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Which nestohedra are removahedra?

Qué anidaedra son quitaedra?

Vincent Pilaud

1CNRS & LIX, École Polytechnique, Palaiseau, France

Abstract. A removahedron is a polytope obtained by deleting inequalities
from the facet description of the classical permutahedron. Relevant exam-
ples range from the associahedron to the permutahedron itself, which raises
the natural question to characterize which nestohedra can be realized as re-
movahedra. In this paper, we show that the nested complex of any connected
building set closed under intersection can be realized as a removahedron. We
present two complementary constructions: one based on the building trees
and the nested fan, and the other based on Minkowski sums of dilated faces
of the standard simplex. In general, this closure condition is sufficient but not
necessary to obtain removahedra. In contrast, we show that the nested fan of
a graphical building set is the normal fan of a removahedron if and only if the
graphical building set is closed under intersection, which is equivalent to the
corresponding graph being chordful (i.e., any cycle induces a clique).
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ciahedron, generalized permutahedron, removahedron.
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Resumen. Un quitaedro es un politopo obtenido quitando desigualdades en
la descripción de las facetas de un permutaedro clásico. Ejemplos pertinentes
van del asociaedro al permutaedro, lo cual levanta la pregunta de caracteri-
zar cuales anidaedra se pueden realizar como quitaedra. En este art́ıculo, de-
mostramos que el complejo anidado de cualquier conjunto de construcción
cerrado por intersección se puede realizar como quitaedron. Presentamos dos
construcciones complementarias: una basada en los árboles de construcción y
el albanico anidado, y la otra basada en sumas de Minkowski de dilatación de
caras del simplejo estándar. En general, este condición de clausura es suficiente
pero no necesaria para obtener quitaedra. En contraste, demostramos que el
abanico anidado de un conjunto de construcción gráfico es el abanico normal
de un quitaedro si y solo si el conjunto de construcción gráfico es cerrado por
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intersección, lo cual es equivalente a que el grafo correspondiente sea plena de
cuerdas (i.e., que cada ciclo induce un grafo completo).

Palabras y frases clave. Conjunto de construcción, complejo anidado, anidaedra,
asociaedro de grafo, permutaedro generalizado, removaedro.

1. Introduction

The permutahedron is a classical polytope related to various properties of the
symmetric group. It is obtained as the convex hull of all permutations of [n] and
its normal fan is the type A Coxeter fan. In [12], A. Postnikov defined general-
ized permutahedra as the polytopes obtained from the classical permutahedron
by gliding its facets orthogonally to its normal vectors without passing any ver-
tex. Equivalently [13], a generalized permutahedron is a polytope whose normal
fan coarsens the type A Coxeter fan.

A particularly relevant example of generalized permutahedron is the asso-
ciahedron constructed by S. Shnider and S. Sternberg [14] and J.-L. Loday [9].
An associahedron is a polytope whose 1-skeleton realizes the rotation graph on
binary trees with n vertices. The polytope of [14, 9] is a remarkable realization
of the associahedron which, besides being a generalized permutahedron, has
the following three properties:

(i) it is obtained by deleting inequalities from the facet description of the
permutahedron; we call such polytopes removahedra;

(ii) its vertex coordinates enumerate paths between leaves in the correspond-
ing binary trees;

(iii) it is the Minkowski sum of the faces 4I of the standard simplex given by
all intervals I of [n].

This paper studies the connections between these three properties for a
larger class of polytopes called nestohedra defined independently by A. Post-
nikov [12] and by E.-M. Feichtner and B. Sturmfels [4]. These polytopes extend
the graph associahedra of M. Carr and S. Devadoss [2] as they realize the nested
complex on an arbitrary building set, see Section 2.2 for definitions. All nesto-
hedra are generalized permutahedra, but not necessarily removahedra. In this
paper, we investigate which nestohedra can be realized as removahedra. We
show that the nested complex of a connected building set closed under inter-
section can always be realized as a removahedron. For graph associahedra, this
closure condition is equivalent to the underlying graph being chordful (i.e. any
cycle induces a clique). Conversely, we show that the nested fan of a graphi-
cal building set is the normal fan of a removahedron if and only if the graph
is chordful. We develop two complementary approaches to describe a nestohe-
dron which is a removahedron. First, we show that its vertex coordinates can be
computed by enumerating paths between leaves in building trees, exactly as in
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WHICH NESTOHEDRA ARE REMOVAHEDRA? 23

Point (ii) above. Second, we show that it decomposes into a simple Minkowski
sum of faces of the standard simplex given by certain paths in the building set,
which corresponds to the intervals of [n] in Point (iii) above.

2. Preliminaries

2.1. Permutahedra, deformed permutahedra, and removahedra

All polytopes considered in this paper are closely related to the braid arrange-
ment and to the classical permutahedron. Therefore, we first recall the defi-
nition and basic properties of the permutahedron (see [16, Lect. 0]) and cer-
tain relevant deformations of it. We fix a finite ground set S and denote by
{es | s ∈ S} the canonical basis of RS.

Definition 2.1. The permutahedron Perm(S) is the convex polytope obtained
equivalently as

i. either the convex hull of the vectors
∑
s∈S σ(s)es ∈ RS for all bijections

σ : S→ [|S|],

ii. or the intersection of the hyperplane H := H=(S) with the half-spaces H≥(R)
for ∅ 6= R ⊂ S, where

H=(R) :=

{
x ∈ RS

∣∣∣∑
r∈R

xr =

(
|R|+ 1

2

)}
and

H≥(R) :=

{
x ∈ RS

∣∣∣∣ ∑
r∈R

xr ≥
(
|R|+ 1

2

)}
,

iii. or the Minkowski sum of all segments [er, es] for (r, s) ∈
(
S
2

)
.

The normal fan of the permutahedron is the fan defined by the braid ar-
rangement in H, i.e. the arrangement of the hyperplanes {x ∈ H | xr = xs}
for r 6= s ∈ S. Its k-dimensional cones correspond to the surjections from S
to [k + 1], or equivalently to the ordered partitions of S into k + 1 parts. In
this paper, we are interested in the following deformations of the permuta-
hedron Perm(S). These polytopes were called generalized permutahedra by A.
Postnikov [12, 13], but we prefer the term deformed to distinguish from other
natural generalizations of the permutahedron (to finite Coxeter groups, to re-
movahedra, . . .).

Definition 2.2 ([12, 13]). A deformed permutahedron is a polytope whose nor-
mal fan coarsens that of the permutahedron. Equivalently [13], it is a polytope
defined as

Defo(z) :=

{
x ∈ RS

∣∣∣∣ ∑
s∈S

xs = zS and
∑
r∈R

xr ≥ zR for all ∅ 6= R ⊂ S

}
,
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for some z := (zR)R⊆S ∈ (R>0)2S

, such that zR + zR′ ≤ zR∪R′ + zR∩R′ for
any R,R′ ⊆ S.

As the permutahedron itself, all deformed permutahedra can be decomposed
as Minkowski sums and differences of dilates of faces of the standard simplex
[1]. For our purposes, we only need here the following simpler fact, already
observed in [12].

Remark 2.3 ([12]). For any S ⊆ S, we consider the face4S := conv {es | s ∈ S}
of the standard simplex4S. For any y := (yS)S⊆S where all yS are non-negative
real numbers, the Minkowski sum

Mink(y) :=
∑
S⊆S

yS4S

of dilated faces of the standard simplex is a deformed permutahedron Defo(z),
and the values z = (zR)R⊆S of the right hand sides of the inequality description
of Mink(y) = Defo(z) are given by

zR =
∑
S⊆R

yS .

Remark 2.4. As the normal fan of a Minkowski sum is just the common
refinement of the normal fans of its summands, and the normal fan is invari-
ant by dilation, the combinatorics of the face lattice of the Minkowski sum
Mink(y) only depends on the set {S ⊆ S | yS > 0} of non-vanishing dilation
factors. When we want to deal with combinatorics only, we denote generically
by Mink[C] any Minkowski sum Mink(y) with dilation factors y = (yS)S⊆S such
that C = {S ⊆ S | yS > 0}.

Among these deformed permutahedra, some are simpler than the others as
all their facet defining inequalities are also facet defining inequalities of the
classical permutahedron. In other words, they are obtained from the permuta-
hedron by removing facets, which motivates the following name.

Definition 2.5. A removahedron is a polytope obtained by removing inequal-
ities from the facet description of the permutahedron, i.e. a polytope defined
for some B ⊆ 2S by

Remo(B) :=H ∩
⋂
B∈B

H≥(B) =

{
x ∈ H

∣∣∣∣ ∑
s∈B

xs ≥
(
|B|+ 1

2

)
for all B ∈ B

}
.

Our motivation to study removahedra is that they are completely deter-
mined by their normal fan (in fact even just by their normal vectors). In gen-
eral, many relevant simplicial spheres (associahedra [9, 5], graph associahedra
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[2], nestohedra [12, 4], signed tree associahedra [11], Coxeter associahedra [6],
accordion complexes [10], . . .) are easy to realize by fans that coarsen the nor-
mal fan of a zonotope (often the classical permutahedron, but also Coxeter
permutahedra [6], or even other zonotopes [7, 10]). Polytopal realization prob-
lems would thus be simpler if all these fans would be realized by removing the
undesired facets of these zonotopes. This paper studies when this approach is
possible for nestohedra.

2.2. Building set, nested complex, and nested fan

We now switch to building sets and their nested complexes. We only select from
[2, 12, 4, 15] the definitions needed in this paper. More details and motivation
can be found therein.

Definition 2.6. A building set B on a ground set S is a collection of non-empty
subsets of S such that

(B1) if B,B′ ∈ B and B ∩B′ 6= ∅, then B ∪B′ ∈ B, and

(B2) B contains all singletons {s} for s ∈ S.

A building set is connected if S is the unique maximal element. Moreover, we
say that a building set B is closed under intersection if B,B′ ∈ B implies
B ∩B′ ∈ B ∪ {∅}.

All building sets in this manuscript are assumed to be connected and we
will study the relation between removahedra and building sets closed under
intersection. We first recall a general example of building sets, arising from
connected subgraphs of a graph.

Example 2.7. Given a graph G with vertex set S, we denote by BG the
graphical building set on G, i.e. the collection of all non-empty subsets of S
which induce connected subgraphs of G. The maximal elements of BG are the
vertex sets of the connected components of G, and we will therefore always
assume that the graph G is connected. We call a graph G chordful if any cycle
of G induces a clique. Observe in particular that every tree is chordful. The
following statement describes the graphical building sets of chordful graphs.

Lemma 2.8. A (finite connected) graph G is chordful if and only if its graphical
building set is closed under intersection.

Proof. Assume that G is chordful, and consider B,B′ ∈ BG and s, t ∈ B∩B′.
As B and B′ induce connected subgraphs of G, there exists paths P and P ′

between s and t in G whose vertex sets are contained in B and B′, respectively.
The symmetric difference P4P ′ of these paths is a collection of cycles. Since G
is chordful, we can replace in each of these cycles the subpath of P (resp. of P ′)
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26 VINCENT PILAUD

by a chord. We thus obtain a path from s to t which belongs to B∩B′. It follows
that B ∩B′ induces a connected subgraph of G and thus that B ∩B′ ∈ BG.

Assume reciprocally that G has a cycle (si)i∈Z`
, with a missing chord sxsy.

Consider the subsets B := {si | x ≤ i ≤ y} and B′ := {si | y ≤ i ≤ x}, where
the inequalities between labels in Z` have to be understood cyclically. Clearly,
B,B′ ∈ BG while B ∩B′ = {sx, sy} /∈ BG. �X

Example 2.9. The following sets are building sets:

• Bex0 := 2[4] r{∅} is the graphical building set on the complete graph K4,

• Bex1 := 2[4] r
{
∅, {1, 3}

}
is the graphical building set on K4 r

{
{1, 3}

}
,

• Bex2 := 2[4] r
{
∅, {1, 3}, {1, 4}, {1, 3, 4}

}
is the graphical building set over

K4r
{
{1, 3}, {1, 4}

}
,

• Bex3 := {{1}, {2}, {3}, {4}, {5}, {1, 2, 3}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}} is not
graphical,

• Bex4 := {{1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}} is not
graphical.

The two building sets Bex0 and Bex2 are closed under intersection, while the
other three are not.

In this paper, we focus on polytopal realizations of the nested complex of a
building set, a simplicial complex defined below. Following [15] and contrarily
to [12], we do not include S in the definition of B-nested sets.

Definition 2.10. A B-nested set N is a subset of Br {S} such that

(N1) for any N,N ′ ∈ N, either N ⊆ N ′ or N ′ ⊆ N or N ∩N ′ = ∅, and

(N2) for any k ≥ 2 pairwise disjoint sets N1, . . . , Nk ∈ N, the union N1∪· · ·∪Nk
is not in B.

The B-nested complex is the simplicial complex N (B) of all B-nested sets.

Example 2.11. For a graphical building set BG, Conditions (N1) and (N2)
in Definition 2.10 can be replaced by the following: for any N,N ′ ∈ N, either
N ⊆ N ′ or N ′ ⊆ N or N ∪N ′ /∈ BG. In particular, the BG-nested complex is
a clique complex: a simplex belongs to BG if and only if all its edges belong to
BG.

The B-nested sets can be represented by the inclusion poset of their ele-
ments. Since we only consider connected building sets, the Hasse diagrams of
these posets are always trees. In the next definition, we consider rooted trees
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whose vertices are labeled by subsets of S. For any vertex v in a rooted tree T,
we call descendant set of v in T the union desc(v,T) of the label sets of all de-
scendants of v in T, including the label set of the vertex v itself. The B-nested
sets are then in bijection with the following B-trees.

Definition 2.12. A B-tree is a rooted tree whose label sets partition S and
such that

(1) for any vertex v of T, the descendant set desc(v,T) belongs to B,

(2)
⋃
i∈[k] desc(vi,T) is not in B for any k ≥ 2 incomparable vertices

v1, . . . , vk ∈ T.

We denote by N(T) := {desc(v,T) | v vertex of T distinct from its root} the
B-nested set corresponding to a B-tree T. Note that N(T) is a maximal B-nested
set if and only if all the vertices of T are labeled by singletons of S. We then
identify a vertex of T with the element of S labeling it.

The B-nested sets and the B-trees naturally encode a geometric representa-
tion of the B-nested complex as a complete simplicial fan. In the next definition,
we define 11R :=

∑
r∈R er, for R ⊆ S, and we denote by 1̄1R the projection of

11R to H orthogonal to 11S. Moreover, we consider H as a linear space.

Definition 2.13. The B-nested fan F(B) is the complete simplicial fan of
H := H=(S) with a cone

C(N) := cone {−1̄1N | N ∈ N} = {x ∈ H | xr ≤ xs∀ r → s in T} =: C(T)

for each B-nested set N and B-tree T with N = N(T).

The B-nested fan is the normal fan of various deformed permutahedra (see
Definition 2.2). We want to underline two relevant examples:

(i) the deformed permutahedron Defo(z) with right hand side z := (zR)R⊆S
defined by zR = 3|R|−2 if R ∈ B and zR =∞ otherwise, see [3];

(ii) the Minkowski sum Mink(11B) of the faces of the standard simplex corre-
sponding to all the elements of the building set B, see [12, Section 7].

However, these two realizations are not always removahedra. In general, the
support functions realizing the normal fan F(B) can be characterized by local
conditions [15, Proposition 6.3], but it is difficult to use these conditions to
characterize which nested complexes can be realized as removahedra. In this
paper, we adopt a different approach.
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2.3. Results

The objective of this paper is to discuss necessary and sufficient conditions
for the B-nested fan to be the normal fan of a removahedron (see Defini-
tion 2.5), and to study some properties of the resulting removahedra (vertex
description, Minkowski sum decomposition). We thus consider the removahe-
dron Remo(B) described by the facet defining inequalities of the permutahedron
Perm(S) whose normal vectors are rays of the B-nested fan, i.e.

Remo(B) :=H ∩
⋂
B∈B

H≥(B) =

{
x ∈ H

∣∣∣∣ ∑
s∈B

xs ≥
(
|B|+ 1

2

)
for all B ∈ B

}
.

Example 2.14. Figure 1 represents the removahedra Remo(Bex0), Remo(Bex1)
and Remo(Bex2) corresponding to the graphical building sets Bex0, Bex1 and
Bex2 of Example 2.9. Observe that Remo(Bex0) and Remo(Bex2) realize the cor-
responding nested complexes, whereas Remo(Bex1) is not even a simple poly-
tope.

1|234 123|4

3|124

34|12

1|234 123|4

3|124

34|12

134|2

14|23

3|4|1|24|3|1|2
4|3|2|1 3|4|2|1

3|1|4|2

3|2|4|1

3|2|1|4

1|3|4|21|4|3|2

1|4|2|3

1|2|4|3 1|2|3|4
2|1|3|4

1|3|2|4

4|1|2|3

4|1|3|2

2|3|1|4
3|1|2|4

1|234 123|4

13|24

3|124

34|12

134|2

14|23

Figure 1. The 3-dimensional permutahedron Perm([4]) = Remo(Bex0) and the re-
movahedra Remo(Bex1) and Remo(Bex2).

We want to understand when does Remo(B) realize the nested complex N (B).
The following statement provides a general sufficient condition.

Theorem 2.15. If B is a connected building set closed under intersection,
then the normal fan of the removahedron Remo(B) is the B-nested fan F(B).
In particular, Remo(B) is a simple polytope.

We provide two different complementary proofs of this result, which both
show relevant by-product properties of these removahedra:

(i) In Section 3, we apply a result from [6] which characterizes the valid right
hand sides to realize a complete simplicial fan as the normal fan of a
convex polytope. For this, we first compute for each maximal B-tree T
the intersection point a(T) of all facet defining hyperplanes of Remo(B)
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normal to the rays of the cone C(T). This provides along the way relevant
formulas for the vertex coordinates of the corresponding vertex of the
removahedron Remo(B). We then show that the vector joining the points
a(T) and a(T′) corresponding to two adjacent cones C(T) and C(T′)
indeed points in the right direction for Remo(B) to realize the nested
fan F(B).

(ii) In Section 4, we show that certain Minkowski sums of dilated faces of the
standard simplex realize the B-nested fan as soon as all B-paths appear as
summands. We then find the appropriate dilation factors for the resulting
polytope to be a removahedron.

Relevant examples of application of Theorem 2.15 arise from graphical building
sets of chordful graphs. If we restrict to graphical building sets, Lemma 3.6
shows that chordfulness of G is also a necessary condition for the BG-nested
fan F(BG) to be the normal fan of Remo(BG). We therefore obtain the following
characterization of the graphical building sets whose nested fan is the normal
fan of a removahedron. This characterization is illustrated by Example 2.14.

Theorem 2.16. The BG-nested fan F(BG) is the normal fan of the remova-
hedron Remo(BG) if and only if the graph G is chordful.

Example 2.17. Specific families of chordful graphs provide relevant examples
of graph associahedra realized by removahedra, e.g. :

• the path associahedra, aka. classical associahedra [14, 9],

• the star associahedra, aka. stellohedra [13],

• the tree associahedra [11],

• the complete graph associahedra, aka. classical permutahedra.

In contrast, for the cycle associahedra, aka. cyclohedra, the nested fan F(BOn)
is not the normal fan of a removahedron since the cycle On is not chordful for
n ≥ 4.

To conclude, we observe that a general building set B does not need to
be closed under intersection for the removahedron Remo(B) to realize the B-
nested fan F(B). In fact, our first proof of Theorem 2.15 shows the following
refinement. We say that two building blocks B,B′ ∈ B are exchangeable if there
exists two maximal B-nested sets N,N′ such that Nr {B} = N′ r {B′}.

Theorem 2.18. If the intersection of any two exchangeable building blocks of
B also belongs to B, then the normal fan of the removahedron Remo(B) is the
B-nested fan F(B).
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Figure 2. The 4-dimensional removahedron Remo(Bex3) realizes the Bex3-nested fan,
although Bex3 is not closed under intersection.
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This result is illustrated by the building set Bex3 of Example 2.9 and its re-
movahedron Remo(Bex3) represented in Figure 2. However, the condition of
Theorem 2.18 is still not necessary for the removahedron Remo(B) to realize
the nested complex N (B). For example, we invite the reader to check that the
removahedron Remo(Bex4) of the building set Bex4 of Example 2.9 realizes the
corresponding nested complex, even if {1, 2, 3, 4} ∩ {3, 4, 5} = {3, 4} /∈ Bex4

while {1, 2, 3, 4} and {3, 4, 5} are exchangeable. Corollary 3.4 gives a necessary
and sufficient, thought unpractical, condition for the removahedron Remo(B)
of an arbitrary building set B to realize the nested fan F(B).

3. Counting paths in maximal B-trees

Our first approach to Theorem 2.15 is the following characterization of the
valid right hand sides to realize a complete simplicial fan as the normal fan of
a convex polytope. A proof of this statement can be found e.g. in [6, Th. 4.1].

Theorem 3.1 ([6, Theorem 4.1]). Given a complete simplicial fan F in Rd,
consider for each ray ρ of F a half-space H≥ρ of Rd containing the origin and
defined by a hyperplane H=

ρ orthogonal to ρ. For each maximal cone C of F ,

let a(C) ∈ Rd be the intersection of the hyperplanes H=
ρ for ρ ∈ C. Then the

following assertions are equivalent:

(i) The vector a(C ′)−a(C) points from C to C ′ for any two adjacent maximal
cones C, C ′ of F .

(ii) The polytopes

conv {a(C) | C maximal cone of F} and
⋂

ρ ray of F

H≥ρ

coincide and their normal fan is F .

Since we are given a complete simplicial fan F(B) and we want to prescribe
the right hand sides of the inequalities to describe a polytope realizing it, we
are precisely in the situation of Theorem 3.1. Our first step is to compute the
intersection points of the hyperplanes normal to the rays of a maximal cone
of F(B). We associate to any maximal B-tree T a point a(T) ∈ RS whose
coordinate a(T)s is defined as the number of paths π in T such that s is the
topmost vertex ∧(π) of π in T. Note that all coordinates of a(T) are strictly
positive integers since we always count the trivial path reduced to the vertex s
of T. The following lemma ensures that the point a(T) lies on all hyperplanes
of Remo(B) normal to the rays of the cone C(T).

Lemma 3.2. For any maximal B-tree T and any element s ∈ S, the point a(T)
lies on the hyperplane H=(desc(s,T)).
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The proof of this lemma is inspired from similar statements in [8, Proposi-
tion 6] and [11, Proposition 60]. Although the latter covers the present result,
we provide a simpler and self-contained proof for the convenience of the reader.

Proof of Lemma 3.2. Consider a B-tree T, and let Π be the set of all paths in
T. For any π ∈ Π, the topmost vertex ∧(π) of π in T is a descendant of s in T
if and only if both endpoints of π are descendants of s in T. It follows that∑

r∈desc(s,T)

a(T)r =
∑

r∈desc(s,T)

∑
π∈Π

11∧(π) = r

=
∑
π∈Π

11∧(π)∈ desc(s,T)

=

(
|desc(s,T)|+ 1

2

)
since the number of paths π ∈ Π such that ∧(π) ∈ desc(s,T) is just the number
of pairs of endpoints in desc(s,T), with possible repetition. We therefore have
a(T) ∈ H=(desc(s,T)). �X

Guided by Theorem 3.1, we now compute the difference a(T′) − a(T) for
two adjacent maximal B-trees T and T′. Let s, s′ ∈ S be such that the cones
C(T) and C(T′) are separated by the hyperplane of equation xs = xs′ , and
moreover xs ≤ xs′ in C(T) while xs ≥ xs′ in C(T′). Let T̄ denote the tree
obtained by contracting the arc s→ s′ in T or, equivalently, the arc s′ → s in
T′. Since both T and T′ contract to T̄, the children of the node of T̄ labeled
by {s, s′} are all children of s or s′ in both T and T′. We denote by S (resp.
by S′) the elements of S which are children of s (resp. of s′) in both T and T′.
In contrast, we let R denote the elements of S which are children of s in T and
of s′ in T′, and R′ those which are children of s′ in T and of s in T′. These
notations are summarized on Figure 3. For r ∈ S ∪ S′ ∪R ∪R′, we denote the
set of descendants of r by desc(r) := desc(r,T) = desc(r,T′) = desc(r, T̄).

S' RS R'S' R'

O

s

S R

s' s s'

O

Figure 3. Two adjacent maximal B-trees T (left) and T′ (right).
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Lemma 3.3. Let B be a building set and T, T′ be two adjacent maximal B-trees.
Using the notation just introduced, we set

δX :=
∑
x∈X
|desc(x)| and πX :=

∑
x 6=x′∈X

|desc(x)| · |desc(x′)|

for X ∈ {S, S′, R,R′}. Then the difference a(T′)− a(T) is given by

a(T′)− a(T) = ∆(T,T′) · (es − es′),

where the coefficient ∆(T,T′) is defined by

∆(T,T′) := (δS + 1)(δS′ + 1) + δR′(δS + δS′ + δR + 2) + πR′ − πR.

Proof. By definition of the coordinates of a(T), we compute

a(T)s = (δS + 1)(δR + 1) + πS + πR,

a(T)s′ = (δS′ + 1)(δR′ + 1) + (δS′ + δR′)(δR + δS + 1) + 1 + δS + δR +πS′ +πR′ ,
and

a(T′)s = (δS + 1)(δR′ + 1) + (δS + δR′)(δR + δS′ + 1) + 1 + δS′ + δR + πS + πR′ ,

a(T′)s′ = (δS′ + 1)(δR + 1) + πS′ + πR.

Moreover, the coordinates a(T)r and a(T′)r coincide if r ∈ S r {s, s′} since
the flip from T to T′ did not affect the children of the node r. The result
immediately follows. �X

Combining Theorem 3.1 and Lemmas 3.2 and 3.3, we thus obtain the fol-
lowing characterization.

Corollary 3.4. The B-nested fan F(B) is the normal fan of the removahe-
dron Remo(B) if and only if ∆(T,T′) > 0 for any pair of adjacent maximal
B-trees T,T′.

The following lemma gives a sufficient condition for this property to hold.

Lemma 3.5. For any two adjacent maximal B-trees T,T′ as in Lemma 3.3, if
desc(s,T) ∩ desc(s′,T′) belongs to B ∪ {∅}, then ∆(T,T′) > 0.

Proof. By assumption, the set⋃
r∈R

desc(r) = desc(s,T) ∩ desc(s′,T′)

either belongs to the building set B or is empty. Since desc(r)∩desc(r′) = ∅ for
r 6= r′ ∈ R and desc(r) ∈ B for r ∈ R, we conclude that |R| ≤ 1 by Condition
(N2) in Definition 2.10. Thus πR = 0, δS ≥ 0 and δS′ ≥ 0. The statement
follows. �X
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It follows that if B is closed under intersection of exchangeable elements,
then the B-nested fan F(B) is the normal fan of the removahedron Remo(B).
This concludes our first proof of Theorems 2.15 and 2.18. For graphical building
sets, we conclude from Lemma 2.8 that Remo(BG) realizes F(B) as soon as G is
chordful. Conversely, the following lemma shows that the condition of Corollary
3.4 is never satisfied for building sets of non chordful graphs, thus concluding
the proof of the characterization of Theorem 2.16.

Lemma 3.6. Let G be a connected graph that is not chordful. Then there exist
two adjacent maximal BG-trees T,T′ such that ∆(T,T′) ≤ 0.

Proof. Consider a cycle O in G not inducing a clique and choose two ver-
tices a, b ∈ O not connected by a chord. As a and b are not connected, {{a}, {b}}
is a B-nested set. We complete it to a B-nested set N̄ formed by subsets of O
all containing either a or b, such that N̄ be maximal for this property. Let Ba
and Bb denote the maximal elements of N̄ containing a and b, respectively.
By maximality of N̄, all remaining vertices in O r (Ba ∪ Bb) are connected to
both Ba and Bb. Moreover, there are at least two such vertices s, s′. Consider
two maximal B-nested sets N and N′ both containing N̄ and Ba ∪Bb ∪ {s, s′},
and such that N contains Ba ∪ Bb ∪ {s} and N′ contains Ba ∪ Bb ∪ {s′}. The
corresponding B-trees T and T′ are such that node s′ covers s in T and s cov-
ers s′ in T′. Moreover, using the notations introduced earlier in this section,
R′ = S = S′ = ∅ while |R| ≥ 2 as R contains one vertex of Ba and one of Bb.
Thus δS = δS′ = δR′ = πR′ = 0 and πR ≥ 1, which implies ∆(T,T′) ≤ 0. �X

As already observed earlier, for general building sets, the condition of
Lemma 3.5 is not necessary for Remo(BG) to realize F(B). For example, in the
building set Bex4 of Example 2.9, the building blocks {1, 2, 3, 4} and {3, 4, 5}
are exchangeable but {1, 2, 3, 4}∩{3, 4, 5} = {3, 4} /∈ Bex4. However, {1, 2, 3, 4}
and {3, 4, 5} are the only two intersecting exchangeable building blocks of Bex4,
and for any two maximal Bex4-trees T,T such that N(T) r

{
{1, 2, 3, 4}} =

N(T′)r
{
{3, 4, 5}}, we have ∆(T,T′) = 1. Therefore, Corollary 3.4 ensures that

Remo(Bex4) realizes F(Bex4).

Remark 3.7. The arguments of this first proof of Theorems 2.15 and 2.18 can
be used to show that any nestohedron can be realized as a skew removahedron.
A skew permutohedron is the convex hull

Permp(S) := conv

{∑
s∈S

pσ(s)es

∣∣∣∣ σ ∈ SS

}
of the orbit of a generic point p ∈ RS (i.e. ps 6= p′s for s 6= s′ ∈ S) un-
der the action of the symmetric group SS on RS by permutation of coordi-
nates. Equivalently, a skew permutahedron is the deformed permutahedron

Permφ(S) :=Defo(zφ) for a right hand side zφ := (zφR)R⊆S ∈ R2S

defined by
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zφR :=φ(|R|) for some function φ : N→ R>0. For example, the classical permu-

tahedron Perm(S) is the permutahedron Permφ(S) for φ(n) =
(
n+1

2

)
. A skew

removahedron is a polytope

Remop(B) = Remoφ(B) :=

{
x ∈ H

∣∣∣∣ ∑
s∈B

xs ≥ φ(|B|) for all B ∈ B

}
,

obtained by removing inequalities from the facet description of a skew permuta-
hedron Permp(S) = Permφ(S). Note that even if skew removahedra have much
more freedom than classical removahedra, they do not contain all deformed
permutahedra.

A consequence of the realization of [3] is that all graph associahedra can
be realized as skew removahedra, namely by removing facets of the skew per-
mutahedron Permφ(S) for φ(n) = γn with γ > 2. The arguments presented
in this Section provide an alternative proof of this result and extend it to all
nestohedra. Let us quickly give the proof here.

For a B-tree T, consider the point aγ(T) ∈ RS defined by∑
r∈desc(s,T)

aγ(T)r = γ|desc(s,T)| for all s ∈ S.

We do not need to compute explicitly the coordinates of aγ(T). We will only
use that for any s ∈ S,

aγ(T)s = γ|desc(s,T)| −
∑

r∈desc(s,T)

γ|desc(r,T)|.

Consider now two adjacent maximal B-trees T,T′ with the same notations as
in Figure 3. For a subset X ∈ {S, S′, R,R′}, define

δX :=
∑
x∈X
|desc(x)| and ΓX :=

∑
x∈X

γ|desc(x)|.

Using these notations, we compute:

aγ(T)s = γ1+δS+δR − ΓS − ΓR,

aγ(T)s′ = γ2+δS+δR′+δS′+δR − γ1+δS+δR − ΓS′ − ΓR′ ,

and

aγ(T′)s = γ2+δS+δR′+δS′+δR − ΓS − ΓR′ − γ1+δS′+δR ,

aγ(T′)s′ = γ1+δS′+δR − ΓS′ − ΓR.

Moreover, the coordinates a(T)r and a(T′)r coincide if r ∈ Sr {s, s′} since the
flip from T to T′ did not affect the children of the node r. We therefore obtain
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that aγ(T′)− aγ(T) = ∆(T,T′) · (es − es′), where

∆(T,T′) = γ2+δS+δR′+δS′+δR − γ1+δS′+δR − γ1+δS+δR + ΓR − ΓR′

≥ γδR
(
(γ1+δS − 1)(γ1+δS′ − 1)− 1

)
+ γ2+δS+δS′+δR(γδR′ − 1)− ΓR′ .

Since γ > 2, we have(
γ1+δS − 1

)(
γ1+δS′ − 1

)
− 1 > 0 and

γ2+δS+δS′+δR(γδR′ − 1)− ΓR′ ≥ γδR′+1 − γ − ΓR′ ≥ 0

since γn+m ≥ γn + γm for 1 ≤ n,m. We therefore obtain that ∆(T,T′) > 0
and we conclude by Theorem 3.1.

4. Minkowski sums

In this section, we provide an alternative proof that any building set closed
under intersection can be realized as a removahedron. The approach of this sec-
tion is complementary to the previous one since it focusses on Minkowski sums.
As illustrated by the following statement observed independently by A. Post-
nikov [12, Section 7] and E.-M. Feichtner and B. Sturmfels [4], Minkowski sums
provide a powerful tool to realize nested complexes.

Theorem 4.1 ([12, Section 7], [4]). For any building set B, the B-nested
fan F(B) is the normal fan of the Minkowski sum

Mink[B] =
∑
B∈B

yB4B ,

where (yB)B∈B are arbitrary strictly positive real numbers, and 4B denotes the
face of the standard simplex corresponding to B.

Remember from Remark 2.4 that the normal fan, and thus the combina-
torics, of the Minkowski sum Mink[B] only depends on B, not on the values of
the dilation factors (yB)B∈B (as soon as all these values are strictly positive).
These Minkowski sums Mink[B] are deformed permutahedra, but not neces-
sarily removahedra. In this section, we relax Theorem 4.1 to give a sufficient
condition for a subsum of Mink[B] to keep the same normal fan, and prove that
a well-chosen subsum of Mink[B] is indeed a removahedron.

4.1. Generating sets and building paths

We say that a subset C of B is generating if for each B ∈ B and for each
b ∈ B, the set B is the union of the sets C ∈ C such that b ∈ C ⊆ B.
The following statement can be seen as a relaxation of Theorem 4.1: it shows
that the Minkowski sum Mink[C] of the faces of the standard simplex over
a generating subset C of B still has the same normal fan as the Minkowski
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sum Mink[B] itself. Note that we do not make here any particular assumption
on the building set B. The proof, adapted from that of [12, Theorem 7.4], is
delayed to the next section.

Theorem 4.2. If C is a generating subset of a connected building set B, then
the B-nested fan F(B) is the normal fan of the Minkowski sum

Mink[C] =
∑
C∈C

yC4C ,

where (yC)C∈C are arbitrary strictly positive real numbers.

Example 4.3. Given a connected graph G, the set CG of all vertex sets of
induced subpaths of G is a generating subset of the graphical building set BG.
Set here yC = 1 for all C ∈ CG. Then

(1) if G = P is a path, then BP and CP coincide and Mink[BP] = Mink[CP]
is precisely the associahedron of [14, 9];

(2) if G = T is a tree, then Mink[CT] is the (unsigned) tree associahedron
of [11];

(3) if G = KS is the complete graph, then BKS = 2S r {∅} while CKS =
{R ⊆ S | 1 ≤ |R| ≤ 2}. Thus, Mink[CKS] is the classical permutahedron,
while Mink[BKS] is a dilated copy of it.

In fact, the notion of paths can be extended from these graphical examples
to the more general setting of connected building sets closed under intersection.
Throughout the end of this section, we consider a building set B on the ground
set S, closed under intersection. For any R ⊆ S, we define the B-hull of R to
be the smallest element of B containing R (it exists since B is closed under
intersection). In particular, for any s, t ∈ S, we define the B-path π(s, t) to be
the B-hull of {s, t}. We denote by Π(B) the set of all B-paths.

Example 4.4. For a graphical building set BG, the BG-paths are precisely
the induced subpaths of G, i.e. with our notations Π(BG) = CG.

Lemma 4.5. The set Π(B) of all B-paths is a generating subset of B.

Proof. Let B ∈ B and b ∈ B. For any b′ ∈ B, the path π(b, b′) contains b and is
contained in B (indeed, B contains both b and b′ and thus π(b, b′) by minimality
of the latter). Therefore, b′ belongs to the union of the sets C ∈ Π(B) such
that b ∈ C ⊆ B. The lemma follows by definition of generating subsets. �X

In fact, the set of paths Π(B) is the minimal generating subset of B, in the
following sense.
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Lemma 4.6. Any generating subset of B contains Π(B).

Proof. Consider a generating subset C of B, and s, t ∈ S. The B-path π(s, t)
is the smallest building block containing {s, t}. Therefore, π(s, t) has to be
in C, since otherwise t would not belong to the union of the sets C such that
s ∈ C ⊆ π(s, t). �X

From Theorem 4.2 and Lemma 4.5, we obtain that any Minkowski sum
Mink[Π(B)] is a realization of the B-nested complex. We now have to choose
properly the dilation coefficients to obtain a removahedron. For S ⊆ S, define
the coefficient

ȳS :=
∣∣{s, t ∈ S2 | π(s, t) = S

}∣∣.
Lemma 4.7. The dilation coefficients (ȳB)B∈B satisfy the following properties:

(i) ȳS > 0 for all S ∈ Π(B), and ȳS = 0 otherwise.

(ii) For all B ∈ B, ∑
S⊆B

ȳS =

(
|B|+ 1

2

)
.

Proof. Point (i) is clear by definition of the coefficients ȳS . We prove Point (ii)
by double counting: for any B ∈ B and any b, b′ ∈ B (distinct or not), the
path π(b, b′) is included in B. We can therefore group pairs of elements of B
according to their B-paths:(

|B|+ 1

2

)
= |{b, b′ ∈ B}| =

∑
S⊆B

|
{
b, b′ ∈ B | π(b, b′) = S

}
| =

∑
S⊆B

ȳS .

�X

Combining Theorem 4.2 with Lemmas 4.5 and 4.7, we obtain an alternative
proof of Theorem 2.15.

Corollary 4.8. For a building set B closed under intersection, the removahe-
dron Remo(B) coincides with the Minkowski sum

∑
B∈B ȳB4B, and its normal

fan is the B-nested fan.

Remark 4.9. For a graphical building set BG of a chordful graph G, the
coefficients ȳC are all equal to 1 for all subpaths C ∈ CG. It is not anymore
true for arbitrary building sets closed under intersection. For example, consider
the building set Bex5 :=

{
{1}, {2}, {3}, {1, 2}, {1, 2, 3}

}
, for which we obtain

Remo(Bex5) = 24{1,2,3} +4{1,2} +4{1} +4{2} +4{3}.

This Minkowski decomposition is illustrated in Figure 4.
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) (
0
2
0

)

(
0
0
2

)
(

1
0
0

) (
0
1
0

) (
1
1
1

)

Remo(Bex5) = 24{1,2,3} + 4{1,2} +

(
4{1}+

4{2} +4{3}

)
Figure 4. The Minkowski decomposition of the 2-dimensional removahe-

dron Remo(Bex5) into faces of the standard simplex.

4.2. Proof of Theorem 4.2

This section is devoted to the proof of Theorem 4.2. We start with the following
technical lemma on the affine dimension of Minkowski sums.

Lemma 4.10. (i) Let (Pi)i∈I be polytopes lying in orthogonal subspaces of Rn.
Then

dim
∑

Pi =
∑

dimPi.

(ii) If I ⊆ 2S is such that
⋂
I 6= ∅, then dim

∑
I∈I4I = |

⋃
I| − 1.

Proof. Point (i) is immediate as the union of bases of the linear spaces gener-
ated by the polytopes Pi is a basis of the linear space generated by

∑
Pi.

For Point (ii), fix x ∈
⋂
I and an arbitrary order I1, . . . , Ip on I. Define

I ′j := Ij r
(
{x} ∪

⋃
k<j Ik

)
. We then have

dim
∑
I∈I
4I ≥ dim

∑
j∈[p]
I′j 6=∅

4I′j∪{x} ≥
∑
j∈[p]
I′j 6=∅

dim4I′j∪{x} =
∑
j∈[p]
I′j 6=∅

|I ′j | =
∣∣⋃ I

∣∣− 1,

where the first inequality holds since 4I′j∪{x} is a face of 4Ij , the second one

is a consequence of Point (i), and the last equality holds since we have the
partition (⋃

I
)
r {x} =

⊔
j∈[p]
I′j 6=∅

I ′j . �X

Proof of Theorem 4.2. Let C be a generating subset of a connected building
set B, let y := (yC)C∈C be strictly positive real numbers, let z := (zR)R⊆S be
defined by zR =

∑
C⊆R yC , and consider the polytope Mink(y) = Defo(z).

Let T be a B-tree and N :=N(T) be the corresponding B-nested set. For
N ∈ N, let

XN :=N r
⋃
N ′∈N
N ′(N

N ′
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denote the label corresponding to N in the B-tree T, so that (XN )N∈N parti-
tions S.

For C ∈ C, we define N(C) to be the inclusion maximal element N of N
such that C∩XN 6= ∅. Note that this element is unique: otherwise, the union of
the maximal elements N ∈ N such that C ∩XN 6= ∅ would be contained in B,
thus contradicting Condition (N2) in Definition 2.10. Observe also that N(C)
is the inclusion minimal element N of N such that C ⊆ N .

We now define

FN :=
∑
C∈C

yC4C∩XN(C)
.

We will show below that FN is a face of Mink(y) whose normal cone is precisely
the cone C(N). The map N → FN thus defines an anti-isomorphism from the
nested complex N (B) to the face lattice of Mink(y).

Consider any vector f := (fs)s∈S in the relative interior of the cone C(N).
This implies that fs = fN is constant on each N ∈ N, and fN < fN ′ for
N,N ′ ∈ N with N ( N ′. Let f : RS → R be the linear functional defined
by f(x) = 〈f |x〉 =

∑
s∈S fsxs. Since N(C) is the inclusion maximal element N

of N such that C ∩ N 6= ∅ and N → fN is increasing, the face of 4C max-
imizing f is precisely 4C∩N(C). It follows that FN is the face maximizing f
on Mink(y), since the face maximizing f on a Minkowski sum is the Minkowski
sum of the faces maximizing f on each summand. We conclude that FN is a
face of Mink(y) whose normal cone contains at least C(N), and therefore that
the map N→ FN is a poset anti-homomorphism.

To conclude, it is now sufficient to prove that the dimension of FN is in-
deed |S| − |N|. The inequality dimFN ≤ |S| − |N| is clear since the normal cone
of FN contains the cone C(N). To obtain the reverse inequality, observe that

dimFN = dim

(∑
C∈C

yC4C∩XN(C)

)
= dim

( ∑
N∈N

∑
C∈C

N(C)=N

4C∩XN

)

≥
∑
N∈N

dim

( ∑
C∈C

N(C)=N

4C∩XN

)
≥
∑
N∈N

(|XN | − 1) = |S| − |N|.

The first inequality holds by Lemma 4.10 (i) since the XN are disjoints. The
second inequality follows from the assumption that C is a generating subset
of B. Indeed, fix N ∈ N and pick an element x ∈ XN . Observe that if C ∈ C is
such that x ∈ C ⊆ N , then N(C) = N . Moreover, since N is the union of the
elements C ∈ C such that x ∈ C ⊆ N , we obtain that XN is the union of the
sets C∩XN over the elements C ∈ C such that x ∈ C ⊆ N . By Lemma 4.10 (ii),
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this implies that

dim

( ∑
C∈C

N(C)=N

4C∩XN

)
≥ dim

( ∑
C∈C

x∈C⊆N

4C∩XN

)
≥ |XN | − 1.

This concludes the proof that the dimension of FN is given by |S| − |N|, and
thus that the map N→ FN is an anti-isomorphism. �X
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