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Abstract. The goal of this paper is to study the set of non-abelian represen-
tations H̃ (nab-rep) of the Baumslag-Solitar groups,

BS(n,m) =
〈
x, y : xynx−1 = ym〉 ,

with n,m non zero integers, into SL(2,C).

We use such information in order to show, which it is well known, that for
|m| > 1, BS(1,m) is a linear group. Moreover, we prove that its representation
image into the Möbius transformations is an elementary and non discrete
subgroup.
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Resumen. El proposito de este art́ıculo es estudiar el conjunto de las repre-
sentaciones no abelianas H̃ (nab-rep) de los grupos de Baumslag-Solitar,

BS(n,m) =
〈
x, y : xynx−1 = ym〉 ,

donde n,m son enteros distintos de cero, en SL(2,C).

Usamos tal información para verificar, que ya es bien sabido, que BS(1,m)
es un grupo lineal, para |m| > 1. Mas aún, probamos que su representación
en las transformaciones de Möbius es un subgrupo elemental y no es discreto.
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Grupos de Baumslag-Solitar, Representaciones parabólicas, Representaciones
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1. Introduction

Baumslag-Solitar groups constitute an important family of examples or coun-
terexamples in the theory of combinatorial groups, see [2], [7], [5] and [4]. These
groups were first introduced by G. Baumslag and D. Solitar in [2] in order to
get non-Hopfian one-relator group presentations and they are given by the fol-
lowing short presentation

BS(m,n) =
〈
x, y : xynx−1 = ym

〉
where m and n are non zero integer numbers.

Although the principal focus of the study of non-abelian representations has
been on the family of classical knot groups, in particular on the collection of 2-
bridge classical knot groups, we want to start a classification of the PSL(2,C)
non abelian representations on the family of Baumslag-Solitar groups. Recently,
in a joint work with O. Salazar and J. Mira, see [8], we proved that BS(n, n+1)
are the only Baumslag-Solitar groups that correspond to groups of 2-bridge non-
classical virtual knots. From this we consider that the study of some properties
of the Baumslag-Solitar groups becomes an important aim, in particular the
classification of their non-abelian representations into the group PSL(2,C).
It is well known that there exists an isomorphism between the orientation
preserving isometries of H3 and PSL(2,C).

In this paper we present a collection of algebraic varieties that encode in-
formation about the set of equivalence classes of non-abelian representations
of BS(n,m). The definition of these algebraic varieties uses a classification of
the conjugacy classes of elements of the Möbius group via diagonal matrices
and Jordan forms which is not the standard classification of elements of the
Möbius group given in [3]. It is worth noting that for |m| > 1, BS(1,m) is a
linear group. It would seem that this result forms part of the folklore in the
scope of Baumslag-Solitar group theory. As a consequence, there is no article
in the literature which contains a formal proof of such fact. However, we can
get one from mathoverflow. From the results displayed in this paper and some
restrictions given in [7] and [1] about the residually finiteness of the Baumslag-
Solitar groups, we prove that BS(n,m) only admits a faithful representation
into SL(2,C) when n = 1 and |m| > 1. This result overlaps with what was
mentioned in the previous paragraph, but we propose a different method that
might be of interest for those working in Kleinian and Fuchsian groups. More-
over, if Γm denotes the image of BS(1,m), for |m| > 1, into PSL(2,C), then
we show that Γm is an elementary and non-discrete subgroup of Möbius trans-
formations.

This paper is organized as follows. In section 2 we give a short list of pre-
liminaries concerning Möbius transformations. We also recall the definition of
SL(2,C)-representations, residually finite groups and linear groups. Then, in
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Section 3 we show the existence of non-abelian representations of the Baumslag-
Solitar groups and provide a classification of them into two families, pseudo-
parabolic and pseudo-elliptic representations. We give functions of certain al-
gebraic affine varieties into each of them. Finally, in Section 4 we show that
BS(1,m) is a linear group, for |m| > 1. Moreover, we prove that its represen-
tation image in the Möbius transformations group is an elementary and non
discrete subgroup.

2. Notation and preliminary results

In this section we introduce a short list of definitions, notations and some results
necessary to understand this article.

2.1. Möbius transformations

The set of Möbius transformations f(z) = az+b
cz+d , with a, b, c, d ∈ C and ad −

bc 6= 0, acting on C∞ = C ∩ {∞}, is denoted by MC(C∞). This set has
some additional structure; it is a group under composition of transformations.
Besides, the homomorphism π : SL(2,C)→MC(C∞), where

A =

(
a b

c d

)
π7−→ ϕA : ϕA(z) =

az + b

cz + d
,

has kernel {±I}, and it provides a natural identification betweenMC(C∞) and
PSL(2,C).

We use tr(A) and At to denote the trace and the transpose of a matrix A.

The following definition come from the correspondence between SL(2,C)
and the group of Möbius transformations PSL(2,C).

Definition 2.1. [3] Let A (A 6= I) be a matrix in SL(2,C), then A is a
parabolic matrix if and only if tr2(A) = 4, A is an elliptic matrix if and only if
tr2(A) ∈ [0, 4), A is a hyperbolic matrix if and only if tr2(A) ∈ (4,+∞), and A
is a strictly loxodromic matrix if and only of tr2(A) /∈ [0,+∞).

The following notation will be useful in order to simplify the proof and
certain definitions given in the rest of this paper.

Notation 1. For δ ∈ C∗ and ρ ∈ C,

D(δ) =

(
δ 0

0 δ−1

)
and D(ρ, δ) =

(
δ 0

ρ δ−1

)
We say that A ∈ SL(2,C) is a scalar matrix if A = D(δ), with δ2 = 1, and
I = D(1).
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The purpose of the next theorem is to classify the conjugacy classes of
the matrices in SL(2,C). This classification involves diagonal matrices and
matrices in Jordan form. Another classification using the theory of fixed points
of Möbius transformations is given in [3].

Theorem 2.2. Every non scalar matrix A in SL(2,C) is a conjugate of one
of the following matrices: D(1, 1), D(1,−1) or D(δ).

Moreover, if A is taken in PSL(2,C), then it is conjugate to D(1, 1) or
D(δ).

Proof. Let A ∈ SL(2,C) be a non scalar matrix with characteristic polynomial
chA(λ) = λ2 − tr(A)λ+ 1 and consider the following cases.

Case 1: If chA(λ) = (λ − δ)2, then, because A is not a scalar matrix, its
minimal polynomial must be equal to chA(λ), hence, from the canonical Jordan
form, the matrix A is a conjugate of some matrix of the form D(1, δ), where
δ2 = 1.

Case 2 If chA(λ) = (λ − δ)(λ − δ−1), then A is a diagonalizable matrix,
therefore the matrix A is a conjugate of some matrix of the form D(δ), where
δ 6= δ−1.

For the last part, note that, in PSL(2,C), D(1,−1) = D(−1, 1). Because
D(1, i)D(1, 1)D(1, i)−1 = D(−1, 1), then D(1,−1) and D(1, 1) are in the same
conjugacy class. �X

Let A ∈ SL(2,C), we define the norm of A, denoted ‖A‖, as

‖A‖ = tr1/2(AAt).

The topology on SL(2,C) induced by this norm is denoted by =C.

The homomorphism π induces the quotient topology = on MC(C∞) with
respect to which π is continuous. Besides,MC(C∞) has the topology =∗ of uni-
form convergence with respect to the chordal metric on C∞. These topologies
are the same. (see [3]).

Definition 2.3. A subgroup G of SL(2,C) is discrete if and only if the relative
topology on G is the discrete topology.

The proof of the following lemma can be found in [3].

Lemma 2.4. A subgroup G of SL(2,C) is discrete if and only if for each
positive k, the set {A ∈ G : ‖A‖ ≤ k} is finite.

Definition 2.5. A subgroup G of MC(C∞) is said to be elementary if and
only if any two elements of infinite order have a common fixed point.
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A subgroup G ofMC(C∞) acts discontinuously on a G-invariant disc ∆ (or
on the half-plane), if for every compact K ⊂ ∆, g(K) ∩ K = ∅ except for a
finite number of g ∈ G.

Definition 2.6. A non-elementary subgroupG ofMC(C∞) is a Kleinian group
if it is discrete. If, moreover, G has a G-invariant disc ∆ on which G acts
discontinuously, we say that G is a Fuchsian group.

The proof of the following theorem can be found in [3].

Theorem 2.7. Let f ∈ MC(C∞) with f 6= I and not of order two. Let θ :
MC(C∞) → MC(C∞), where θ(g) = gfg−1. If for some n, θn(g) = f , then
〈f, g〉 is elementary.

Therefore, any elementary Fuchsian group is either cyclic or it is conjugate
to some group 〈f, g〉, where g(z) = kz (k > 1) and f(z) = −1/z.

2.2. SL(2,C)-representations of Baumslag-Solitar groups

In this section we will give some background material concerning the represen-
tation and character of the Baumslag-Solitar groups.

A representation of BS(n,m) into SL(2,C) is understood as a homomor-
phism ρ : BS(n,m) → SL(2,C). The set of all representations is denoted by
R(BS(n,m)). It is not hard to verify that R(BS(n,m)) can be endowed with
the structure of an affine algebraic set.

Recall that two representations ρ and ρ′ are equivalent (conjugate), denoted
ρ ≈ ρ′, if there exists C ∈ SL(2,C) such that ρ′(g) = Cρ(g)C−1 for every
g ∈ BS(n,m).

An immediate consequence of the definition above is, two representations ρ
and ρ′ of BS(n,m) are equivalent if and only if there exists C ∈ SL(2,C) such
that ρ′(x) = Cρ(x)C−1 and ρ′(y) = Cρ(y)C−1.

The character of a representation ρ is the function χρ : BS(n,m) → C
defined by χρ(g) = tr(ρ(g)). Since, equivalent representations have the same
character, the map

χ : R(BS(n,m))→ X(BS(n,m)),

where X(BS(n,m)) = {χρ | ϕ ∈ R(BS(n,m))} and χ(ρ) = χρ induce a well-
defined function R(BS(n,m))/ ≈→ X(BS(n,m)).

Definition 2.8. Let ρ ∈ R(BS(n,m)). Then ρ is called irreducible if the only
subspaces of C2 which are invariant under ρ(BS(n,m)) are {0} and C2. In
other case, we say that ρ is reducible.

From the previous definition, a representation ρ ∈ R(BS(n,m)) is reducible
if and only if all ρ(g), with g ∈ BS(n,m), have a common one-dimensional
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eigenspace. Therefore, a representation ρ ∈ R(BS(n,m)) is reducible if and
only if ρ(x) and ρ(y) have a common eigenvector.

The proof of the following theorem can be found in [9].

Theorem 2.9. Let ρ ∈ R(BS(n,m)), then ρ is reducible if and only if χρ(c) =
2, for each element c of the commutator subgroup of BS(n,m).

In this case, if Γ denotes the image of ρ, then every element of the commu-
tator subgroup [Γ,Γ] of Γ is parabolic.

A representation ρ is abelian if its image is an abelian subgroup of SL(2,C),
and nonabelian otherwise. We denote the set of nonabelian representations of
BS(n,m) by nab-rep(BS(n,m)).

Definition 2.10. Let ρ ∈ R(BS(n,m)). Then ρ is called parabolic if ρ(y) is
conjugate to D(1, 1) or D(1,−1). Besides, if ρ(y) is conjugate to D(δ), then
ρ is elliptic, hyperbolic or strictly loxodromic depending of the subset of C
containing δ + δ−1.

A representation ρ : BS(n,m)→ SL(2,C) is said to be faithful if the kernel
of ρ is trivial.

We recall the definition of residually finite groups.

Definition 2.11. A group G is called residually finite if for every g and h in
G there exist a finite group F and a homomorphism ϕ : G → F such that
ϕ(g) 6= ϕ(h).

The following theorem gives us a complete classification of the Baumslag-
Solitar groups in terms of the previous definition. Its proof can be found in
[7].

Theorem 2.12. The group BS(m,n) is residually finite if and only if |m| = |n|
or |m| = 1 or |n| = 1.

Definition 2.13. A group G is said to be a linear group if there exists a faithful
representation φ : G→ SL(2,C)

The proof of the next theorem can be found in [6].

Theorem 2.14. Let R be a field, and let M be a finite set of n by n matri-
ces with elements in R and with non-vanishing determinant. Then the set of
matrices in M generate a residually finite group.

Corollary 2.15. Linear groups are residually finite.

Therefore, BS(n,m) does not have faithful representations if |m| 6= |n| and
|m| 6= 1 and |n| 6= 1.
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3. Non-abelian representations of BS(n,m)

In this section we will construct a collection of algebraic varieties that encode
information about the set of equivalence classes of non-abelian representations
of BS(n,m).

For an ideal J of C[x1, ..., xn], we denote by ϑ(J) the algebraic variety

ϑ(J) =
{→
x∈ Cn/f(

→
x) = 0 for every f ∈ J

}
.

3.1. The case BS(n, n)

Let us start this section with the following theorem.

Theorem 3.1. Let A ∈ SL(2,C) be a non scalar matrix and λ = tr(A) 6=
0. Consider the infinite sequence of polynomials in Z[x], {ϕk(x)}∞k=0, where
ϕ0(x) = 1, ϕ1(x) = x and ϕn(x) = xϕn−1(x)− ϕn−2(x), for n > 1. Then

An = ϕn−1(λ)A− ϕn−2(λ)I,

for every n ∈ N.

Proof. From the Cayley-Hamilton theorem A2 = λA− I. Therefore

A2 = ϕ1(λ)A− ϕ0(λ)I. (1)

Now suppose that An = ϕn−1(λ)A − ϕn−2(λ)I, then An+1 = ϕn−1(λ)A2 −
ϕn−2(λ)A. From the equation (1),

An+1 = ϕn−1(λ)[λA− I]− ϕn−2(λ)A,

and so

An+1 = (λϕn−1(λ)− ϕn−2(λ))A− ϕn−1(λ)I.

�X

The proof of the following lemma is a direct consequence of the Cayley-
Hamilton theorem, so we will omit it.

Lemma 3.2. Let A in SL(2,C) be a non scalar matrix such that tr(A) = 0,
then A2m = (−1)mI and A2m+1 = (−1)mA.

Corollary 3.3. Let A,B in SL(2,C) be non scalar matrices such that BAn =
AnB and λ = tr(A).

(a) If λ 6= 0 and ϕn−1(λ) 6= 0, then AB = BA.

(b) If λ = 0 and n = 2m+ 1, then AB = BA.
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Let A be a non scalar matrix with λ = tr(A) 6= 0 and ϕn−1(λ) = 0. Then
An = ±I. Therefore A is a diagonalizable matrix, so there exists W ∈ SL(2,C)
and δ ∈ C∗ such that A = WD(δ)W−1, with, δ2 6= 1, δ+δ−1 = λ and δn = ±1.

Now, let B ∈ SL(2,C) be a non-scalar matrix. It is well known that AB =
BA implies that B = WD(γ)W−1, with γ2 − 1 6= 0. We have proven the
following theorem.

Theorem 3.4. Let ϕ be a representation of BS(n, n), with ϕ(x) = B and
ϕ(y) = A non-scalar matrices, and let λ = tr(A) 6= 0, then:

(a) If ϕn−1(λ) = 0, then A is a diagonalizable matrix. Moreover, AB = BA
if and only if A and B are simultaneously diagonalizable.

(b) If ϕn−1(λ) 6= 0, then AB = BA.

Therefore, if ϕ is a non abelian representation, then A must be elliptic and
An = ±I.

The following lemma will give us a easy way to compute the polynomial
ϕn−1(λ) for the case of diagonalizable matrices.

Lemma 3.5. Let A = WD(α)W−1 ∈ SL(2,C) be a non-scalar matrix, with
W ∈ SL(2,C) and λ = α+ α−1 6= 0. Then,

(a) If n is an even number, then

αn−1ϕn−1(λ) = (1 + α2 + α4 + ...+ αn−2)(αn + 1)

and

(b) if n is a odd number, then

αn−1ϕn−1(λ) = (1 + α+ α2 + ...+ αn−1)(

n∑
k=1

αn−k(−1)k−1).

Proof. From Theorem 3.1,

An = WD(αn)W−1 = W (ϕn−1(λ)D(α)− ϕn−2I)W−1.

Then D(αn) = ϕn−1(λ)D(α)− ϕn−2(λ)I. Therefore ϕn−1(λ)D(α)−D(αn) =
ϕn−2(λ)I, and so

ϕn−1(λ)α− αn = ϕn−1(λ)α−1 − α−n = ϕn−2(λ).

If we multiply both sides by αn, we obtain ϕn−1(λ)αn+1−α2n = ϕn−1(λ)αn−1−
1. This implies that

αn−1ϕn−1(λ)(1− α2) = (1− αn)(1 + αn).

The rest of the proof follows by factorizing polynomials of the form 1±αn. �X
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Theorem 3.6. With the notation above.

(1) If n is a even number, then there exists an injective function from the
algebraic set ϑ(J) into nab-rep(BS(n, n))/ ≈, where J is the ideal of
C[α, β, γ, σ] spanned by

φn(α) = (α2 + 1)(1 + α2 + α4 + · · ·+ αn−2)(αn + 1)

and f(α, β, γ, σ) = βγσ − 1.

(2) If n is an odd number, then there exists an injective function from the
algebraic set ϑ(J) into nab-rep(BS(n, n))/ ≈, where J is the ideal of
C[α, β, γ, σ] spanned by

φn(α) = (1 + α+ α2 + · · ·+ αn−1)(

n∑
k=1

αn−k(−1)k−1)

and g(α, β, γ, σ) = βγσ(α2 + 1)− 1.

Proof. (1) Let (α, β, γ, σ) ∈ ϑ(J), and let H : 〈x, y/〉 −→ SL(2,C) the canoni-
cal homomorphism such that H(x) = D(γ, β) and H(y) = D(α). Suppose that
n = 2t, t > 0.

Now, consider the following two cases for the trace, λ, of D(α).

Case 1: If λ = 0, then D(α)n = ±I, and

Case 2: if λ 6= 0, then ϕn−1(λ) = 0. Therefore D(α)n = ±I.

From the previous cases, and the fact that H(x) and H(y) are not simul-

taneously diagonalizable, H extends to a nonabelian representation H̃. So, we
can define the function

ς : ϑ(J) −→ nab-rep(BS(n, n))/ ≈,

where ς(α, β, γ, σ) = [H̃] is the equivalence class of the representation H̃.

Let
→
x= (x1, x2, x3, x4) and

→
y= (y1, y2, y3, y4) in ϑ(J) be such that ς(

→
x) =

ς(
→
y ), then there exists C = (Cij) ∈ SL(2,C) with CD(x1)C−1 = D(y1) and

CD(x3, x2)C−1 = D(y3, y2).

By expanding the matrix equality CD(x1)C−1 = D(y1) we obtain two
possibilities, either x1 = y1 or x1 = y−1

1 . If we suppose that x1 6= y1 then C11 =
C22 = 0 and C21 = −C−1

12 . If we replace them in the equation CD(x3, x2)C−1 =
D(y3, y2), we get that C12 = 0, but this is a contradiction, and so x1 = y1, and
therefore C = I. Hence, ς is an injective function.

(2) Let (α, β, γ, σ) ∈ ϑ(J) and let, again, H : 〈x, y/〉 → SL(2,C) be the
canonical homomorphism given by H(y) = D(α) and H(x) = D(γ, β).

Revista Colombiana de Matemáticas
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Because g(α, β, γ, σ) = 0, then α2 + 1 6= 0, therefore λ = α + α−1 6= 0
and, from Lemma 3.5, ϕn−1(λ) = 0. Therefore H extends to a non-abelian

representation H̃. So, we can define the function

ς : ϑ(J) −→ nab-rep(BS(n, n))/ ≈,

where ς(α, β, γ, σ) = [H̃] is the equivalence class of the representation H̃.

The proof that ς is an injective function is quite similar to what we did in
the proof of (1). �X

We conclude this section with the fact that for every (α, β, γ, σ) ∈ ϑ(J) all
the representations in the equivalence class ς(α, β, γ, σ) are reducible.

Theorem 3.7. Every representation in ς(α, β, γ, σ) is reducible.

Proof. Let H̃ be the representative element of ς(α, β, γ, σ), where H̃(x) =

D(γ, β) and H̃(y) = D(α). The eigenspace Eα−1 = {(0, z) | z ∈ C} corresponds

to the eigenvalue α−1, of the matrix H̃(y), and has the property that it is an

eigenspace of the matrix H̃(x). Therefore Eα−1 is an H̃(BS(n, n))-invariant
subspace of C2. �X

3.2. The case BS(n,m), with n 6= m

We start this section with the following theorem.

Theorem 3.8. There are no non-abelian representations H̃ of BS(n,m) such

that H̃(x) and H̃(y) are both parabolic matrices.

Proof. Suppose that there exists a non-abelian representations H̃ of BS(n,m)

in which H̃(x) and H̃(y) are both parabolic matrices. Then H̃ is a conjugate of

the non-abelian representations K̃ : BS(n,m) → SL(2,C) such that K(y) =
D(1, 1) and K(x) = (ωij), with (ω11 + ω22)2 = 4.

SinceD(1, 1)n = D(n, 1) andD(1, 1)m = D(m, 1), then (ωij)D(1, 1)n(ωij)
−1

= D(1, 1)m if and only if

(ωij)D(n, 1) = D(m, 1)(ωij). (2)

Then we prove that (2) is true if and only if ω12 = 0 and nω22 = mω11. Since
ω11ω22 − ω21ω12 = 1, then ω11ω22 = 1, and so ω2

22 = m
n . Hence, K(x) =

D(ω21, ω
−1
22 ), where ω2

22 = m
n . But ω22 + ω−1

22 = ±2 and ω2
22 = 1, that is a

contradiction. �X

Corollary 3.9. Let f(z, w) = nz2 − m and denote by L the ideal of C[z, w]
spanned by f(z, w). Then there exists a function from the algebraic variety ϑ(L)
into nab-rep(BS(n,m))/ ≈.
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Proof. Let (α, β) ∈ ϑ(L) and consider the map

Ψ : ϑ(L)→ nab-rep(BS(n,m))/ ≈, Ψ((α, β)) = [K̃],

where K̃ : BS(n,m) → SL(2,C) is the representation given by K̃(x) =

D(β, α−1) and K̃(y) = D(1, 1). It is not hard to prove that Ψ is a well-defined
function. �X

The function Ψ is not injective because Ψ(α, β) = Ψ(α, α−1 + β − α) and
β 6= α−1 + β − α.

Theorem 3.10. With the above notation. The representation K̃ is reducible.

Proof. Consider the eigenspace E = {(0, z) | z ∈ C}. Then, E is a

K̃(BS(n,m))-invariant one dimensional subspace of C2. �X

Theorem 3.11. If H̃ ∈ nab-rep(BS(n,m)) and H̃(y) is not a parabolic matrix,

then H̃(y) has finite order.

Proof. Suppose that H̃ ∈ nab-rep(BS(n,m)) and H̃(y) is not a parabolic

matrix. Then H̃ must be equivalent to a representation K̃, such that K̃(x) =

(σij) and K̃(y) = D(δ), where δ2 6= 1.

The matrix equality (σij)D(δ)n = D(δ)m(σij) is true if and only if

σ11(δn−m − 1) = σ12(δn+m − 1) = σ21(δn+m − 1) = σ22(δn−m − 1) = 0.

Now, (σij) ∈ SL(2,C), then (δn − δm)(δn+m − 1) = 0, therefore D(δ) is an

elliptic matrix of finite order. Moreover, since H̃ is a non abelian representation,
then we have to add one of the following inequalities σ12 6= 0 or σ21 6= 0 �X

Theorem 3.12. We suppose that m > n. Let g1(α, β, γ, σ) = Φn+m(α)
Φm−n(α) and g2(α, β, γ, σ) = βγσ(α+1)−1, and let I the ideal of C[α, β, γ, σ]
spanned by {g1, g2}. Then, there exist a injective function from the algebraic
variety ϑ(I) into nab-rep(BS(n,m)).

Proof. Consider the map

Ξ : ϑ(I)→ nab-rep(BS(n,m)), Ξ((α, β, γ, σ) = K̃,

where K̃ : BS(n,m)→ SL(2,C) is the representation given by K̃(x) = D(γ, β)

and K̃(y) = D(α).

Due to the fact that α2 6= 1, and from Theorem 3.11, we get that K̃ is a
non-abelian representation, therefore we have shown that Ξ is well defined.

The proof that Ξ is an injective function, is straightforward. �X

Theorem 3.13. The representation K̃ : BS(n,m) → SL(2,C), given by

K̃(x) = D(γ, β) and K̃(y) = D(α), is reducible.
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4. On non-abelian faithful representations of BS(n,m)

From the Theorem 2.12, the group BS(n,m) could have a non-abelian faithful
representation in SL(2,C) only for the cases in which n = m or n = 1 or m = 1.
But, we know that BS(n, n) does not have non-abelian faithful representations
into SL(2,C). (see Theorem 3.6). Therefore there only remains the case n = 1,
because for m = 1 we have that BS(1,m) ∼= BS(m, 1).

Before the proof that BS(1,m) is a linear group, consider the following
theorem.

Theorem 4.1. Each element w ∈ BS(1,m) is uniquely represented by a word
of the form x−pykxq, where p, k, q are integers and p, q ≥ 0.

Proof. From xyx−1 = ym we obtain the infinite family of relators {xtyx−t =

ym
t

/t ∈ N}. So, we have the following four kinds of equations:

(a) xty = ym
t

xt,

(b) yx−t = x−tym
t

,

(c) y−1x−t = x−ty−m
t

and

(d) xty−1 = y−m
t

xt.

Without loss of generality, we may suppose that the words in BS(1,m) have
the form w = xt1yk1 ...xtnykn where ti, kj ∈ Z. We will complete the proof by
induction on the length n.

When n = 1, then w = xt1yk1 . So, if t1 > 0, then from (a) and (d),

w = x−0yk1m
t1
xt1 .

Now assume that w̃ = xt1yk1 ...xtn−1ykn−1 . then w = w̃xtnykn . By the
induction hypothesis w̃ = x−aybxc, where a, c ≥ 0, so w = x−aybxc+tnykn . If
c+ tn ≥ 0, from (a) and (d), w = x−ayb+knm

c+tn
xc+tn , but if c+ tn ≤ 0, from

(b) and (c), w = x−aybxc+tnykn = x−a+c+tnybm
c+tn+kn . �X

Corollary 4.2. Let m ∈ Z such that |m| > 1, then BS(1,m) is a linear group,
and it is residually finite.

Proof. We give the proof for the case m > 1. From Theorem 3.8, there exists
a representation K̃ : BS(1,m) → SL(2,C), such that K̃(x) = D(m−1/2) and

K̃(y) = D(1, 1).

Let w be a word in BS(1,m) such that K̃(w) = I. Because w is uniquely
represented by a word of the form x−pykxq, where p, k, q ∈ Z and p, q ≥ 0, then

D(mp/2)D(k, 1)D(m−q/2) = D

(
k

mp/2+q/2
,mp/2−q/2

)
,
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hence, K̃(w) = I if and only if p = q and k = 0. Therefore w = 1 and so K̃ is
injective. �X

If m = −1, then we have that D2(δ, i) = D(−1), therefore D(δ, i) is a matrix
of order 4, as a consequence, neither of the representations given in the proof
of Theorem 3.8 are faithful.

Let ϕA = π(A) and ϕB = π(B), where A = D(1, 1) and B = D(m−1/2).
Let Γm, with m > 1, be the subgroup of MC(C∞) generated by ϕA and ϕB .

Proposition 4.3. The subgroup Γm is an elementary subgroup of MC(C∞).
Moreover, Γm is not a Fuchsian group.

Proof. Since θ(ϕB) = ϕBϕAϕ
−1
B = ϕmA , then

θ2(ϕB) = (ϕBϕAϕ
−1
B )ϕA(ϕBϕAϕ

−1
B )−1 = ϕA,

therefore, from Theorem 2.7 we have that Γm is an elementary subgroup of
MC(C∞). Besides, Γm is not abelian, and hence it is not cyclic. Since A is
not a diagonalizable matrix, Γm is not conjugate to some group of the form
〈f, g〉, where g(z) = kz (k > 1) and f(z) = −1/z, then Γm is not a Fuchsian
group. �X

Theorem 4.4. The subgroup Γm is not discrete.

Proof. Let ϕ ∈ 〈ϕA, ϕB〉, then there exists p, q, k in Z, with p, q ≥ 0 such that
ϕ = ϕ−pB ϕkAϕ

q
B . Due to the fact that

D(mp/2)D(k, 1)D(m−q/2) = D

(
k

mp/2+q/2
,mp/2−q/2

)
,

then

‖ϕ‖ =
√
mp−q +m−p+q + k2m−(p+q).

Let t ≥ 0 such that mp−q +m−p+q + k2m−(p+q) ≤ t. Then

m2p +m2q + k2 ≤ t(mp+q).

If we take t = 3 and p = q, then the previous inequality becomes 2m2p + k2 ≤
3m2p, and so k2 ≤ m2p. It is not hard to prove that there are infinitely many
pairs (k, p) ∈ Z2 such that k2 ≤ m2p. �X

Revista Colombiana de Matemáticas
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