

which has been left unsimplified to make the individual contributions from
paths more transparent.

The unreduced Burau representation of a braid b ∈ Bn has several properties
worth mentioning.

(1) When t = 1, ρ̃(b) is a permutation matrix. This allows one to interpret
ρ̃(b) as a deformation of a permutation matrix.

(2) The representation ρ̃ is reducible.

(3) There exists an invariant row vector (row eigenvector) of ρ̃(b), indepen-
dent of b ∈ Bn.

The first property is clear from the construction of the unreduced Burau rep-
resentation. The second and third properties are closely related, and we prove
them below.

One of the nice aspects of the probabilistic interpretation of the Burau
representation is that it is an immediate consequence of the definition that the
entries in each row of a matrix ρ̃(b) should sum to one, since probability must
be conserved. Put another way,

ρ̃(σ)


1

1
...

1

 =


1

1
...

1

 .

That is, there is a one-dimensional subspace which is invariant under ρ̃(σ), for
any σ ∈ Bn. Therefore the (unreduced) Burau representation is reducible, and
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we can obtain another representation by restricting to the orthogonal subspace
span{(1, 1, . . . , 1)}⊥. This is one way to define the reduced Burau representa-
tion.

Since the determinant of a matrix is equal to the determinant of its trans-
pose, if det(I − ρ̃(b)) = 0 for all b ∈ Bn, then

det((I − ρ̃(b))T ) = det(I − ρ̃(b)T ) = 0

for all b ∈ Bn. Then since ρ̃(b) has an eigenvector, ρ̃(b)T has an eigenvector
v with eigenvalue 1, ρ̃(b)T v = v for some v 6= 0. Taking the transpose of this
matrix equation, we find

vT ρ̃(b) = vT .

This shows that ρ̃(b) has an invariant row vector vT , proving the third property.
In fact, this row vector takes the form

vT = (1, t, t2, . . . , tn−1).

Observing that

(1, . . . , 1, ti, ti+1, 1 . . . , 1)


Ii−1 0 0

0

(
1− t t

1 0

)
0

0 0 In−i−1


= (1, . . . , 1, ti − ti+1 + ti+1, ti+1, 1, . . . , 1),

it follows that vT defines an invariant row vector for the representations of the
braid group generators ρ̃(σi), and hence for all ρ̃(b), b ∈ Bn.

These facts can be used to prove properties of the Alexander polynomial, for
which we need a more concrete definition of the reduced Burau representation.

2.3.2. The reduced Burau representation

An alternative approach to defining the reduced Burau representation yields
an explicit basis.

We find a basis for an invariant subspace of ρ̃(Bn) by looking for eigenvalues
and eigenvectors of ρ̃(σi). We have seen already that (1, 1, . . . , 1)T is an eigen-
vector with eigenvalue 1. One can check that another eigenvector corresponding
to eigenvalue −t is given by (0, . . . , 0, −t︸︷︷︸

i

, 1︸︷︷︸
i+1

, 0 . . . , 0)T .

Proposition 2.1. Let vi = (0, . . . , 0, −t︸︷︷︸
i

, 1︸︷︷︸
i+1

, 0 . . . , 0)T . Then span{v1, . . . , vn−1}

is an invariant subspace of ρ̃(b) for all b ∈ Bn.
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Proof. The image of each vi under ρ̃(b) can be written as a linear combination
of the vj .

ρ̃(σi)vi =


Ii−1 0 0

0

(
1− t t

1 0

)
0

0 0 In−i−1

 =



0
...

0

t2

−t
0
...

0


= −tvi

Similar calculations show

ρ̃(σi)vi−1 = vi−1+vt, ρ̃(σi)vi+1 = −tvi+vi+1, and ρ̃(σi)vj = vjwhen |j−i| ≥ 2.

This verifies that the subspace spanned by the vi is invariant, leading to the
following definition. �X

Definition 2.2. The reduced Burau representation ρ : Bn → GLn−1(Z[t, t−1])

is given by ρ(b) = ρ̃(b)
∣∣∣
span{vi}

.

2.3.3. Unitary Burau representations

Keeping in mind that we are looking for unitary representations of the braid
group, it is natural to ask for which t ∈ C∗ the reduced Burau representation
ρ : Bn → GLn−1(Z[t, t−1]) is unitary.

One can check that the matrix representation corresponding to a braid
group generator fails to be unitary for any choice of t. For example, consider

the braid with corresponding (unreduced) Burau matrix representation(
1− t t

1 0

)
. Then either by direct computation or by noting that (since we

can safely ignore an overall phase factor of -1 without affecting unitarity) for
no choice of t does this matrix admit the familiar parametrization of elements of

SU(2) as

(
a b

−b̄ ā

)
where a, b ∈ C and |a|2 + |b|2 = 1. By extending this obser-

vation to generators of Bn, it follows that the unreduced Burau representation
is never unitary.

However, the situation is not completely hopeless. We end with a theorem
that tells us how to obtain a unitary representation from the reduced Burau
representation.
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Theorem 2.3. Let t = s2 where s ∈ C∗, and define Pn−1 =


1 0 · · · 0

0 s
...

. . .
...

0 · · · sn−1

,

Jn−1 =


s+ s−1 −1 · · · 0

−1 s+ s−1 . . .
...

...
. . .

. . . −1

0 · · · −1 s+ s−1

, and ρs(b) = Pn−1ρ(b)(Pn−1)−1,

where ρ is the reduced Burau representation and b ∈ Bn.

Then ρs is unitary with respect to the Hermitian matrix Jn−1. That is,

(ρs(b))
†Jn−1ρs(b) = Jn−1

Moreover, for those s ∈ C∗ for which Jn−1(s) can be written as Jn−1(s) =
X†X for some matrix X, Xρs(b)X

−1 gives a unitary representation.

Exercise 2.4. Find all s such that Jn−1(s) can be written Jn−1(s) = X†X.

There remain basic questions about the Burau representation to which the
answers are not yet known.

Open problem 2.6. The Burau representation is faithful for n = 1, 2, 3, and
is not faithful for n ≥ 5 [2]. What about when n = 4?

2.4. The Alexander polynomial

The reduced Burau representation of the braid group can be used to construct
a link invariant called the Alexander polynomial. The existence of invariants
which are both powerful and computable is essential to the classification of
any mathematical object. Of course, Nature conspires so that these two char-
acteristics are often hard to satisfy simultaneously. We will see that while the
Alexander polynomial is computable in polynomial time, it is not quite sensitive
enough to distinguish between certain types of knots.

2.4.1. From braids to links

There is a natural way to turn a braid into a link by identifying the top and
bottom strands in an order-preserving manner. This operation is called a braid
closure.

For example, one can check that the closure of the Gauss braid is the connect
sum of two Hopf links.
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2.4.2. The Markov moves

We consider two other operations on braids, conjugation and stabilization, also
known as the Markov moves of type I and type II, and show that performing
either type of operation on a braid does not change the link that is obtained
from the braid closure.

I. Let b, g ∈ Bn. Then conjugation of the braid b by the braid g is given by
the map Bn → Bn

b 7→ gbg−1.

One can see that b̂ = ĝbg−1 through the diagram below.

b

g

g−1

· · ·

· · ·

· · · = g

g−1

b
· · ·

· · ·

· · · = b
· · ·

· · ·

· · ·

II. Let b ∈ Bn, and let Bn be embedded in Bn+1 in the standard way, by
adding a rightmost strand. Then stabilization of the braid b is given by the
map Bn → Bn+1

b 7→ bσ±1
n .

That is, we add a rightmost n + 1st strand to b to identify it as a braid in
Bn+1, and then we braid its nth and n + 1st strands with either an over- or

under-crossing. Once again, the diagrammatic argument that b̂ = b̂σn is clear.

b

· · ·

· · ·

· · · = b

· · ·

· · ·

· · ·
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This move introduces a twist in the braid closure, and hence can be undone
by a Reidemeister move of type 1, so it doesn’t change the link b̂. A similar

argument shows b̂ = b̂σ−1
n .

Not only does manipulating a braid by Markov moves preserve the topology
of the braid closure, but whenever two braid closures agree, their corresponding
braids can be related by a finite number of Markov moves.

Theorem 2.5 (Markov). Consider the map from the set of all braids to the
set of all links given by

{Bn} → {links}

b 7→ b̂.

If b̂1 = b̂2 as links, then b1 and b2 are related by a finite number of moves of
type I or type II and their inverses.

It is easy to see that the map b → b̂ fails to be injective. For the simplest
possible example, take the braid closure of σ1, which gives the unknot.

=

It is also true, although much less trivial to show, that the map is onto. Given
any link there exists a finite number of Reidemeister moves that manipulates
the link until it is in the form of a closure of a braid.

The Markov theorem gives us a way to study links through braid repre-
sentations, since any braid invariant that is also invariant under the Markov
moves can be improved to a link invariant.

2.4.3. The Alexander polynomial

In order for a quantity to be an invariant of links, it must be invariant under
the Markov moves of type I and II. From linear algebra, we know that similar
matrices have the same determinant. It follows that the determinant of the
representation of a braid is invariant under conjugation.

Recall the reduced Burau representation ρ : Bn → GLn−1(Z[t, t−1]) and
define the matrices M(b) = I − ρ(b) and M̃(b) = I − ρ̃(b), where I is the
identity matrix with appropriate dimensions in each equation.

Definition 2.6. For b ∈ Bn, the Alexander polynomial is given by

∆(b̂, t) =
det(M(b))

1 + t+ · · · tn−1
.

Revista Colombiana de Matemáticas
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This establishes the convention that the Alexander polynomial of the unknot

is 1, i.e. ∆
( )

= 1 . We present some results from linear algebra that can

be combined to prove that the Alexander polynomial is a link invariant, and
state some of its properties.

Lemma 2.7. Suppose A is an n× n matrix with the property that there exists
a column vector w = (wi)

T and a row vector u = (uj) satisfying

(1) Aw = 0,

(2) uA = 0,

(3) wi 6= 0, uj 6= 0 for all i, j.

That is, A annihilates w, A is annihilated by u, and the coordinates of w and
u are all nonvanishing. Then

(−1)i+j
det(A(i, j))

uiwj

is independent of i and j, where A(i, j) denotes the i, jth minor of A, that is,
the (n − 1) × (n − 1) matrix obtained by the deleting the ith row and the jth
column from A.

The matrix M̃ satisfies the hypotheses of this lemma. Recall that ρ̃(b) had
eigenvector (1, . . . , 1)T with eigenvalue 1 and invariant row vector (1, t, t2, . . . , tn−1).
If we choose w = (1, . . . , 1)T and u = (1, t, t2, . . . , tn−1), it follows that M̃w = 0
and uM̃ = 0. Evidently the coordinates of both w and u are nonvanishing.
While the details are omitted, this leads to the proof of the next lemma.

Lemma 2.8.
det(M(b))

1 + t+ · · ·+ tn−1
= det(M̃(1, 1)).

This result gives us the freedom to delete any row and column of the matrix
M̃ , whose determinant recovers the Alexander polynomial.

The proof that the Alexander polynomial is indeed a link invariant entails
checking the invariance of ∆(b̂, t) under Markov moves using the lemmas.

There exists an efficient classical algorithm to turn any link L into a braid
closure b̂. For a braid b ∈ Bn, the Burau representation matrix and its deter-
minant can be computed in polynomial time in the number of strands n and
the number and m the number of elementary braids in b.

Theorem 2.9. The Alexander polynomial of a link can be computed in poly-
nomial time by a Turing machine.
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Note that the size of the Burau representation matrix is only (n−1)×(n−1)
for a braid in Bn. As a comparison, we will see later the sizes of the Jones
representation matrices for braids in Bn grow as dn × dn for some number
d > 1 as n→∞.

2.4.4. The Alexander-Conway polynomial, writhe, and skein relation

Having introduced the Alexander polynomial, one can define a related link
invariant - the Alexander-Conway polynomial - through a slight renormalization
and by introducing a quantity called the writhe of a braid.

Let b = σskik · · ·σ
s1
i1
∈ Bn. The writhe or braid exponent is given by e(b) =∑k

i=1 si. Taking z = t1/2− t−1/2, the Alexander-Conway polynomial is defined
as

∆(b̂, z) = (−t1/2)n−e(b)−1∆(b̂, t).

Under this new parametrization the behavior of our knot invariant with respect
to left versus right-handed crossing can be expressed in the elegant form of the
skein relation.

∆

( )
− ∆

( )
= z ∆

( )

Exercise 2.10. Deduce the skein relation from the definition of the Alexander-
Conway polynomial and Lemma 2.8.

3. The Jones Representation and Jones polynomial

In a manner analogous to how the Alexander polynomial is defined in terms of
the Burau representation, another link invariant, the Jones polynomial, can be
studied alongside the Jones representation. Computing the Alexander polyno-
mial is easy in the sense of complexity theory, since there exists a polynomial
time algorithm to compute it. On the other hand, assuming that P 6= NP ,
that is, assuming the longstanding conjecture that the complexity classes cor-
responding to polynomial time and nondeterministic polynomial time are dis-
tinct, computing the Jones polynomial is hard in the sense that there does not
exist a polynomial time algorithm.

In this section we introduce the necessary background material for con-
structing the Jones representation of the braid group: the quantum integers,
the Temperley-Lieb and Temperley-Lieb-Jones algebra, and the Temperley-
Lieb category. Section 4 covers the application of the Jones representation to
quantum computing.
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3.1. Quantum integers

We should conceptualize the quantum integers as deformations of the integers
by q, which we can either think of as generic (a formal variable) or a specific
element of C∗.

Definition 3.1. 1 Let n ∈ Z. Then quantum n, denoted [n]q, is given by

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
.

For instance, [1]q = 1 and [2]q = q1/2 + q−1/2. It is an easy application of
L’Hôpital’s rule to show that [n]q → n in the limit q → 1, recovering the inte-
gers. This shows we can truly think of [n]q as some deformation of n. However,
one must take special care when performing arithmetic with quantum inte-
gers, since the familiar rules of arithmetic need not apply. However, there is
one important relation from integer arithmetic that still holds, the “quantum
doubling” formula.

Proposition 3.2. [2][n] = [n+ 1] + [n− 1].

This identity will reappear once we have introduced the Temperley-Lieb
algebra.

3.2. The Temperley-Lieb algebra TLn(A)

Our goal is to find braid group representations with properties that are useful
for quantum computation. In particular we want to be able to identify elements
of the image of these representations with matrices. Towards this end we pass
through either the Temperley-Lieb algebra or the Temperley-Lieb-Jones algebra.
To motivate the construction of the Temperley-Lieb algebras, we recall the
following theorem that dictates how the the group algebra for a finite group G
decomposes into the irreducible representations of G [10].

Theorem 3.3. Let G be a finite group, and C[G] = {
∑
agg | ag ∈ C} be the

group algebra of G over C. Then

C[G] ∼=
⊕
i

(dimVi)Vi,

where the Vi are a complete set of representatives of the isomorphism classes
of finite-dimensional irreducible representations of G.

1There are two conventions in the literature when defining the quantum integers, depend-
ing on whether a factor of 1/2 appears in the exponents; quantum n is sometimes defined as

[n]q = qn−q−n

q−q−1 .
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To illustrate the theorem we recall the representation theory of S3. There
are three irreducible representations: the trivial, sign, and permutation repre-
sentations, say U,U ′, and V , respectively. Then C[S3] = U ⊕ U ′ ⊕ 2V . Hence,
as an algebra, C[S3] decomposes as C⊕ C⊕M2(C).

While we can completely describe C[G] when G is finite, when G is infinite,
as in the case of G = Bn, we don’t have the same luxury. In order to get a
handle on C[Bn] we pass to a finite-dimensional quotient. The first step in this
process is to construct the Hecke algebra.

3.2.1. The Hecke algebra Hn(q)

Hereafter we will work in one of two fields, C or Q(A), the latter of which we
use to denote the field of rational functions in the Kauffman variable A over
C. When we are interested in the generic Temperley-Lieb algebra, we work in
Q(A), while in general specialize to a choice of A in C. For now we use F to
denote the field Q(A).

The elements of the braid group algebra F[Bn] = {
∑
agg | g ∈ Bn, ag ∈ F}

are called formal (or quantum) braids. To motivate what relations we should
quotient out by, we record a few observations.

Recall the presentation of the braid group

Bn =
〈
σ1, σ2, . . . , σn−1

∣∣∣ σiσj = σjσi for |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 1

〉
.

Taking the quotient of Bn by the normal subgroup generated by the σ2
i results

in a group isomorphic to Sn. Thus there is a surjection of the braid group onto
the symmetric group, and we have an exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1.

This implicitly defines PBn, the pure braid group on n-strands, which will
be revisited in Section 4. In particular, we can get a representation of the
braid group by precomposing with a representation of the symmetric group.
However, such a representation will not encode all of the information about
the braid group that is needed for computation. Instead one must look for
representations which do not factor through Sn.

Consider the quotient of F[Bn] by quadratic relations σ2
i = aσi + b, for

i = 1, . . . , n−1, where a and b are independent of i. Note however that a and b
are not independent of one another, since we can rescale by setting σ̃i = σi/a.
Then the relation becomes

σ̃i
2 = σ̃i + b/a2.

In other words, we can just take a = 1, so that the relation is parametrized by
b. Taking the quotient of F[Bn] by this relation defines a Hecke algebra.

Revista Colombiana de Matemáticas
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Definition 3.4. The Hecke algebra Hn(A) is the quotient F[Bn]/I of the braid
group algebra, where I is the ideal generated by σ2

i − (A − A−3)σi − A−2 for
i = 1, . . . , n− 1.

A presentation on generators and relations of the Hecke algebra further
elucidates its structure. Renormalizing via q = A−4, and defining a new set of
generators by gi = A−1σi, we can define

Hn(q) =

〈
g1, g2, . . . , gn−1

∣∣∣∣∣
gigj = gjgi for |i− j| ≥ 2

gi+1gigi+1 = gigi+1gi

g2
i = q−1gi + q

〉
.

Due to the Hecke relation g2
i = q−1gi + q, Hn(q) (and hence Hn(A)) is finite-

dimensional.

3.2.2. A presentation of the Temperley-Lieb algebra on generators and relations

In order to obtain the Temperley-Lieb algebra, we must pass through one more
quotient. Reparametrizing once again, rescaling the generators of Hn(q) by
defining ui = Aσi − A2 and d = −A2 − A−2 = −[2]q, the Hecke algebra
relations become the following.

• uiuj = ujui when |i− j| ≥ 2 (far commutativity)

• uiui+1ui − ui = ui−1uiui−1 − ui−1 (braid relation)

• u2
i = dui (Hecke relation)

To obtain the Temperley-Lieb algebra, we set the braid relation above to 0, so
impose one additional relation:

• uiui±1ui = ui

Definition 3.5. The generic Temperley-Lieb algebra TLn(A) is the quotient
of the Hecke algebra Hn(q)/I, where I is the ideal generated by uiui±1ui− ui.

The generic Temperley-Lieb algebra TLn(A) is semisimple (also called a
multi-matrix algebra), a direct sum of matrix algebras Mni

(F). This is the fact
that enables us to work with matrix representations of the braid group, which,
if unitary, can be thought of physically as quantum gates. Understanding how
TLn(A) decomposes into matrix algebras is the key to applying the Jones
representation to quantum computation.

Theorem 3.6. If A is generic, then TLn(A) is semisimple. If A ∈ C∗, then
TLn(A) is not in general semisimple.

We will return to the semisimple structure of TLn(A) after introducing its
picture presentation, in which computations can be performed using a graphical
calculus.
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3.2.3. A picture presentation of the Temperley-Lieb algebra

In the graphical calculus the variable d = −A2−A−2 previously defined in the
context of the presentation of TLn(A) with generators and relations takes on
an important role. The variable d is called the loop variable, for reasons that
will soon be clear.

Definition 3.7. A diagram in TLn(A) is a square with n marked points on
the top edge and n marked points on the bottom edge, and these 2n boundary
points are connected by non-intersecting smooth arcs. In addition, there may
be simple closed loops in the diagram.

An equivalent diagram can be obtained by multiplying by a factor of d
for each closed loop removed, and we say two diagrams are the same if they
are d-isotopic, that is, if they are isotopic and the boundary points are of the
respective diagrams are paired in the same way.

An arbitrary element of TLn(A) is a formal sum of diagrams, where each
diagram is a word in the generators ui. The diagram of ui has a “cup” on the
top edge connecting the ith and i + 1st marked points, and a “cap” on the
bottom edge connecting the ith and i + 1st marked points. The jth marked
point on the top edge is connected to the jth marked point on the bottom edge
by a “through strand”.

· · ·

u1

,
· · ·

u2

, . . . ,
· · ·

ui
, . . . ,

· · · · · ·

un−1

Multiplication of diagrams is performed by vertical stacking followed by rescaling-
if D1, D2 ∈ TLn(A), then D1 · D2 is given by stacking D2 on top of D1 and
rescaling to a square.

D1

D2

The Temperley-Lieb relations, far commutativity, the braid relation, and the
Hecke relation, can all be verified using the graphical calculus. For example,
the Hecke relation is illustrated by

u2
i =

· · ·

· · ·

· · ·

· · ·

= dui.
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Exercise 3.8. Show that the generators ui satisfy far commutativity and the
braid relation.

Theorem 3.9. The diagrammatic algebra for TLn(A) is isomorphic to the
abstract Temperley-Lieb algebra given by generators and relations.

The proof of this result is made difficult by the diagrammatic algebra being
defined up to d-isotopy.

As a vector space, TLn(A) is generated by all the Temperley-Lieb diagrams
in TLn(A), of which there are Catalan number cn = 1

n+1

(
2n
n

)
many up to d-

isotopy. In order to prove that the set of Temperley-Lieb diagrams forms a basis
of TLn(A) as a vector space, one must show that there are no linear relations
among the diagrams. This can be done by introducing an inner product on
TLn(A), defined through the Kauffman bracket and a map called the Markov
trace, which can be thought of as a “quantum” analogue of the braid closure.

3.2.4. The Kauffman bracket

To find finite dimensional representations of the braid group, we begin by look-
ing for an algebra homomorphism from the braid group algebra to finite matrix
algebras,

ρ : F[Bn]→
⊕
i

Mni(F).

A finite dimensional representation of Bn is then obtained via the restriction
of ρ to the braid group, ρ

∣∣
Bn

. The Kauffman bracket 〈·〉 : F[Bn]→ TLn(A) is
an algebra homomorphism which we can think of as producing Temperley-Lieb
diagrams from formal braids by resolving crossings in the braid group algebra.

i i+1

= A

i i+1

+ A−1

i i+1

In terms of braid group generators and Temperley-Lieb generators, the Kauff-
man bracket is expressed by

σi = AI +A−1ui.
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3.2.5. The Markov trace

The Markov trace of a diagram is the map Tr: TLn(A) 7→ F that sends a
diagram D to its tracial closure.

D

· · ·

· · ·

· · · = d # loops

This defines the Markov trace on a basis of diagrams of TLn(A), and by ex-
tending linearly it is defined on all of TLn(A). From the trace one can define
an inner product 〈·, ·〉 : TLn(A)× TLn(A)→ F given by

〈D1, D2〉 = Tr(D1D2).

where the bar over a diagram denotes the diagram obtained by reflecting across
the horizontal midline.

D̄ =
D

Now the question of whether the diagrams in TLn(A) are linearly independent
can be translated into the question of whether the Gram matrix (M)ij =
〈Di, Dj〉 has determinant zero. M is a cn × cn matrix, where cn is the nth
Catalan number. While the details are not provided here, it is possible to
express the determinant of M in the closed form

det(M) =

n∏
i=1

∆i(d)an,i

where an,i =
(

2n
n−i−2

)
+
(

2n
n−i
)
− 2

(
2n

n−i−1

)
and ∆i(x) is the ith Chebyshev

polynomial of the second kind, defined recursively by ∆0 = 1,∆1 = x, and
∆i+1 = x∆i −∆i−1.

Therefore generic Temperley-Lieb diagrams are linearly independent, but
whenever the loop variable d is a root of a Chebyshev polynomial appearing in
the determinant of the Gram matrix, there is some linear dependence among
the Temperley-Lieb diagrams. The Chebyshev polynomials are related to the
quantum integers, which we will see later.

3.3. The Jones polynomial

To motivate the form that the Jones polynomial takes, we investigate the prop-
erties that would be needed for a quantity to give an invariant of a link. Given
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a braid b ∈ Bn, we can apply the Kauffman bracket 〈·〉 to resolve the cross-
ings, resulting in a sum of 2n Temperley-Lieb diagrams. Then 〈b〉 ∈ TLn(A),
and we can apply the Markov trace. Thus we can consider their composition
Tr〈·〉 : Bn → {links}. For example,

Tr〈 〉 = A + A−1 = Ad2 +A−1d = −A3d

A similar computation shows that the Markov trace of the Kauffman bracket
applied to the left handed crossing evaluates to −A−3. However, if we calculate
the trace of the unknot, which is topologically equivalent to the closure of the
right-handed crossed, the result is d. While Tr〈·〉 is too sensitive to provide
a knot invariant, it can be calibrated by multiplying a factor of (−A−3)e(b),
where e(b) is the writhe of the braid b introduced in Section 2.

We are now ready to define the Jones polynomial2 of a link.

Definition 3.10. Let b ∈ Bn, and let L = b̂ be the link obtained from the
braid closure of b. Then the Jones polynomial J(L, q) of L is given by

J(L, q) =
(−A−3)e(b)Tr〈b〉

d
.

The reason for the factor of d in the denominator is to set the convention that
the Jones polynomial of the unknot be equal to 1. It is necessary to point out
the the Jones polynomial is not well defined if we try to evaluate at a general
link instead of a braid closure - in order to make sense of the Jones polynomial
of a link, it must be oriented.

By the Markov theorem, we know that whenever two links arising from
braid closures are equal, they are related by a finite number of Markov moves.

Therefore, it must be verified that the Jones polynomial is invariant under
the Markov moves. An diagrammatic argument identical to that for demon-
strating the invariance of the Alexander polynomial under the braid closure
can be given.

Let a, b ∈ Bn. Invariance under conjugation can be seen by sliding diagrams
around their tracial strands. The proof-by-picture is identical to that provided
for the proof of invariance of the Markov moves under braid closure, except
one replaces the braid diagram b by a Temperley-Lieb diagram. Similarly if
a = bσ±1

n , then the diagrammatic proof of invariance under stabilization is
analogous to that for braids, except now we introduce a factor of −A∓3 to
correct for the writhe introduced by σ±1

n .

2Technically J(L, q) is a Laurent polynomial in q1/2, but it is still referred to as a poly-
nomial in the literature.
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3.3.1. Example: the Jones polynomial of the trefoil knot

We end this discussion of the Jones polynomial with a famous example - the

right-handed trefoil knot, σ̂3
1 .

There are three crossings, and hence 23 = 8 terms in the resolution 〈σ3
1〉. The

terms can be organized by a binary tree of depth 3, where each edge is labeled
by a “+” or a “−” according to the term in the Kauffman bracket. We compute
the “ – + –” term as an example.

= −A−3 · (A−1 ·A ·A−1) · d2

One can check that J(σ̂3
1 , q) = q+q3−q4. It turns out that the Jones polynomial

of the left-handed trefoil knot is different. This is an improvement over the
Alexander polynomial, which cannot distinguish a knot from its mirror image.

Open problem 3.11 Does there exist a nontrivial knot with the same Jones
polynomial as the unknot? Are there knots which are topologically different
from their mirror image but have the same Jones polynomial? How does one
interpret the Jones polynomial in terms of classical topology?

Exercise 3.11. Let IK denote an invariant of knots. Then IK naturally extends
to knots with double points, via

IK

( )
= IK

( )
− IK

( )
.

Now let k be a knot, and let q = eh, where h is a formal variable. Then the
Jones polynomial has the property that

J(k, eh) =
∑

vih
i
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where the vi are knot invariants and the series is potentially infinite. The
Alexander polynomial has the same property, and in the series expansion

∆(k, z) = 1 + c2z
2 + c4z

4 + · · ·

the ci are known as the Vassiliev invariants.
(a) Show that v1 = 0.
(b) Show that if there are more than three double points, c2 = v2 = 0.
(c) Show that v2 = −2c2.

3.4. The generic Jones representation

While the Alexander polynomial was defined in terms of the Burau represen-
tation of the braid group, we were able to formulate a definition of the Jones
polynomial that did not depend on the Jones representation. However, in or-
der to approximate the Jones polynomial on a quantum computer, the Jones
representation of the braid group must be understood. The definition of the
Jones representation depends on how the Temperley-Lieb algebras decompose
into direct sums of matrix algebras.

Definition 3.12. The Jones representation ρk,n at level k of the n-strand braid
group is given by the image of the braid group under the Kauffman bracket

〈·〉 : F[Bn]→ TLn(A) =
⊕
i

Mni(F).

To be precise, the braid group algebra F[Bn] is resolved into the Temperley-
Lieb algebra TLn(A) via the Kauffman bracket 〈·〉, and then after identifying
the Temperley-Lieb algebra as a direct sum of matrix algebras

⊕
iMni

(F),
restricting to the braid group gives a representation of Bn.

There is a standard way to decompose an algebra as a direct sum of matrix
algebras by finding its matrix elements, elements eij satisfying eijekl = δjkeil.
To motivate the form of that such elements take in TLn(A), we work out the
solution for some small values of n.

3.4.1. Example: matrix decomposition of TL2(A)

TL2(A) is generated as a vector space by the diagrams and which we
denote by 1 and u1, respectively. We look for elements e1 and e2 satisfying
e2

1 = e1, e2
2 = e2, and e1e2 = e2e1 = 0. For then we could identify

e1 −→
(

1 0

0 0

)
and e2 −→

(
0 0

0 1

)
.
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The choice of e1 = 1− 1
du1 and e2 = 1

du1 results in two matrix elements. Indeed,
the following equations show that idempotency and centrality of these choices
of ei follow from the Hecke relation.

e2
1 = (1− 1

d
u1)(1− 1

d
u1) = 1− 2

d
u1 +

1

d2
u2

1 = 1− 2

d
u1 +

d

d2
u1 = 1− 1

d
u1 = e1,

e2
2 = (

1

d
u1)2 =

1

d2
u2

1 =
1

d
u1 = e2, and

e1e2 = (1− 1

d
u1)

1

d
u1 = e2e1 =

1

d
u1 −

1

d
u1 = 0.

Therefore, the decomposition of a generic Temperley-Lieb algebra at n = 2 is
given by TL2(A) ∼= F⊕ F.

3.4.2. Example: matrix decomposition of TL3(A)

As a vector space TL3(A) is spanned by , , , , and . By a
dimension argument, it is immediate that if TL3(A) is to be a matrix algebra,
then we must have TL3(A) ∼= F ⊕M2(F). Thus one must find an idempotent

element p to identify with the matrix

1 0 0

0 0 0

0 0 0

.

The element

+ 1
d2−1

(
+

)
− d

d2−1

(
+

)

has the desired property. We will come to know this element of TL3(A) as the
Jones-Wenzl projector p3.

One can check that the following ẽij , once properly normalized, extend p
to a set of matrix elements.

ẽ11 = , ẽ21 = − 1
d , ẽ12 = − 1

d

ẽ22 = − 1
d − 1

d + 1
d2

Already in the case of n = 3, our matrix elements are becoming unwieldy. We
remark that if TLn(A) ∼=

⊕
Mni(F), then the dimension of the Temperley-Lieb

algebra, namely the Catalan number cn, can be written as a sum of squares

1

n+ 1

(
2n

n

)
=
∑
i

n2
i .
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For example, this relation gives the decompositions 14 = 1 + 4 + 9, 42 =
1 + 16 + 25, and 132 = 1 + 25 + 25 + 81.

The general theory of how TLn(A) decomposes into matrix algebras is
governed by elements of the Temperley-Lieb algebra called the Jones-Wenzl
projectors, which are minimal central idempotents. While the details of the
general theory are beyond the scope of these notes, studying the Jones-Wenzl
projectors is essential for using the graphical calculus to compute the Jones
representation, of which we provide an example in Section 4.

3.5. The Jones-Wenzl projectors pn

The following theorem characterizes the Jones-Wenzl projectors.

Theorem 3.13. There exists a unique nonzero element pn in TLn(A) such
that
(1) p2

n = pn,
(2) uipn = pnui = 0 for all i = 1, . . . , n− 1.

The proof of this theorem is outlined as follows. First we prove uniqueness.
Suppose that pn and p′n satisfy (1) and (2), and write pn = c0 · 1 +

∑n−1
i=1 ciui,

where we have simply used the fact that {1, u1, . . . , un−1} form a basis of
TLn(A) as a vector space. Immediately, the condition p2

n = pn forces c0 = 1,
since

p2
n = (c0 · 1 +

n−1∑
i=1

ciui)
2 = c20 + · · · = pn.

Hence c20 = c0, and so c0 = 1. So we can write pn = 1 +
∑n−1
i=1 ciui and

p′n = 1 +
∑n−1
i=1 c

′
iui. Then one can check that p′n = pnp

′
n = pn.

As for existence, we provide an explicit construction. We will use the nota-
tions

pn =
n

=
n

to represent the nth Jones-Wenzl projector.

Define p1 = , p2 = − 1
d and define pn inductively by

pn+1 =
n
− ∆n−1(d)

∆n(d)
· · ·

where ∆n = Tr(pn) is the Markov trace of the nth Jones-Wenzl projector. It is
straightforward to verify that this construction results in idempotent objects
that annihilate the generators of the Temperley-Lieb algebra.
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Open problem 3.14. Does every diagram ui appear in pn+1? (This question
was answered affirmatively by Brannan and Collins after this manuscript was
prepared. [3])

3.5.1. The recursive definition of pn and the quantum doubling formula

The coefficients ∆n can be calculated explicitly. For now we will take it as fact
that ∆n = (−1)n[n+ 1].

We can recover the formula [2][n] = [n+1]+[n−1] from quantum arithmetic
that we proved previously. Recall that d = −A2−A−2 = −q1/2−q−1/2 = −[2]q.
Taking the Markov trace of both sides of the recursive formula for pn+1 gives

Deltan+1 = d∆n −
∆n−1(d)

∆n(d)
∆n.

and hence

(−1)n+1[n+ 2] = (−1)n[n+ 1](−[2])− (−1)n−1[n].

After simplifying this becomes

[n+ 2] = [2][n+ 1]− [n],

which after rearranging and reindexing the terms recovers the quantum dou-
bling formula.

3.6. The non-generic Jones representation of the braid group

The generic Jones representation of the braid group was given by the image
of a braid in the matrix algebra decomposition of the generic Temperley-Lieb
algebra. What happens for specific A ∈ C∗? Towards physical applicaitons
the first question one might ask is what values of A result in a unitary Jones
representation.

Let A ∈ C and suppose ρ(σi)
† = ρ(σ−1

i ) for i = 1, 2, . . . , n. Then assuming

u†i = ui, one can check that

ρ(σi)
†ρ(σ) = (A†+(A−1)†u†i )(A+A−1ui) = |A|2+|A−1|2dui+ui(A†A−1+(A−1)†A)

is equal to 1 when |A| = 1. One can also show that u†i = ui and |A| = 1
are actually necessary conditions for ρ to be a unitary representation. That is,
A ∈ S1. This answers the question of unitarity.

More can be said about what happens for specific value of the Kauffman
variable A. Recall the recursive definition of the Jones-Wenzl projector pn+1,

which involves the coefficient ∆n−1

∆n
. Thus if A is a root of ∆n, the Jones-Wenzl

projector pn+1 is undefined. The following proposition characterizes when A is
a root of ∆n.
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Proposition 3.14. ∆n = (−1)n[n+ 1] = (−1)n A
2n+2−A−2n−2

A2−A−2 .

Corollary 3.15. The Jones representation is well-defined when A is not a root
of unity.

To see what can go wrong when A is a root of unity, consider TL2(A) =
C[1, u1] when A is a primitive eighth root of unity. Then −A−2 = A2 and
hence d = −A2 − A−2 = 0. But then TL2(A) = C[1, x] where x2 = 0, which
is not a matrix algebra. For suppose TL2(A) were a matrix algebra. Then the
dimension would force the isomorphism TL2(A) ∼= C ⊕ C, and there would
exist two central idempotents e1 and e2. Let e1 = a + bx. Then (a + bx)2 =
a2 + 2abx+ b2x2 = a2 + 2abx = a+ bx, which has no consistent solution.

This is illustrative of a general problem that we may not necessarily get a
matrix algebra when A is a root of unity. We bypass this difficulty by passing
to a quotient of the Temperley-Lieb algebra which is semi-simple, called the
Temperley-Lieb Jones algebra. Then the non-generic Jones representation is
defined in analogy with the generic definition, as the image of the braid group
in a matrix algebra decomposition of TLJn(A).

3.7. The Temperley-Lieb-Jones algebra TLJn(A)

Let r ≥ 3, and let be A is a primitive 4rth root of unity if r is even or a
primitive 2rth root of unity if r is odd.

Definition 3.16. The Temperley-Lieb-Jones algebra, denoted by TLJn(A), is
the semisimple algebra formed by taking the quotient of TLn(A) by the (r−1)st
Jones-Wenzl projector pr−1.

Open problem 3.17 Given a finite-dimensional algebra, taking the quotient
by a Jacobson radical gives a semisimple algebra. Is the Jones-Wenzl quotient
the same as the Jacobson quotient?

Now that we understand how the Jones representation is defined as a matrix
representation, we turn to the matters of computing representation, studying
its properties, and understanding how it can be used to perform quantum
computation.

3.8. The Temperley-Lieb category TLJ(A)

The Jones representations of an n-strand braid group are determined by how
TLn(A) or TLJn(A) decomposes into matrix algebras. In order to discuss the
physical applications, we must make the connection between TLJn(A) and
anyons. This requires organizing the Temperley-Lieb-Jones algebras {TLJn}
in a Temperley-Lieb category. The objects of this category will be finite sets
of points a1, . . . , an in the unit interval [0, 1], allowing for the empty set, each
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point colored by an element of the label set L = {0, 1, . . . , k} where at each
marked point there is a Jones-Wenzl projector pan .

Given two objects, which we label Xa1,...,an and Xb1,...,bm , where the sub-
script indicates the integer labeling of the specified points, the morphisms are
as follows. If m + n is odd, then the only morphism between the two objects
is the zero morphism. If however m + n is an even number, then the set of
morphisms is given by the span of all Temperley-Lieb-Jones diagrams connect-
ing the points Xai and Xbj , together with disjoint unions of loops colored by
natural numbers. That is,

Hom(Xa1,...,an , Xb1,...,bm) = F[colored TL diagrams connecting
∑

ai +
∑

bj ]

modulo the following three relations.

• ©i = ∆i

• relative d-isotopy

• pk+1 = 0

Note that since pk+1 vanishes in TLJ(A), the recurrence relation for Jones-
Wenzl projectors implies that pm vanishes for all m > k + 1. The following
three properties of the category are immediate from the definition.

Proposition 3.17.

(1) TLJ(A) is a C-linear category

(2) Hom(X,X) is an algebra for all X

(3) Hom(X,Y ) is a Hom(X,X)−Hom(Y, Y ) bimodule

3.8.1. Trivalent vertices

The trivalent vertex is the most fundamental part of the Temperley-Lieb cat-
egory and the key to understanding the morphism spaces.The following figure
from [23] gives the resolution of a labeled trivalent vertex into Temperley-Lieb
diagrams.

c

ba =

pc

pbpa

The labeling of the trivalent vertex is subject to the following conditions:
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(1) a+ b+ c is even (“parity”)

(2) a+ b ≥ c, b+ c ≥ a, and c+ a ≥ b (“triangle inequality”)

(3) a+ b+ c ≤ k (“positive energy condition”)

For example, the trivalent vertex with each edge labeled by 2 is depicted below.

2

22 =

The following definition frames some of the objects we have already encountered
in the TLJ category.

Definition 3.18.

(1) As an algebra, TLJn(A) is the Hom space of n points on the unit interval,
each marked by 1, with itself. We will denote this by Hom(1⊗n, 1⊗n).
More generally, the shorthand a stands for the object with one point in
the unit interval, marked by a.

(2) The colored Temperley-Lieb-Jones algebra is given by Hom(a⊗n, a⊗n),
where a ∈ {0, 1, . . . , k}.

(3) The Jones representation for TLJn(A) is given by its image on
⊕

ni
Hom(i, 1⊗n).

The colored Jones representation is defined analogously for the colored
Temperley-Lieb-Jones algebra.

3.8.2. Physical interpretation of TLJ(A)

We want to have a physical interpretation to go along with our definition
of TLJ(A). Morphisms in the category, which are Temperley-Lieb-Jones di-
agrams, depict quantum processes of anyons, the quasi-particle excitations of
a 2D topological quantum system, such as those theorized to exist in fractional
quantum Hall states.

In terms of the mathematical formalism:

Definition 3.19. An object X in the Temperley-Lieb-Jones category is simple
if the morphism space Hom(X,X) ∼= C, in which case we say X is an anyon.

The number of distinct types of anyons is dictated by k, the level of the
theory, and each type of anyon has an associated number, called its quantum
dimension.
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Definition 3.20. The quantum dimension of a ∈ L, thought of as a repre-
sentative of an isomorphism class of simple objects, is given by the loop value
da =©a.

The structure of the category captures the notion of fusion of particles.

Definition 3.21. The fusion rules are the collection {N c
ab = dimHom(a⊗b, c) |

a, b, c ∈ L}. More compactly, the fusion rules are implicitly defined through the
equation

a⊗ b =
⊕
c

N c
abc

where c runs over the label set {0, 1, 2, . . . , k}.

Anyons generalize bosons (like photons) and fermions (like electrons) in
two dimensions. Given n indistinguishable particles, with locations x1, . . . , xn,
then the type of particle is determined by what happens to their wavefunction
ψ(x1, . . . , xn) upon interchanging their locations. For bosons, interchanging
produces no change, while for fermions, a negative sign is generated by the
interchange of any particles. That is

ψ(x1, . . . , xi, . . . , xj , . . . , xn) = ±ψ(x1, . . . , xj , . . . , xi, . . . , xn)

depending on whether the particles are bosons or fermions. When we allow the
wavefunction to be altered by an arbitrary phase eiθ, then we have an anyon.
For natural reasons one only considers rational phases of the form eiπp/q where
p, q ∈ Z. The reason allowing an arbitrary phase produces this more general
picture in two dimensions is due to the fact that there are no nontrivial knots
in R4. More precisely, if S1 ↪→ R4 is an embedding, then the image of S1 can
always be isotoped to the trivial knot.

For topological quantum computation, we are interested in values of k for
which the corresponding topological phase of matter features anyons which are
nonabelian, i.e. those for which the representations of the braid group have
non-abelian image for n large enough.

4. Anyon Systems and Anyonic Quantum Computation

In this section we describe the algebraic theory of anyon systems, which is given
by the Temperley-Lieb-Jones category TLJ(A) for a fixed A = ± i e±2πi/4r,
whose associated TQFT is known as the Jones-Kauffman theory at level k. The
focus will be on two theories, the Ising theory and the Fibonacci theory. In this
section, we will use the terms anyon and Jones-Wenzl projector interchangeably.
Anyons can be modeled by simple objects in unitary modular categories; Jones-
Wenzl projectors represent simple objects in Jones-Temperley-Lieb categories.

Anyons can be harnessed to store and manipulate quantum bits, or qubits,
leading to a model of quantum computation whose topological nature endows
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it with a special robustness. Braiding the anyons gives a quantum gate that
acts on qubits via the Jones representation. Given a specific anyon model of
level k described by a Temperley-Lieb Jones category TLJ(A), understanding
the image of the Jones representation ρk,n : Bn → TLJn(A) ∼=

⊕
ni
Mni

(C)
is tantamount to assessing the power of the anyons to perform quantum com-
putation. At minimum the images of the braid group representations must be
infinite and dense in order for the model to be universal for quantum compu-
tation by braiding alone, that is, powerful enough to accurately and efficiently
perform quantum computation.

This section is organized as follows. First we introduce the Ising and Fi-
bonacci theories. Then for each of the two theories we investigate the dimen-
sions of certain Jones representations by counting admissible labelings of fusion
trees, and demonstrate how to encode a qubit with two dimensional representa-
tions. Then we show how to compute the Jones representation of the four-strand
braid group at level 2, and trivial total charge. After introducing the R-symbols
and F -symbols, data coming from the categorical structure of TLJ theories,
we sketch how to compute the Jones representation of the three-strand braid
group at level 3, with nontrivial total charge. Finally, with representations for
the Ising theory and Fibonacci theory in hand, we present some results about
their images and interpret the consequences for their corresponding anyonic
models of quantum computation.

4.1. Introduction

We begin by setting the parameters of the theory TLJ(A) that will describe
our anyon model. Pick an integer r ≥ 3, and choose A ∈ {±ie±2πi/4r}. This
choice of the Kauffman variable ensures that the associated braid group repre-
sentations are unitary, which is necessary for them to be physically meaningful.
Then the level of the theory for this choice of A is k = r−2. For each level, there
are 4 essentially equivalent theories, depending on which of the four choices of
A are made. Then the loop variable d can be expressed in terms of the level by
the equation

d = −A2 −A−2 = e±4πi/4r − e∓4πi/4r = 2(cosπ/r) = 2 cos
π

k + 2
.

The first few levels k = 1, 2, 3 then correspond to d = 1,
√

2, φ, where φ = 1+
√

5
2

is the golden ratio.

4.1.1. Level 1

As a warmup to the TLJ(A) theories that will be useful for quantum compu-
tation, we begin with level k = 1. The loop variable becomes d = 2 cos π3 = 1,
giving us the freedom to create and destroy loops as we please without having
to account for them with a multiplicative factor.
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The (k + 1)st Jones-Wenzl projector that vanishes in TLJn(A) is given by

p2 = − and hence = in the level 1 theory. This category is

equivalent to the category of super-vector spaces; it describes the trivial free
fermion topological theory.

4.1.2. The Ising and Fibonacci theories

We first introduce the two anyon models in parallel, choosing

A =

{
ie−2πi/16 k = 2 (Ising)

ie2πi/20 k = 3 (Fibonacci)
.

TLJ(A) is a unitary modular category (UMC) when k is even, as for the Ising
theory, and a unitary pre-modular tensor category when k is odd. As for k = 3,
it contains the Fibonacci sub-theory, which is a UMC of rank 2.

For level k = 2 (r = 4), the simple Jones-Wenzl projectors are {p0, p1, p2}.
Thought of as anyons, the projectors have an alternative physical labeling
{1, σ, ψ}, corresponding to the vacuum (ground state), Ising anyon, and Majo-
rana fermion, respectively. The fusion rules for the Ising theory, in their most
succinct form, are given by 1⊗ x = x⊗ 1 = x for x ∈ {1, σ, ψ}, σ ⊗ σ = 1⊕ ψ,
σ⊗ψ = ψ⊗σ = σ, and ψ⊗ψ = 1. The relation σ⊗σ = 1⊕ψ means that when
two σ particles are fused, there are two possible fusion channels. This is what
allows one to encode quantum information in the corresponding representation
space.

To prove that 1, σ, and ψ are the only simple objects when k = 2, we need
to compute the spaces Hom(x, x). A nice way to do this is to use the inner
product 〈·, ·〉 that was previously defined on the Temperley-Lieb algebra in
terms of the Markov trace. Specializing A to the particular root of unity, we
have the following property.

Proposition 4.1. For A = ± i e±2πi/4r, this inner product is positive definite
on all Hom(X,Y ).

For level k = 3(r = 5), the simple Jones Wenzl projectors are {p0, p1, p2, p3}.
The subset {p0, p2} or {1, τ} corresponding to the vacuum and the Fibonacci
anyon generates the Fibonacci subtheory. The Fibonacci fusion rules are given
by 1 ⊗ τ = τ ⊗ 1 = τ , and τ ⊗ τ = 1 ⊕ τ . Like in the Ising theory, it is this
multi-fusion channel that we will use to encode a qubit.

4.1.3. Notation

Unfortunately, two different things have been denoted by 1’s: the TLJ(A) label
1 ∈ L, and the ground state 1 in an anyon system such as for the Ising and
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Fibonacci theories corresponding to 0 ∈ L. Typically it will be clear from the
context and which is meant and for the moment we will use L when labeling
diagrams to avoid confusion.

Having chosen A = ±ie±2πi/r, we consider the Jones representation ρk,n,i :
Bn → TLJn(A)→Mni

(C). Such a representation is parametrized by the level
k of the theory, the number of strands n in the braid group, and the total charge
i.

Define the vector space Vk,n,i to be the C-span of the fusion trees

· · ·

i

1 1 1 1

where the internal edges are admissibly labeled by elements of the label set L =
{0, 1, 2, . . . , k}. Physically, an admissible labeling of a fusion tree corresponds
to a possible fusion process of the corresponding anyons.

Our ultimate goal is to understand the image of the Jones representation
ρk,n,i(Bn) in U(Vk,n,i), the unitary transformations on the vector space Vk,n,i,
and interpret them as quantum gates. As a first step we count admissible
labelings of Ising and Fibonacci fusion trees to get the dimension of the repre-
sentations for small n, looking for a two-dimensional representation in which to
encode a qubit in order to get single-qubit gates. We will eventually also want
a representation of at least dimension four, so that we can produce two-qubit
gates. We will see that single and double-qubit gates can be enough to build
universal quantum computers.

As a warm up to the Ising and Fibonacci theories, we first consider k = 1.

4.1.4. Dimensions of level 1 representations

When k = 1, the label set has two elements, L = {0, 1}. Depending on whether
n is even or odd, by a parity argument there is only one way to admissibly
label the fusion tree by elements of L.
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· · ·

. . .

i =

{
0 n even

1 n odd

1 1 1 1 1

0
1

Thus when k = 1 we have a one-dimensional representation of the braid group
Bn.

4.2. Dimensions of Level 2 representations

Predictably, the dimension of the representation of Bn gets more complicated
as we increase the level of the theory. To motivate the general pattern, we work
through the first few values of n explicitly, labeling fusion trees with elements
of L = {0, 1, 2}.

4.2.1. Dimensions of level 2 representations for the Ising theory

For n = 2, there are two admissible values of i for the fusion tree, resulting in
two one-dimensional representations.

1 1

0

1 1

2

When n = 3, the value of i is determined, but there are two different ways
to label the edges of the fusion tree consistently, giving a two-dimensional
representation.

1 1 1

0/2

1

When n = 4, there are two distinct values of i, and for each value of i, two
different ways to label the edges of the fusion tree. Therefore we get two separate
two-dimensional representations.
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111 1

0/2
1

0

111 1

0/2
1

2

Both of these representations are isomorphic to C2. The representation ρ2,4,0

corresponding to the lefthand fusion tree is presented in the following section.
The other representation ρ2,4,2 is different, but similar, and is left to the reader
as an exercise.

4.2.2. The Majorana qubit

We introduce a convenient piece of notation for fusion trees. Often we want to
make the identification of certain fusion trees corresponding to a two-dimensional
representation with the standard orthonormal basis vectors |0〉 and |1〉 of C2.
To make this identification, we typically need to normalize a fusion tree. Instead
of carrying around a potentially cumbersome normalization factor along with
the fusion trees, we use open circles at the vertices of the fusion tree to indicate
that it is normalized. The usual notation for a qubit is as a superposition of
the states 0 and 1, α|0〉+ β|1〉, |α|2 + |β|2 = 1. By identifying |0〉 and |1〉 with
the fusion trees

|0〉 =

111 1

0
1

0

|1〉 =

111 1

2
1

0

we arrive at the famous Majorana qubit.

4.2.3. How the Fibonacci theory got its name

The counting arguments used above to produce the dimensions of the Jones
representations of Bn for k = 2 can also be used to analyze the dimensions
of the Jones representation for the Fibonacci subtheory, by considering what
happens when we label the top of the fusion tree by 2’s.Technically, the the-
ory of Fibonacci anyons uses the colored Jones representation where instead
of considering Hom(i, 1⊗n), we replace the label 1 with another label a in
L = {0, 1, 2, . . . , k} and consider Hom(i, a⊗n) for a ∈ L. In particular, we are
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looking for a basis of Hom(1, τn), where τ is the Fibonacci anyon. This still
provides a representation of the n-strand braid group, where the braids have
been “colored” by τ .

Remark 4.2. It is possible to obtain the same representation through the
uncolored Jones representation with the right choice of Kauffman variable A
up to a character because 1⊗ 3 = 2.

The anyon model {1, τ} is called the Fibonacci theory because the Fibonacci
numbers appear as the dimensions of the spaces Hom(1, τ ⊗ · · · ⊗ τ). Hereafter
we use the TLJ(A) labels and anyon labels interchangeably.

When n = 1 there is one admissible fusion tree, but i 6= 0, and hence
dim(V3,1,0) = 0.

2

2

When n = 2, there are two ways to label a fusion tree, one of which has trivial
total charge, and hence dim(V3,2,0) = 1.

2 2

0/2

When n = 3, the image splits into a one-dimensional space isomorphic to C
and a two-dimensional space, isomorphic to C2.

2 2 2

0/2

2

2 2 2

2

0

Evidently dim(V3,3,0) = 1.

Now if n = 4 and i = 0, we get dim(V3,4,0) = 2.

222 2

0/2
2

0
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So far the dimensions form the sequence 0, 1, 1, 2 . . ., the first few Fibonacci
numbers. Using the Fibonacci fusion rule τ ⊗ τ = 1 ⊕ τ , we can make an
observation about how the Fibonacci fusion trees are nested in one another.

n

dim
· · ·

0

2 2 2 2 2

= dim

n− 2

· · ·

0

2 2 2 2 2

+ dim

n− 2

· · ·

2

2 2 2 2 2

This shows that the Fibonacci representation always splits into two subrepre-
sentations as ρ3,τ⊗n = ρ3,τ⊗n,1⊕ρ3,τ⊗n,τ : Bn → U(Fn−1)⊕U(Fn), correspond-
ing to the total charge 1 and total charge τ . Moreover the dimensions satisfy
the recurrence relation

fn,0 = fn−2,0 + fn−2,2 = fn−2,0 + fn−1,0,

which is exactly the relation that defines the Fibonacci numbers Fn. There-
fore we have that dimV3,τ⊗n,0 = Fn−1. That is, the dimensions of the spaces
Hom(i, τ⊗n) are governed by the Fibonacci numbers.

Algebraizing this fusion rule, we get the equation x2 = 1+x, whose solutions
are the golden ratio φ and its Galois conjugate. The golden ratio also satisfies
the identity φ = φ−1 + 1, which will be useful for calculations in the Fibonacci
theory.

4.2.4. The Fibonacci qubit

To build a qubit with Fibonacci anyons, we identify

|0〉 = φ−1

τ τ τ

1

τ

|1〉 = φ3/2

τ τ τ

τ

τ

or in the new notation

|0〉 =

τ τ τ

1

τ

|1〉 =

τ τ τ

τ

τ
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4.2.5. Dense versus sparse qubit encodings

The qubit encoding above using three Fibonacci anyons is called a dense encod-
ing. By raising the number of anyons, like in the two-dimensional representation

τττ τ

1

we obtain a sparse encoding. While the dense encoding is mathematically easier
to work with, the sparse encoding is physically preferable. This is because
the total charge i of an anyon system is a boundary condition, and in an
experimental set up, letting the boundary condition correspond to the ground
state is energetically more favorable.

Now that we have found two-dimensional representations ρ2,4,0/2 and ρ3,τ⊗3,τ ,
we would like to be able to compute these them explicitly and write down their
matrices with respect to an orthonormal basis on the vector spaces Vk,n,i.

4.3. Computing Jones Representations and ρ2,4,0(σ1)

To illustrate a general method for computing the Jones representation of the
generators σi of the braid group Bn, we calculate the Jones representations
ρ2,4,0(σ1).

Recall the two fusion trees that span V2,4,0, shown below, which we now
call ẽ0 and ẽ1.

111 1

0
1

0

111 1

2
1

0

The first step is to turn these vectors into an orthonormal basis using Gram-
Schmidt orthonormalization.

4.3.1. Notation

It will be convenient to introduce another notation for elements of Hom(i, 1⊗n),
in which the need to label every edge of a fusion tree is eliminated. Edges labeled
by the ground state 0 become dashed edges, edges labeled by a 1 are usual lines,
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and edges labeled by a 2 become wavy lines.

0
=

1
=

2
=

Under this new notation ẽ0 and ẽ1 become

.

Hereafter we will drop the dashed lines labeling the ground state. Towards
applying Gram-Schmidt we find the inner products 〈ẽi, ẽj〉 using the graphical
calculus.

〈ẽ0, ẽ0〉 = = d2 = 2

〈ẽ1, ẽ1〉 = =

=

2

1

1

= 1
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〈ẽ0, ẽ1〉 = = = 0

Exercise 4.3. Verify that 〈ẽ1, ẽ1〉=2 and 〈ẽ0, ẽ1〉 = 0 in the manner shown
above, inserting the appropriate Jones-Wenzl projectors at the trivalent vertices
and using the graphical calculus.

Since 〈ẽ0, ẽ1〉 = 0, the choices e0 = 1√
2
ẽ0 and e1 = ẽ1 define an or-

thonormal basis {e0, e1} of V2,4,0. Then with respect to this basis, ρ(σ1) =(
〈e0, σ1e0〉 〈e0, σ1e1〉
〈e1, σ1e0〉 〈e1, σ1e1〉

)
.

For example,

〈σ1e0, e0〉 = ( 1√
2
)2 = 1

2 ·A + 1
2 ·A

−1

= 1
2 (A · d2 +A−1d3) = −A−3

,

where the crossings were resolved using the Kauffman bracket. Similar calcu-
lations for the remaining matrix entries show that

ρ(σ1) =

(
−A−3 0

0 A

)
.

By repeating the same method to find the remaining generators ρ(σ2) and
ρ(σ3), one can calculate the image ρ4,2,0(b) for any b ∈ B4.

This outlines an elementary way to find the Jones representation. While
it has the benefit that it uses only knowledge of the Kauffman bracket and
arithmetic, as n gets larger it becomes inefficient to do by hand. Additional
data in TLJ(A) coming from its structure as a UMC provide more tools to
find ρn,k,i using graphical calculus, namely the θ-symbols, R-symbols, and F -
symbols.
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4.4. θ-symbols, R-symbols, and F -symbols

Take any admissibly-labeled trivalent vertex eabc , i.e. an element of Hom(c, a⊗b).
Then the θ-symbol θ(a, b, c) is defined to be the the inner product 〈eabc , eabc 〉 of
the trivalent tree vector eabc .

θ(a, b, c) =

〈
c
ba

, c
ba

〉

Another version of the unitary θ-symbol is related to the quantum dimensions
of the charges a, b, and c via√

dadbdc = θu(a, b, c).

Once these symbols are determined for an anyon model they can be used to
help calculate the desired braid group representation by substituting a θ-symbol
whenever the inner product of two trivalent vertices appears.

4.4.1. R-symbols

Another set of symbols allows one to resolve crossings in the graphical calculus.
Braiding gives a linear map

: Hom(c, a⊗ b)→ Hom(c, b⊗ a)

.

It is in fact an isomorphism, with inverse given by the opposite crossing. Since
Hom(c, b⊗a) is one-dimensional in TLJ theory, and we already have a preferred
basis for it, namely the trivalent vertex labeled by a, b, and c, the equation

a b

c

= Rabc
c

ba

holds, where Rabc is a scalar, which we call the braiding eigenvalue or R-symbol.
There is a general formula that gives the R-symbols, for any Kaufmann variable
A and any Temperley-Lieb category, given by

Rabc = (−1)
a+b−c

2 A
−[a(a+2)+b(b+2)−c(c+2)]

2 .

One can also calculate the R-symbols from their defining relation by taking the
inner product of both sides of the equation with the trivalent vertex labeled by
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a, b, and c, which we demonstrate in the following example with R22
2 , where

the labels “2” on the right hand side of the equation indicate that every edge
in the diagram is labeled by a 2.

2

2

R22
2 =

By resolving the top diagram via the Kauffman bracket and inserting Jones-
Wenzl projectors p2 at the appropriate vertices, R22

2 can be calculated by hand.
However, doing so efficiently requires familiarity with the graphical calculus and
its shortcuts.

Exercise 4.4. Calculate R22
2 using the graphical calculus and compare with

the formula.

4.4.2. F-symbols

The other hero in the theory is the F -symbols, which tells us how to make
changes of basis in the fusion vector spaces. We consider the space Hom(d, (a⊗
b)⊗ c), with orthonormal basis given by {e(ab)c

d,m }, where

e
(ab)c
d,m =

a b c

m

d

Similarly, we can consider the orthonormal basis {ea(bc)
d,n } of Hom(d, a⊗ (b⊗c)),

where

e
a(bc)
d,n =

a b c

d

n

.
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Then F : {e(ab)c
d,m } → {e

a(bc)
d,m } is the change of basis matrix, satisfying

e
(ab)c
d,m =

∑
F abcd,nme

a(bc)
d,n .

In terms of the graphical calculus, the F -symbols allow one go back and forth
between different ways to associate fusion vertices. The F -symbols are notori-
ously hard to find, although there is a general formula. Similar to the method
described in the previous section for computing the R-symbols by tracing out
their defining relation, there is a way to calculate them using the graphical
calculus.

For example, the two fusion trees 0/2 and 0/2 each give a basis for

the space Hom(2 ⊗ 2, 2 ⊗ 2), where each edge that is not explicitly labeled is
understood to be labeled with a 2. Therefore they satisfy the following equa-
tions.

= α + β

= γ + δ

The constants can be determined by taking the trace of each equation in two
different ways: once vertically and once horizontally. That is, once connecting
top and bottom edges and once connecting left and right edges. The calculations
can then be simplified using the θ-symbols. The F -matrix is then given by(
α β

γ δ

)
.

Exercise 4.5. Use the graphical calculus to show that the F -matrix is given
by (

φ−1 φ−1/2

φ−1/2 −φ−1

)
.

4.5. Calculating the representation ρ3,τ⊗3,τ for the Fibonacci theory

Equipped the R and F symbols, the images of Jones representations can be
systematically computed using the graphical calculus.

4.5.1. The Fibonacci R and F -symbols

When A = ±ie2πi/10, using the formula Rabc = (−1)
a+b−c

2 A
−[a(a+2)+b(b+2)−c(c+2)]

2

we find
R22

0 = A−8 = e−4πi/5, R22
2 = −A−4 = −e−2πi/5.

Volumen 50, Número 2, Año 2016



BRAID GROUP REPRESENTATIONS AND TOPOLOGICAL QUANTUM COMPUTATION255

The Fibonacci F -matrix is given by

F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
.

Either of these quantities can be found using the method outlined in the pre-
vious section.

4.5.2. The Jones representation ρ3,τ⊗3,τ

Given the R and F -symbols, ρ(σ1) and ρ(σ2) take the form

ρ(σ1) =

(
Rττ1 0

0 Rτττ

)
, ρ(σ2) = Fρ(σ1)F−1

Explicitly, the generators σ1 and σ2 have representations

ρ(σ1) =

(
ξ−2 0

0 −ξ−1

)
, ρ(σ2) =

(
φ−1ξ2 −φ−1/2ξ

−φ−1/2ξ −φ−1

)
,

where ξ = e2πi/5 and φ is the golden ratio.

Having introduced the main tools for calculating braid group representa-
tions, we turn to studying their images.

4.6. The image of the braid group representation

The basic questions that must be addressed in order to assess the utility of
these representations for quantum computation are the following:

Question 4.6.

(1) Is the image ρk,n,i(Bn) in U(Vk,n,i) finite or infinite?

(2) If it is infinite, what is the compact Lie group ρk,n,i(Bn)?

The first question was answered by Jones in his seminal 1984 paper [11],
and the second by Freedman, Larsen, and Wang in 2002 [8].

Theorem 4.6 (Jones). For k ∈ {1, 2, 4}, ρk,n,i(Bn) is a finite group. For other
values of k and n ≥ 3, ρn,k,i(Bn) is infinite, except for when k = 8 and n = 4.

Theorem 4.7 (Freedman, Larsen, W.). When ρk,n,i(Bn) is infinite, SU(Vk,n,i) ⊂
ρk,n,i(Bn).

Revista Colombiana de Matemáticas
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We will see that quantum computation is performed by applying unitary
matrices to quantum bits, so this result has important applications.

While we have stated very general results about the images of braid group
representations whose proofs are beyond the scope of these notes, there are
more elementary ways that can reproduce these results in the k = 2 and k = 3
case, to address whether the Ising and Fibonacci models can be useful for
quantum computation.

4.6.1. The image of ρ2,4,0

The following theorem characterizes the image of the Jones representation of
the four-strand braid group at level 2 and trivial total charge.

Theorem 4.8.

(1) For k = 2, the Temperley-Lieb-Jones algebra TLJn(A) is isomorphic to
a Clifford algebra.

(2) The sequence
1→ Zn2 → ρ2,n,i(Bn)→ Sn → 1

is exact projectively for n 6= 3. When n = 3, the sequence

1→ Z2
2 → ρ2,3,i(Bn)→ S3 → 1

is exact projectively. In particular, the projective image of the braid group
representation ρ2,3,i is finite.

To prove the first part of the theorem, we’ll need to know that the Majorana
version of a Clifford algebra is the C-span of vectors {e1, . . . , en−1}, subject to
the relation eiej + ejei = 2δij . The k = 2 Temperley-Lieb-Jones algebra in
terms of generators and relations is the C-span of the diagrams {u1, . . . , un−1},
modulo the relation p3 = 0.

In order to show that these two algebras are isomorphic, we need a con-
version between the generators ei of the Clifford algebra and the ui of the
Temperley-Lieb-Jones algebra. Recall σi = A+A−1ui, and define gi = −A−1σi =
−1− A−2ui. Since A is an eighth root of unity when k = 2, g2

i = 1− dui. On
the other hand, the ei can be written as ei = (

√
−1)i−1g2

i g
2
i−1 · · · g2

1 , so that

gi =
√
−1eiei+1. Then one can check that their mutual definitions with respect

to the gi agree.

The proof of the second part of the theorem can be found in [11]. We present
some of the details here that are independent of the value of n.

Recall the pure braid group PBn, which is defined implicitly through the
short exact sequence

1→ PBn → Bn → Sn → 1,
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and can be interpreted as a group of braid diagrams whose strands begin and
end in the same position. For example, the following braid on four strands is a
pure braid.

An important class of pure braids are those of the form σ2
i for any generator σi

of Bn, since certain conjugates of σ2
i form a generating set Aij of PBn, where

Aij = (σjσj−1 · · ·σi+1)σ2
i (σjσj−1 · · ·σi+1)−1, i < j.

Then one can argue that the sequence

1→ ρ(PBn)→ ρ(Bn)→ ρ(Sn)→ 1

is also exact. This reduces the problem of showing that the image of the braid
group is finite projectively (up to a scalar which is a root of unity) to the
problem of showing that the image of the pure braid group is finite projectively.

The following proposition contains the relations needed in order to show
the pure braid group image is finite projectively.

Proposition 4.9. Let gi be defined as above.

(1) g2
i g

2
i+1 + g2

i+1g
2
i = 0

(2) gig
2
i±1g

−1
i = ig2

i g
2
i±1

The proof of this proposition is an exercise for the reader in the graphical
calculus.

The first part of Proposition 4.9 tells us that the g2
i ’s commute up to an

overall minus sign, and furthermore we can deduce that g16
i = 1. Then it follows

from the second part of the proposition that the projective image of the pure
braid group is generated by g2

i .

Thus when k = 2 the Jones representation of the braid group has finite
projective image.

The physical consequence of 4.8 is the following result, the proof of which
requires some familiarity with the mathematical formalism of quantum com-
putation, which is discussed in the next subsection.

Corollary 4.10. The Ising theory cannot be used for universal quantum com-
putation by braiding alone.
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This means that the set of quantum gates that come from the matrix repre-
sentations ρ2,n,i of the braiding of the anyons {1, σ, ψ} of the Ising model is not
powerful enough to build a universal quantum computer. In order to prove this
corollary, one needs to know about the mathematical formalism of quantum
computation, which will be discussed shortly.

One the other hand, all of SU(2) is contained in ρ3,τ⊗3,i(B3).

4.6.2. The image of ρ3,τ⊗3,τ

The following theorem characterizes the closed images of ρ3,τ⊗3,i in U(V3,τ⊗3,i).

Theorem 4.11. ρ3,τ⊗3,i(Bn) ⊃ SU(V3,τ⊗3,i).

4.6.3. Proof of the theorem

We begin by showing that the image is infinite. Of course, it suffices to demon-
strate the existence of an element in the image which is of infinite order.

Recall that the generators σ1 and σ2 have representations

ρ(σ1) =

(
ξ−2 0

0 −ξ−1

)
and ρ(σ2) =

(
φ−1ξ2 −φ−1/2ξ

−φ−1/2ξ −φ−1

)
= Fσ1F,

where φ is the golden ratio and ξ = e2πi/5. Since the matrix representation of
σ1 is diagonal, it is easy to see that its order is just the least common multiple
of the orders of the roots of unity appearing on the diagonal, and hence σ1 has
order 10. Since all elements of the braid group are in the same conjugacy class,
it follows that σ2 has order 10 as well.

Consider σm1 σ2, where σ10
1 = 1 and m = 1, 2, . . . , 9. We claim that when

m = 4 and m = 9, both elements σm1 σ2 are of infinite order, and moreover,
they don’t commute. To see that they do not commute, suppose

(σ4
1σ2)(σ9

1σ2) = (σ9
1σ2)(σ4

1σ2).

Then using that σ1 has order ten, it follows that

σ4
1σ2σ

−1
1 σ2 = σ−1

1 σ2σ
4
1σ2

and hence
σ5

1σ2 = σ2σ
5
1 .

But one can check using the definitions of σ1 and σ2 that this is not the case.

To prove that σ4
1σ2 and σ9

1σ2 are of infinite order, we use established results
about when small sums of roots of unity vanish [4]. Suppose σ4

1σ2 is of finite
order, then there will be two roots of unity λi, i = 1, 2 such that Tr(σ4

1σ2) =
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λ1 + λ2 and λ1λ2 = det(σ4
1σ2) = ξ. The trace Tr(σ4

1σ2) can be written as
an integral identity of ξ and λ1. But this possibility is not among such sums
as classified in [4]. Similarly, we can show σ9

1σ2 is of infinite order. Putting
g1 = σ4

1σ2 and g2 = σ9
1σ2, this shows that {gm1 } = SO(2) and {gm2 } = SO(2)

both inject into SU(2), proving the theorem.

The physical corollary of this mathematical result is that {ρ(σ1), ρ(σ2)} is
a universal gate set for a single qubit.

Corollary 4.12. Braiding Fibonacci anyons is enough to get any single qubit
quantum gate.

But what about n-qubit gates from this representation? In general, one
would need n-qubit space (C2)⊗n to be contained in Hom(3, τ⊗n, 1). However,
we will see that it is enough to get all two-qubit gates.

In the next section we provide the background necessary to assess the power
of the images of the Jones representations as quantum gates and prove the two
physical corollaries stated in this section for the Ising and Fibonacci theories.

4.7. Quantum gates and universal quantum computation

Classically, a decision problem is the following: given a sequence of functions
{fn} : Zn2 to Zn2 on n-bit strings, compute fn(x) for all x ∈ Zn2 . “Quantizing”
this set up, we have a quantum decision problem - given a sequence of {fn}
on C[Zn2 ] ∼= (C2)⊗n, the space of n-qubits, find a unitary matrix U such that
U |x〉 = |fn(x)〉. Such matrices are written with respect to the computational
basis Zn2 of (C2)⊗n.

We are always concerned with efficient approximation when performing
computation. The correct notion of efficiency is that U should be a composition
of gates, of polynomial length in n, the number of qubits.

The building blocks of which such a U is composed are elements of a small
gate set, say, S = {g1, . . . , gm}, where each gi is a 2×2 or 4×4 unitary matrix,
i.e. each acts on a one qubit (C2 ) or two-qubit (C2 ⊗C2) subspace of (C2)⊗n.
These gate sets, while acting on a few qubits at a time, are extended trivially
on the remaining qubits by tensoring with the identity. A gate set is said to
be universal if we can build any unitary matrix to arbitrary accuracy with a
finite number of elements of our gate set. More precisely, if we consider the set
of all quantum circuits on (C2)⊗n that can be built from our gate set, then it
is universal if it is dense in SU(2n). (Recall that we are interested in things
up to a phase.) The rest of this section is devoted to demonstrating that single
and double-qubit operators are enough to get universal quantum computation.
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4.7.1. Single-qubit gates

Some of the most foundational results in quantum computation are the follow-
ing theorems concerning the gates

H =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 eiπ/4

)
, and CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

Theorem 4.13. The gate set {H,T,CNOT} consisting of the Hadamard, π
8

phase-shift, and controlled-not gates is universal for quantum computation.

The first two gates in the set are enough to generate all single-qubit oper-
ations.

Theorem 4.14. Let G be the set of all compositions of H and T . Then G ⊃
SU(2).

Therefore, if the Hadamard and π
8 matrices can either be realized exactly

or efficiently approximated by matrices coming from the images of Jones rep-
resentations, then the corresponding anyon model is sufficient to perform any
single-qubit computation.

Of course, it is preferable to realize gates exactly rather than to approximate
them.

Question 4.16. Which matrices in U(2) can be realized exactly by a braid up
to an overall phase?

The following theorem is an answer to this question for B3 in the Fibonacci
theory [14].

Theorem 4.15. Let ω = e2πi/10 and let u, v ∈ Z[ω] satisfying |u|2 + |v|2
φ = 1.

Then any matrix of the form

M =

(
u v̄φ1/2

vφ−1/2 −ū

)(
1 0

0 ωk

)
can be realized exactly by a braid in B3 in the Fibonacci theory.

If in addition to single-qubit operations an entangling gate like CNOT can
be realized, then the anyon model can be used to build a universal quantum
computer.
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4.7.2. Two-qubit gates and entanglement

The notion of entanglement is key to understanding universality.

Definition 4.16. A gate g in U(4) is not entangling if either g = A ⊗ B or

SWAP g = A⊗B, where A,B ∈ U(2) and SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

. If a gate

is not of this form, then it is called entangling.

The simplest example of an entangling gate is the CNOT gate. To show that
CNOT is entangling, we must prove that neither CNOT nor SWAP CNOT can
be written as a tensor product A ⊗ B, for any A,B ∈ U(2). Recall that the
CNOT has the following matrix with respect to the computational basis.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


If a matrix M can be written M = M1⊗M2, where M1 has eigenvalues λi and
M2 has eigenvalues µj , then the eigenvalues of M are of the form λiµj . CNOT
has eigenvalues 1, 1, 1,−1. So if there were matrices A and B with eigenvalues
λ1, λ2 and µ1, µ2 respectively, then they would have to satisfy the system of
equations 

λ1µ1 = 1

λ1µ2 = 1

λ2µ1 = 1

λ2µ2 = −1

.

But detλij = 0, so this cannot happen. The same argument applies to show
that SWAP CNOT cannot be written as a tensor product. Therefore the CNOT
gate is entangling.

Any four-by-four unitary matrix, that is, any two-qubit quantum gate, can
be written as a tensor product of single-qubit gates and an entangling gate, as
the following theorem states.

Theorem 4.17. Given any entangling gate E, any matrix in U(4) can be
written as a finite product of some number of E’s and matrices in U(2) up to
an overall phase.

This takes care of two-qubit gates. To be able to construct n-qubit gates
from one and two-qubit gates we need the following definition.
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Definition 4.18. A matrix is 2-level if it is not the identity only on a 2-
dimensional subspace.

An important example of a 2-level matrix for our purposes is of the kind 1 0

0 1
0

0 U

 ,

where U ∈ U(2).

The following lemma collects the facts that allow local unitary computation.

Lemma 4.19. Every unitary matrix M is a product of 2-level unitary matrices.
Every 2-level matrix can be realized as a product of 1-qubit gates and CNOTs.

The results we have collected thus far imply the following theorem.

Theorem 4.20. The CNOT gate, together with SU(2) forms a universal gate
set. That is, if U ∈ SU(2n), then U can be written as a tensor product of
CNOT gates and 2× 2 unitary matrices.

All of the linear algebra is now in place to understand what is needed for a
small gate set to be universal.

4.8. Ising and Fibonacci quantum computers

Since the image of ρ2,4,0 is finite in U(2), we can’t get a universal gate set from
the Ising theory. On the other hand, we have shown that the closure of the
image of ρ3,τ⊗3,τ contains SU(2), and hence can produce any single-qubit gate.
Moreover, the image of ρ3,τ⊗6,1 : B6 → U(5) can be used to approximate an
entangling gate, as implied by the theorem below.

In the dense encoding, we choose the two-qubit computation subspace in
V3,τ⊗6,1 as indicated by the fusion tree below.

1

τ τ τ ττ τ

i
x

j
τ

V3,τ⊗6,1 is 5-dimensional. When x = 1, there is only one admissible labeling,
so it spans a one-dimensional subspace of V3,τ⊗6,1. We will not use this sub-
space for computation, so it will be called a non-computational subspace. When
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x = τ , then all choices of i, j ∈ {1, τ} are admissible, so we obtain a natural
two-qubit subspace of V3,τ⊗6,1. We will denote the 4 basis elements as {eij}.
Ideally, we would like to find an entangling braid b ∈ B6 on V3,τ⊗6,1 so that the
resulting matrix ρ(b) is the identity on the non-computational subspace and an
entangling gate on the two-qubit subspace. But we do not know the existence
of such braiding gates. It would be extremely interesting to know if such “no
leakage” entangling braiding gates exist or not. But in practice, we will use
the following density theorem to find entangling braiding gates with arbitrarily
small leakage to the non-computational subspace.

Theorem 4.21.

(1) SU(5) ⊂ ρ3,τ⊗6,1(B6).

(2) Any matrix in SU(4) can be approximated to any precision by the gate set
{ρ(σi), i = 1, ..., 5} on the computational subspace C[{eij}], i, j ∈ {1, τ}.

The proof of this theorem is not elementary so we omit the details. Pre-
sumably we can use an inductive argument using irreducibility and density of
one-qubit gates Thm. 4.11. Therefore a universal gate set can be built from
braiding Fibonacci anyons, proving Theorem 1.1 for r = 5.

Open problem 4.24. Is there a two-qubit entangling gate that can be realized
by braiding exactly in the Fibonacci theory?

4.9. General TLJ theory for quantum computing

In earlier sections, we explain Ising and Fibonacci theories. In general any TLJ
theory can be used for anyonic quantum computation.

The Jones-Kauffman theory at level k = r − 2 ≥ 1 is the TQFT associated
to the TLJ theory with the choice of

A =


ie−2πi/4r k ≡ 0 mod 2

ie2πi/4 k ≡ 1 mod 2 and k ≡ 1 mod 4

−ie−2πi/4 k ≡ 1 mod 2 and k ≡ −1 mod 4.

When k is even, the TLJ category is a unitary modular category modeling
anyons, while when k is odd, it is a unitary pre-modular category modeling
fermions. This generalizes the Ising and Fibonacci theories.

5. Approximation of The Jones polynomial

Recall that unlike the Alexander polynomial, for which their exists a polyno-
mial time algorithm, computing the Jones polynomial is hard. The classical
complexity of computing the Jones polynomial exactly at roots of unity is
summarized in the following theorem [22, 9].
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Theorem. For r 6= 1, 2, 3, 4, 6, computing the Jones evaluations J(L, e2πi/r)
exactly is #P hard. Moreover, the Jones evaluations {J(L, e2πi/r)} for all links
L at r 6= 1, 2, 3, 4, 6 is dense in C.

However, the Jones evaluations at roots of unity could be efficiently approx-
imated by a quantum computer. In this section we discuss an algorithm for such
an approximation which is a consequence of the efficient simulation of TQFTs
with several clarifications [7]. Our approximation goes through the Jones rep-
resentations of the braid group, necessitating a choice of a braid closure to turn
braids into links. For our algorithm, we use the plat closure of braids with an
even number of strands. It was observed that if instead the braid closure is
used, the approximation is potentially easier [13]. Approximations have vari-
ations [15], and our approximation is an additive one. Strictly speaking, we
approximate the normalized Jones evaluations: J(L, e±2πi/r) divided by dn.
For the plat closures of braids b ∈ B2n, the unlink of n-components has the
largest absolute value dn. It is known that the distributions of Jones evalua-
tions J(L, e±2πi/r) for r 6= 1, 2, 3, 4, 6 are limiting to a Gaussian as n→∞ [9].
Hence, a Jones evaluation is typically small. Our BQP-complete theorem for
an additive approximation with an error scaling as the inverse of a polynomial
in n the number of strands and m the braid length, implies that the normalized
Jones evaluation cannot be always exponentially small because otherwise, we
could just set the approximation to be 0.

Recall that the Jones evaluation J(L, e±2πi/r) is a map from the set of
oriented links to Z[q±1/2] for q = e±2πi/r. In order to turn the evaluation at
roots of unity into a computation problem, we must encode a link L and the
Jones evaluation J(L, e±2πi/r) as bit strings, whereupon it becomes a Boolean

map Zn2 → Z
m(n)
2 , that sends the bit strings encoding of the input L to the bit

strings encoding of the output J(L; e±2πi/r).

How does one turn a link into a bit string? First one presents L as the

plat-closure of some braid, say L = ̂σskik · · ·σ
s1
i1

. Then the integers {ij} and {sj}
can be written in terms of their binary expansions and finally converted into
bit strings.

As for encoding J(L, e±2πi/r) as a bit string, one can use the binary expan-
sions of its real and imaginary parts. In general these binary expansions will be
infinitely long. In our algorithm we are going to approximate the evaluations.
Therefore, once we are given the error ε, we can decide where to truncate the
infinite bit strings.

The following table organizes the known complexity results concerning the
computation and approximation of the Jones polynomial at roots of unity of
order r 6= 1, 2, 3, 4, 6 [22, 15, 7, 8].
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Exactly Approximately

Classically #P No FPRAS

Quantum mechanically ? BQP-complete

5.1. Approximating Jones evaluations by a quantum computer

How is the Jones polynomial of a link L evaluated by an anyonic quantum
computer at a root of unity? Suppose b ∈ B2n is a braid whose closure gives
the link L. Physically, a “cup” state is prepared by creating n pairs of anyons
from the vacuum. Then the anyons are braided by b. Then measurement is
performed by projecting onto a “cap state”. This computes |〈 cap |ρ(b)| cup 〉|2,
which recovers the normalized Jones evaluations. The figure below illustrates
the process, which corresponds to the mathematical operation of taking the
plat closure of b.

〈 cap |ρ(b)| cup 〉 = b

· · ·

· · ·

Classically, this computation is hard, as one might expect given the exponential
size of ρ(b). However, there exists an efficient quantum algorithm to approxi-
mate the evaluations of the Jones polynomial [7], cf. Theorem 1.2. Precisely,
we have:

Theorem 5.1. Let q = e±2πi/r, d = 2 cosπ/r,σ̂P the plat closure of σ ∈ B2n,
and J(σ̂P , q) :

⊔∞
n=1 B2n → Z[q±1/2] the Jones evaluation. Given m = |σ|, n,

there exists a quantum circuit of size polynomial in n, m and 1/ε = poly(n,m)
such that UL outputs a random variable Z(σ), where 0 ≤ Z(σ) ≤ 1, and∣∣∣∣∣ |J(σ̂P , q)|2

dn
− Z(σ)

∣∣∣∣∣ < ε.

Such an approximation is called an “additive” scheme. The full details of the
proof are not provided here and can be found in [23, 1]. We will simply illustrate
the main steps and ideas.

5.2. Encoding basis vectors as bit strings

For an illustration of this step, that of converting basis vectors into bit strings,
we consider the case k = 3 and the six-strand braid group B6. Given the fusion
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tree in Hom(0, 1⊗6), we attach a qubit at each vertex with basis |i1i2i3i4〉,

0

1 1 1 11 1

a1
a2

a3

1

where ij ∈ {0, 1} and aj ∈ {0, 2}. If aj = 0, we take ij = 0, and if aj = 2, then
we take ij = 1. Then we can define the map a1a2a3 7→ |i1i2i3i4〉. This gives an
efficient embedding of a basis of V3,6,0 into bit strings.

5.3. Simulating the Jones representation

When we use anyons for quantum computation, we choose a computational
subspace (C2)⊗l in Vk,1⊗m,0. Now for the simulation of the Jones representa-
tion Vk,m,0, we seek a quantum circuit U which makes the following diagram
commute. By turning basis into bit strings, Vk,m,0 is embedded as a subspace
in (C2)⊗(m−2). The Jones representation of Bm is extended to (C2)⊗(m−2) by
the identity on the orthonormal complement of embedded Vk,m,0.

(C2)⊗l �
� // Vk,1⊗m,0

� � //

ρ(σ)

��

(C2)⊗(m−2)

U

��
Vk,1⊗m,0

� � // (C2)⊗(m−2)

We must compute the braid group action on the basis of Vk,m,0. By thinking
about how the braid group generators act on Vk,m,0, we are led to pieces of
fusion trees like the ones below, those diagrams now being drawn horizontally.

x yz

i i+ 1

F -move

x

i i+ 1

y

z′

The diagram on the left can be changed to the form on the right via an F -move,
and then the braiding can be removed using an R-symbol. In this manner,
by stacking the braid group generators on a basis element of Vk,1⊗m,0 and
then using the graphical calculus to resolve it into a linear combination of our
computational basis elements, the Jones representation can be calculated for
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any n. The important observation is that the extended Jones representation is
now local: the 2-level matrix in the definition of the Jones representation acts
now on only two qubits. In physical terms, since everything is localized, we
only need to concern ourselves with two qubits at a time.

Finally, due to the fusion rules for basis elements of Vk,1⊗m,0, the Jones
representation is a composition of a sequence of multi-qubit controlled 2-qubit
gates on (C2)⊗(m−2). Such controlled gates can be implemented efficiently on a
quantum computer using a few ancillary qubits. Therefore, we can approximate
the Jones evaluations efficiently by a quantum computer.

6. Localization of braid group representations

The quantum circuit model is explicitly local: the n-qubit spaces are tensor
powers (C2)⊗n and the n-qubit circuits are composed of gates (e.g. promotions
of SWAP, CNOT) that act nontrivially on just a few adjacent qubit spaces.

In contrast, the topological model relies upon gates that are not explicitly
local, coming from representations of the braid group. So far we have met
several families of Bn representations: the local representations ρR associated
with an R-matrix, the Burau representations ρ and their reduced versions ρ̃
and the Jones representations (generic and specialized). In subsection 4.6.2
we gave a detailed version of Theorem 1.1, which is the main result of [8].
Consequently, the quantum circuit model (hence a quantum Turing machine)
can be efficiently simulated on a topological quantum computer via certain
level k Jones representations of the braid group.

The main theorem (i.e. Theorem 1.2) of [7] is a partial converse: the spe-
cialized Jones polynomial can be efficiently approximated on the quantum
circuit model (cf. Section 5). This is achieved by exploiting a hidden locality
in topological quantum field theory, which we now outline. Recall from Sub-
section 4.1.3 that the labels for the Temperley-Lieb-Jones category at level
k are L := {0, . . . , k}. The Bn representation obtained from the standard
faithful TLn(A)-module is H :=

⊕
j Hom(j, 1⊗n). Here each direct summand

Hj = Hom(j, 1⊗n) is an irreducible Bn representation associated with a disk
with n interior points marked with the anyon type 1 and the boundary labelled
j. Now we decompose our n-punctured disks into n−1 pairs of pants by making
n−2 concentric circular cuts for each boundary label j. The gluing and disjoint
union axioms then show that

H =
⊕

(i1,...,in−1)∈Ln−1

Hom(1⊗2, i1)⊗Hom(1⊗ i1, i2)⊗· · ·⊗Hom(1⊗ in−2, in−1).

Here the boundary label is j = in−1. Now we set V =
⊕

(a,b,c) Hom(a ⊗ b, c)
and distribute ⊗ over ⊕ to realize H inside V ⊗(n−1). The complement H⊥ of H
inside V ⊗(n−1) does not typically admit a braid group action. Alternatively we
can be slightly more efficient and take U =

⊕
(b,c) Hom(1⊗ b, c). The upshot is
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that the specialized Jones representations of Bn can be realized inside a vector
space of the form V ⊗f(n), but with Bn only acting on a certain hidden subspace.
One may employ the same technique for the Fibonacci representations.

Exercise 6.1. Set k = 2 and show that dim(V ) = 10, while dim(U) = 4.
Observe that for the B3 representation we have dim(V3,1) = 2, where V3,1 is
embedded into either V ⊗2 or U⊗2, and so has a very large complement.

This gross inefficiency motivates the following:

Question 6.2. When can a family of Bn representations be realized locally
(uniformly for all n, and “on the nose”)?

Eventually we will restrict to unitary representations, but first we must
make sense of what sort of families we are interested in.

6.1. Sequences of Bn Representations

Notice that we have natural injective group homomorphisms ι : Bn → Bn+1

given by ι(σi) = σi, for 1 ≤ i ≤ n− 1 allowing us to identify Bn as a subgroup
of Bn+1

3. Which families of representations respect these identifications? For
precision’s sake we phrase the following in terms of group algebras [20]:

Definition 6.2. An indexed family of complex Bn-representations (ρn, Vn)
is a sequence of braid representations if there exist injective algebra homo-
morphisms ϕn : Cρn(Bn) → Cρn+1(Bn+1) such that the following diagram
commutes:

CBn
ρn //

� _

ι

��

Cρn(Bn)� _

ϕn

��
CBn+1

ρn+1// Cρn+1(Bn+1)

Example. If R is a solution to the Yang-Baxter equation on a vector space V ,
then it is easy to see that ρn : CBn → End(V ⊗n) given by ρn(σi) = I⊗i−1

V ⊗
R ⊗ I⊗n−i−1

V is a sequence of braid representations: take ϕn : End(V ⊗n) →
End(V ⊗n+1) to be ϕn(f) = f ⊗ IV .

The Jones representations (specialized or not) and the (related) Fibonacci
representations ρn,τ are sequences in this sense. For example, for the generic
Jones representation we have Cρn(Bn) = TLn(A) and Cρn+1(Bn+1) = TLn+1(A).
Letting ϕn(ui) = ui we see that the appropriate diagram commutes.

Example. The Burau (reduced or unreduced) representations do not form a
sequence of Bn representations in our sense. Indeed in the case where ρ̃ is

3Of course there are many less natural injective homomorphisms, for example σi 7→
(σn−i+1)−1 can be verified as an injective homomorphism.
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irreducible, we have Cρ̃(Bn) ∼= Mn−1(C) (for all n). Since there are no injective
homomorphisms from Mn−1(C) to Mn(C), the required map ϕn does not exist.

Exercise 6.3. Show that the standard permutation representations of Sn,
lifted to Bn in the obvious way via (i i+1) 7→ σi is not a sequence in our sense.

Now we can describe what we mean by a localization of a sequence of braid
group representations.

Definition 6.4. Suppose (ρn, Vn) is a sequence of braid representations. A
localization of (ρn, Vn) is a braided vector space (W,R) with R ∈ U(W⊗2) such
that for all n ≥ 2 there exist injective algebra homomorphisms ψn : Cρ(Bn)→
End(W⊗n) satisfying ψn ◦ ρ(b) = ρR(b) for b ∈ Bn.

This definition may seem a bit complicated at first, but encapsulates the
notion of “on the nose” local realizations of a sequence of Bn representations.
From the point of view of quantum computation, we are trying to discover
when the singleton gate set {R} can simulate all braiding gates. In spite of the
slightly mystifying definition, the idea is quite simple: we want to find a single
solution to the Yang-Baxter equation R on a vector space W so that

(1) For each n, (ρn, Vn) is a sub-representation of (ρR,W
⊗n). Notice that we

distinguish between equivalent irreducible sub-representations of Vn: if `
isomorphic copies of some fixed irreducible U appears in Vn then W⊗n

must contain at least ` copies of U . This is a distinction at the level
of algebras: C2 is not a faithful representation of M2(C) ⊕M2(C), but
C2 ⊕ C2 is.

(2) There are no irreducible Bn-subrepresentations of W⊗n that do not ap-
pear in Vn. Whereas the hidden locality of [7] has a large non-computational
space upon which the braid group does not act, we are asking that there
is no such axillary space.

Comparing with the property F conjecture, we obtain:

Conjeture 6.6. Suppose (V,R) is a unitary solution to the YBE such that R
has finite (projective) order, with corresponding Bn-representations (ρR, V

⊗n).
Then ρR(Bn) is a finite group (projectively).

If the words unitary or finite order are omitted Conjecture 6.1(a) is false,
see [20] for examples.

6.2. Non-localizable representations

In the braided fusion category setting Conjecture 6.1 is closely related to an-
other fairly recent conjecture (see [19, Conjecture 6.6]). Braided fusion cate-
gories are naturally divided into two classes according to the algebraic com-
plexity of their fusion rules. In detail, one defines the Frobenius-Perron di-
mension FPdim(X) of an object X in a fusion category C to be the largest
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eigenvalue of the fusion matrix NX corresponding to tensoring with X on the
left. If FPdim(Xi) ∈ N for all simple Xi then one says C is integral while if
FPdim(Xi)

2 ∈ N for all simple Xi then C is said to be weakly integral. An
object X in a braided fusion category C is said to have property F if the
Bn-representations on End(X⊗n) have finite image for all n. Then a version
of Conjecture 6.6 of [19] states: an object X has property F if, and only if,
FPdim(X)2 ∈ N. Some recent progress towards this conjecture can be found in
[18, 21] and further evidence can be found in [17, 16]. Combining with Conjec-
ture 6.1 we make the following:

Conjeture 6.7. Let X be a simple object in a braided fusion category C. The
representations (ρX ,End(X⊗n)) are localizable if, and only if, FPdim(X)2 ∈ N.

The main result of this section is to indicate that the specialized Jones
representations are not localizable unless r = 1, 2, 3, 4 or 6. That is, the sequence
of representations coming from the Temperley-Lieb algebras at all other roots
of unity are not localizable. In the next section we will show the converse for
r = 4 and r = 6, with the other cases being trivial since the corresponding
categories are pointed (and hence the representations are 1-dimensional).

To any sequence of multi-matrix algebras S := C = A1 ⊂ · · · ⊂ Aj ⊂
Aj+1 ⊂ · · · with the same identity one associates the Bratteli diagram which
encodes the combinatorial structure of the inclusions. The Bratteli diagram for
a pair M ⊂ N of multi-matrix algebras is a bipartite digraph Γ encoding the de-
composition of the simple N -modules into simple M -modules, and the inclusion
matrix G is the adjacency matrix of Γ. More precisely, if N ∼=

⊕t
j=1 End(Vj)

and M ∼=
⊕s

i=1 End(Wi) the inclusion matrix G is an s× t integer matrix with
entries:

Gi,j = dim HomM (ResNM Vj ,Wi)

i.e. the multiplicity of Wi in the restriction of Vj to M . For an example, denote
by Mn(C) the n × n matrices over C and let N = M4(C) ⊕M2(C) and M ∼=
C⊕ C⊕M2(C) embedded in N as matrices of the form:a 0 0

0 a 0

0 0 A

⊕ (a 0

0 b

)

where a, b ∈ C and A ∈ M2(C). Let V1 and V2 be the simple 4- and 2-
dimensional N -modules respectively, and W1, W2 and W3 be the simple M -
modules of dimension 1, 1 and 2. Then the Bratteli diagram and corresponding
inclusion matrix for M ⊂ N are:

W1

�� !!

W2

��

W3

vv
V1 V2
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and 2 1

0 1

1 0

 .

The Bratteli diagram for the sequence S is the concatenation of the Bratteli
diagrams for each pair (Ak, Ak+1), with corresponding inclusion matrix Gk. We
organize this graph into levels (or stories) corresponding to each algebra Ak so
that the Bratteli diagram (Ak−1, Ak) is placed above the vertices labelled by
simple Ak-modules, and that of (Ak, Ak+1) is placed below. Having fixed an
order on the simple Ak-modules we record the corresponding dimensions in a
vector dk. Observe that dk+1 = GTk dk.

Let us illustrate this for the Fibonacci theory corresponding to the colored
TLJ-theory at A = ie2πi/20. Here we have two labels 1 and τ as in subsection
4.2.3. Decomposing the simple TLJn(A) modules for this theory as TLJn−1(A)
modules for n = 1, 2, . . . we have:

τ

�� ��
1

��

τ

�� ��
τ

�� ��

1

��
1 τ

For each n > 1, TLJn(A) has two simple modules: V1,n := Hom(1, τ⊗n) and
Vτ,n := Hom(τ, τ⊗n). Moreover, Cρn(Bn) = TLJn(A) so these are irreducible
Bn-representations. Let us compute the inclusion matrices as above, ordering
the modules [V1,n, Vτ,n] in spite of the alternating arrangement of the Bratteli
diagram. Since V1,n|Bn−1

∼= Vτ,n−1 and Vτ,n|Bn−1
∼= V1,n−1⊕Vτ,n−1 we have: are

G = Gn =

(
0 1

1 1

)
for all n > 1. By computing powers of G one can see that

dim(V1,n) = fn−1 and dim(Vτ,n) = fn where f0 = 1, f1 = 1, f2 = 1, f3 = 2, . . .
is the Fibonacci sequence.

Now suppose that we could find a Yang-Baxter matrix R on a space W
of dimension d localizing the sequence of Bn-representations (ρn, V1,n ⊕ Vτ,n).
Using the algebra injections ψn, the space W⊗n becomes a TLJn(A)-module
and hence W⊗n ∼= anV1,n ⊕ bnVτ,n as TLJn(A) (or Bn) modules with an ≥ 1,
bn ≥ 1 multiplicities. Notice that dn = anfn−1 + bnfn for all n > 1. We
can use G to inductively express the multiplicities (an, bn). Indeed, since re-
stricting anV1,n ⊕ bnVτ,n to Bn−1 we get bnV1,n−1 ⊕ (an + bn)Vτ,n−1, we have
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G(an, bn)T = (an−1, bn−1). Notice also that G(fn−2, fn−1)T = (fn−1, fn). Thus
the formula dn = anfn−1 + bnfn valid for all n > 1 gives us the two equations:
〈(an, bn), G(fn−2, fn−1)〉 = dn and 〈G(an, bn), (fn−1, fn)〉 = dn−1. But since
GT = G we have

dn = 〈(an, bn), G(fn−2, fn−1) rangle = 〈G(an, bn), (fn−1, fn)〉 = dn−1,

a contradiction. So the Fibonacci theory cannot be localized.

This may seem a bit ad hoc, but in fact this can be generalized whenever
the Bratteli diagram for Cρn(Bn) ⊂ Cρn+1(Bn+1) is periodic of some period
k. In this case there is a strictly positive integer-valued square matrix G that
describes the inclusion of Cρn(Bn) ⊂ Cρn+k(Bn+k). One then applies the the
Perron-Frobenius theorem to see that some vector of multiplicities bn is an
eigenvector of G corresponding to the largest eigenvalue λ of G. This implies
that λ ∈ Z, since G and bn are integral, which often leads to a contradiction
(see [20] for details).

6.3. Jones representation at levels 2 and 4

In this section we give explicit localizations for the Jones representations at
levels 2 and 4.

For the Ising theory (level 2) an explicit localization appears in [6]. The
objects are 1, σ and ψ where FPdim(σ) =

√
2 and FPdim(ψ) = 1. The Bratteli

diagram is:
σ

�� ��
1

��

ψ

��
σ

and the matrix

−e−πi/4√
2


1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1


gives an explicit localization (see [6, Section 5]).

At level 4 (A = ie−2πi/24), the categorical model is a rank 5 category with
simple objects 1, Z of dimension 1, Y of dimension 2 and X,X ′ of dimension√

3. The fusion rules for this category are determined by:

X ⊗X ∼= 1⊕ Y, X ⊗X ′ ∼= Z ⊕ Y(1)

X ⊗ Y ∼= X ⊕X ′, Z ⊗X ∼= X ′.(2)
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The Bratteli diagram (starting at level 1) is shown in below.

X

��   
1

��

Y

~~ ��
X

��   

X ′

��   
1

��

Y

~~ ��

Z

~~
X

��   

X ′

��   
1 Y Z

We have TLJn(A) ∼= End(X⊗n) for each n, where the isomorphism is induced
by

gi ↔ Id⊗i−1
X ⊗ cX,X ⊗ Id⊗n−i−1

X ∈ End(X⊗n).

Here cX,X is the (categorical) braiding on the object X. The irreducible sec-
tors of TLJn(A) under this isomorphism are the End(X⊗n)-modules Hn,W :=
Hom(W,X⊗n) where W is one of the 5 simple objects in C. Observe that for n
even W must be one of 1, Y or Z while for n odd W is either X or X ′. We have
the following formulae for the dimensions of these irreducible representations
(for n odd):

dim Hom(X,X⊗n) =
3

n−1
2 + 1

2
, dim Hom(X ′, X⊗n) =

3
n−1
2 − 1

2
,

dim Hom(1, X⊗n+1) =
3

n−1
2 + 1

2
, dim Hom(Y,X⊗n+1) = 3

n−1
2 ,

dim Hom(Z,X⊗n+1) =
3

n−1
2 − 1

2

We present the explicit localization, referring the reader to [20] for a complete
proof. Here ω = e2πi/3 is a 3rd root of unity.
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R =
i√
3



ω 0 0 0 1 0 0 0 ω

0 ω 0 0 0 ω 1 0 0

0 0 ω ω2 0 0 0 ω2 0

0 0 ω2 ω 0 0 0 ω2 0

ω 0 0 0 ω 0 0 0 1

0 1 0 0 0 ω ω 0 0

0 ω 0 0 0 1 ω 0 0

0 0 ω2 ω2 0 0 0 ω 0

1 0 0 0 ω 0 0 0 ω


In fact we have a complete characterization of localizable (uncolored) Jones
representations, verifying Conjecture 6.2 in these cases:

Theorem 6.5. The Jones representation at level k can be localized if and only
if k ∈ {1, 2, 4}.

This should be compared with Theorem 1.1 from which it follows that the
Jones representations are universal for quantum computation precisely when
the representations are not localizable.
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