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The Ricci flow on a cylinder

El flujo de Ricci en un cilindro

Jean C. CortissozB, Alexander Murcia

Universidad de los Andes, Bogotá, Colombia

Abstract. In this paper we study the Ricci flow on surfaces homeomorphic to
a cylinder (that is, a product of the circle with a compact interval). We prove
longtime existence results, results on the asymptotic behavior of the flow, and
we report on an interesting phenomenon: convergence to constant curvature
in the normalised flow, under certain assumptions on the initial data, cannot
be exponential.
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Resumen. En este art́ıculo estudiamos el flujo de Ricci en superf́ıcies home-
omorfas al cilindro (esto es, el producto de un ćırculo con un intervalo com-
pacto). Al respecto, demostramos teoremas de existencia para todo tiempo
de las soluciones asumiendo cierta simetŕıa, teoremas sobre comportamiento
asintótico, y reportamos un fenómeno interesante: la convergencia a curvatura
constante en el flujo normalizado, bajo ciertas restricciones impuestas a la
condición inicial, no puede ser exponencial.

Palabras y frases clave. Flujo de Ricci, explosión, convergencia.

1. Introduction

There is no need to talk about the importance of the Ricci flow (on closed
and noncompact manifolds without boundary) in geometric analysis and low
dimensional topology. Moreover, besides its numerous applications in geometric
analysis, another of the great merits of studying the Ricci flow is that it gives
a way of understanding the behavior of certain nonlinear parabolic equations
using geometric insights. The subject of this paper is the study of the following

241
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boundary value problem for the Ricci flow on a surface with boundary:
∂g̃

∂t̃
= −R̃g̃ in M ×

(
0, T̃

)
,

kg̃ = γ on ∂M ×
(

0, T̃
)
,

g̃ = g0 in M,

(1)

where γ = kg0 is the geodesic curvature of the initial metric and M is a surface
homeomorphic to a cylinder S1× [−ρ, ρ]. We shall also consider the correspond-
ing boundary value problem for the normalised version of (1). Recall that the
normalised flow is obtained from (1) by the following procedure. Let φ

(
t̃
)

be
a function such that g = φg̃ so that the area Ag (M) of the surface M with
respect to the rescaled metric g is kept equal to 1 at all times. Then the time
parameter is rescaled by setting

t
(
t̃
)

=

∫ t̃

0

φ (τ) dτ.

By this procedure we obtain the following boundary value problem:
∂g

∂t
= (r −R) g in M × (0, T ) ,

kg =
γ√
φ (t)

on ∂M × (0, T ) ,

g = g0 in M,

(2)

where

r =

∫
RdAg,

is the average scalar curvature. From now on, all quantities referring to the un-
normalised flow (1) will have a tilde, whereas those referring to the normalised
flow (2) will not.

The existence theory for the unnormalised flow, and hence that of the nor-
malised flow, is well known and we refer to the introduction of [3] for a short
discussion on the matter. Hence, in this work, we shall be concerned with the
asymptotic behavior of both versions of the flow under certain geometrical as-
sumptions, and, to give the reader a certain feeling of anticipation, we must say
that what actually prompted us to write this note is how curious this asymp-
totic behavior appears to be; we can even say that we have been rewarded by
finding out some unexpected (at least to us) results. We refer to some of our
results as unexpected, because we were guided by the following principle: the
behavior of the flow in surfaces with boundary must parallel that of the flow
in closed surfaces (and the results of Brendle in [1] seems to give some support
to it). This principle turned out to be wrong.
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THE RICCI FLOW ON A CYLINDER 243

Indeed, under the assumption that Rg0 ≥ 0 and kg0 ≤ 0, we shall prove long
time existence results for both the normalised and unnormalised flow, but we
will show that whereas in the normalised flow the curvature remains uniformly
bounded (at least in a set of examples we consider, see Section 4.1), in the
unnormalised flow it blows up in infinite time; this already marks a difference
between the case of a cylinder and the corresponding case of closed surface
of zero Euler characteristic, where both the normalised and unnormalised flow
are the same. This, of course, has to do with the fact that Rg0 > 0 is not a
possibility in the case of closed surfaces of Euler characteristic zero.

To continue with the surprising behavior we encountered, we show that
even though we expect the curvature to converge towards zero, it does not
do it exponentially, contrary to what does happen in the case of closed sur-
faces. The authors think both result are interesting enough to merit reporting
them; besides the proofs are elementary, and this may be of interest to the non
specialist, and to those also interested on the behavior of nonlinear parabolic
equations.

Let us now be more precise regarding the results we shall prove in this
paper. We begin with our longtime existence result.

Theorem 1.1. Assume that the initial metric has the form

g0 = dσ2 + f (σ)
2
dθ2,

and that Rg0 ≥ 0 and kg0 ≤ 0. Then the normalised and the unnormalised flow
exist for all time.

We show the previous result for the normalised flow for initial data of the
form g0 = dσ2 + f (σ)

2
dθ2 in Section 3, and in Section 4 we show that when-

ever the normalised flow exists for all time so does the unnormalised flow (no
symmetry assumptions are required to prove this claim). This result should be
compared with Proposition 2.3 in [3], where it is shown, in the case of a disk,
that under the conditions Rg0 > 0 and kg0 ≤ 0, the unnormalised flow be-
comes singular in finite time. We must point out that the proof of the longtime
existence result given in [5] is incorrect.

Our main result regarding asymptotic behavior, which does not require any
symmetry hypothesis, is the following theorem, whose proof is also given in
Section 4.

Theorem 1.2. The total scalar curvature for the normalised flow, under the
assumption that kg0 ≤ 0, satisfies∫

M

RdAg ≤
1

log (1 + t)
.

So we should expect convergence of the curvature towards zero, and indeed
we can prove so assuming some symmetries on the initial data (see Section 4.1).
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However, the behavior of the unnormalised flow is quite different: even though
the total curvature also goes to zero, the curvature is blowing up (see Section
4).

Theorem 1.3. If kg0 < 0 and is locally constant, and the length of the boundary
in the normalised flow remains bounded away from 0, then there is constant
c1 > 0 such that

∫
M
R̃2dA ≥ c1, and, as a consequence, there is a constant

c2 > 0 such that
R̃max(t̃) ≥ c2t̃,

where R̃max

(
t̃
)

is the maximum of the scalar curvature at time t.

A natural question to ask is whether there are examples where the length
of the boundary remains bounded away from 0. The answer to this question is
yes, and indeed we expect that this is always the case. Theorem 3 is proved in
Section 4.

Finally, as we said above the convergence towards zero curvature in this case
cannot be exponential, in contrast to the case of closed surfaces and of surfaces
with totally geodesic boundary. In fact, we prove the following theorem.

Theorem 1.4. Assume that the initial data has the form

g0 = dσ2 + f (σ)
2
dθ2,

satisfies Rg ≥ 0, kg < 0 in one of the boundary components (and kg ≤ 0 on
both), and is locally constant, and that Rmin (t) := minp∈M R (p, t) is attained
in both components of ∂M . Then, there is a constant c2 > 0 such that the
normalised flow holds that

Rmax(t) ≥ 2

t+ c2
.

Notice that if kg = 0, the convergence is indeed exponential, but once we
take kg 6= 0 in one of the boundary components (and for both components
kg ≤ 0), it is not so anymore, as long as the solution to the Ricci flow satisfies
the hypothesis of the theorem (explicit examples of initial data so that the
solution for the Ricci flow satisfies the hypothesis of the theorem are not difficult
to construct). This result is proved in Section 4.

2. Evolution equations and some technical geometric lemmas

In this section, we collect some results to be used in the proofs of our main
results.

2.1. Evolution equations

The following evolution equation for the normalised flow is well known (a similar
formula for the unnormalised flow holds, see Proposition 2.1 in [3]).

Volumen 51, Número 2, Año 2017
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Lemma 2.1. In the normalised flow, the curvature satisfies the boundary value
problem 

∂R

∂t
= ∆R+R (R− r) in M × (0, T ) ,

∂R

∂ηg
= kgR on ∂M × (0, T ) ,

(3)

where
∂

∂ηg
denotes the outward unit normal with respect to the time evolving

metric g (t).

Proof. The equation in the interior of M is well known (see [4]). The formula
for the normal derivative requires some clarification: it comes from the formula
for the normal derivative in the case of the unnormalised flow (Proposition 2.1
in [3]) by noticing that this identity is scaling invariant. �X

Remark 2.2. Lemma 2.1 has as an immediate consequence that nonnegative
scalar curvature is preserved and we leave the proof to the reader. This fact
shall be used throughout the paper.

2.2. Geometrical lemmas

Given M = S1 × [−ρ, ρ] we shall call the curve S1 × {s} the parallel of latitud
s.

Lemma 2.3. Consider a metric of the form

ds2 = dσ2 + f (σ, θ)
2
dθ2

in M = S1 × [−ρ, ρ]. Assume that there is α > 0 such that R ≥ −α, |kg| ≤ C,
and let Ls be the length of the parallel of latitude s. Then for any other parallel
(including of course any boundary component), we have an estimate

Lse
−2ρ(αρ+C) ≤ Lq ≤ Lse2ρ(αρ+C).

Proof. We prove the upper bound first. First of all, let

ϕ =
fσ (σ, θ)

f (σ, θ)
= −k (σ, θ) ,

where k (σ, θ) is the geodesic curvature of the parallel of latitude σ at the point
(σ, θ). On the other hand

ϕσ = −R
2
− ϕ2 ≤ α

2
,

so
ϕ (σ, θ) ≤ C + αρ.
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Hence we have

f (q, θ) = f (s, θ) e
∫ r
s
ϕ(σ,θ) dσ ≤ f (s, θ) e2ρ(αρ+C),

so we obtain the upper bound by integration. The lower bound follows from
the fact that in the previous argument, s and q are arbitrary. �X

Lemma 2.4. Consider a metric of the form

ds2 = dσ2 + f (σ, θ)
2
dθ2

in M = S1 × [−ρ, ρ]. Assume that there is α > 0 such that R ≥ −α, |kg| ≤ C,
let L the minimum length of length of the boundary components. Then

2ρLe−2ρ(αρ+C) ≤ A (M) ≤ 2ρLe2ρ(αρ+C).

Proof. Our point of departure is the following inequality, obtained in the proof
of the previous lemma, for λ = ±ρ and −ρ ≤ σ ≤ ρ arbitrary,

f (σ, θ) = f (λ, θ) e
∫ r
λ
ϕ(σ,θ) dσ ≤ f (λ, θ) e2ρ(2αρ+C).

From this inequality it follows that

A (M) =

∫ 2π

0

∫ ρ

−ρ
f (σ, θ) dσdθ

≤
∫ 2π

0

∫ ρ

−ρ
f (λ, θ) e2ρ(2αρ+C) dσdθ

= 2ρLe2ρ(2αρ+C).

The lower bound is obtained in a similar fashion. �X

Remark 2.5. This lemma has as a corollary that whenever the geodesic curva-
tures of the the boundary components and the diameter of the surface remain
bounded, if the length of one boundary component goes to zero, so does the
area of the surface. The results of this section will be used to show our longtime
existence result for the normalised flow (see next section).

3. Existence for all time

To show that the solution to the normalisation of (1) exists for all time, we
follow closely the ideas in [2] and correct some innacuracies found in there. In
this section we will assume that the initial metric is of the form

g0 = dσ2 + f (σ)
2
dθ2.

This form of the metric is preserved by both the normalised and the unnor-
malised flow.

Our purpose is to show the following theorem, which in turn implies the
existence of the normalised flow for all time (see Section 2.1 in [3], beware that
the proof given in [5] is not correct).
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Theorem 3.1. Assume that the initial data satisfies Rg0 ≥ 0 and kg0 ≤ 0.
Then, for any T <∞, there exists a constant C (g0, T ), where R0 is the scalar
curvature of the initial metric, such that on (0, T ), the scalar curvature of a
solution to (1) satisfies

R ≤ C (g0, T ) .

To begin with the proof, first we consider Poisson’s equation ∆gf = R− r in M,
∂f

∂ηg
= 0, on ∂M,

(4)

where, as said before, kg is the geodesic curvature of the boundary at time t

and
∂

∂ηg
denotes the outward unit normal with respect to the metric g (t). We

obtain the following result.

Theorem 3.2. There exists a function ψ such that

∂f

∂t
= ∆gf + rf + ψ, (5)

where ψ satisfies an equation ∆ψ = −r′ in M × (0, T ) ,
∂ψ

∂ηg
= −kgR on ∂M × (0, T ) .

Proof. The proof is to be found in [2]. However, the value of the normal
derivative must be corrected by the arguments given in the proof of Lemma
2.1 above.

�X

The following lemma will be useful.

Lemma 3.3. Let r be the average scalar curvature. Then for the normalised
flow, and any T <∞ (so that the normalised flow is defined on [0, T )) we have∫ T

0

r (t) dt <∞.

Proof. Notice that for the unnormalised flow the quantity∫
R̃ dAg̃ = −

∫
kg̃ dsg̃

is nonincreasing under the assumption of nonnegative curvature and kg̃ ≤ 0; it
is also scaling invariant, and it corresponds to r in the normalised flow. Hence
r is bounded above, and this shows the lemma. �X
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Lemma 3.4. Let R (t) be the value of the scalar curvature when restricted to
one of the components of the boundary at time t. Then we have that∫ T

0

R (t) dt <∞.

Proof. First notice that the conformal factor at any point is given by

u (x, t) = exp

(∫ t

0

r −R (x, t) dt

)
,

so if the conclusion is false, by Lemma 2.4 we must have that the area of the
surface approaches 0. Indeed, the diameter remains bounded, since R ≥ 0, and
by the previous lemma

∫ t
0
r dτ <∞ for any finite t. This would contradict the

fact that the normalised flow keeps the area constant. �X

We employ now the notation

‖∇ψ (t)‖∞ = max
p∈M
|∇ψ (p, t)| ,

where |∇ψ (p, t)| represents the norm of ∇ψ (p, t) with respect to g (t). Then
we have the following lemma.

Lemma 3.5. For any T <∞ we have that∫ T

0

‖∇ψ (t)‖∞ dt <∞.

For the proof of this lemma we will use the following elementary result
whose proof we leave to the interested reader.

Lemma 3.6. Assume that β1 and β2 are continuous positive functions such
that ∫ T

0

max {β1, β2} dτ =∞,

then there is an j = 1, 2 for which∫ T

0

βj (τ) dτ =∞.

Proof of Lemma 3.5. Notice that by Bochner’s formula |∇ψ|2 is subharmonic,
i.e.,

∆ |∇ψ|2 ≥ 0.
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Hence, by our symmetry assumptions, which imply the same symmetry for ψ,
if we let βj , j = 1, 2, to be −kgR in each of the components of the boundary,
then we have

‖∇ψ (t)‖∞ = max {β1, β2} .
But if ∫ T

0

‖∇ψ (t)‖∞ dt =∞,

since |kg| remains uniformly bounded away from 0 in at least one boundary
component over any finite interval of time (notice that if kg ≡ 0 there would be
nothing to prove, as this case is already considered in [1]), we must also have∫ T

0

R̂ (t) dt =∞,

where R̂ is the maximum of the scalar curvature when restricted to the bound-
ary, but this contradicts Lemma 3.4. �X

Now we let
h := ∆gf + |∇f |2 ,

and compute an evolution equation.

Theorem 3.7. h satisfies an evolution equation
∂h

∂t
= ∆h− 2 |Mij |2 + rh− r′ − 2 〈∇ψ,∇f〉 in M × (0, T )

∂h

∂η
= kgR on ∂M × (0, T ) .

Here 〈·, ·〉 denotes the inner product given by g (t).

The proof of this theorem can be found in [2]. From the previous result we
find that h satisfies the differential inequality

∂h

∂t
≤ ∆h+ (r + 2 ‖∇ψ‖∞)h− r′ + 2

(
r +

1

4

)
‖∇ψ‖∞ .

Let

c (t) =

∫ t

0

(r + 2 ‖∇ψ‖∞) dt,

and define
u = exp (−c (t))h.

Recall that for any finite T , both

∫ T

0

r dt and

∫ T

0

‖∇ψ‖∞ dt are finite. Then

u satisfies the differential inequality

∂u

∂t
≤ ∆u− exp (−c (t))

[
r′ − 2 ‖∇ψ‖∞

(
r +

1

4

)]
.
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Finally, let

v = u+

∫ t

0

exp (−c (t))

[
r′ − 2 ‖∇ψ‖∞

(
r +

1

4

)]
dτ ;

then, since kg ≤ 0 and R ≥ 0, v is easily seen to satisfy
∂v

∂t
≤ ∆v in M × (0, T ) ,

∂v

∂η
≤ 0 on ∂M × (0, T ) .

By the maximum principle, v is uniformly bounded on (0, T ), and in conse-
quence so is R.

4. Asymptotic behaviour

In this section we remove the assumption of any symmetry. The results we
shall present, unless otherwise stated, are valid as long as the initial data has
nonnegative curvature. First, we recall a result from [5] (notice that in the
statement presented here the hypothesis of symmetry have been removed).

Theorem 4.1. In the unnormalised flow, the total curvature satisfies the esti-
mate ∫

M

R̃dAg̃ ≤
c

t̃
. (6)

Proof. As said before, the quantities with a tilde refer to the unnormalised
flow (for instance Ã is the area of the surface with respect to the metric g̃). We
start then by calculating as follows:(∫

M

R̃dAg̃

)
t̃

=

∫
∂M

kg̃R̃dsg̃ =

(∫
∂M

kg̃dsg̃

) ∫
∂M

kg̃R̃dsg̃∫
∂M

kg̃dsg̃
.

Writing

r∂ =

∫
∂M

kg̃R̃dsg̃∫
∂M

kg̃dsg̃
,

by the Gauss-Bonnet theorem, we obtain(∫
M

R̃dAg̃

)
t̃

=

(
2

∫
∂M

kg̃dsg̃

)
r∂ = −

(∫
M

R̃dAg̃

)
r∂ .

Using that Ã′
(
t̃
)

= −
∫
M

R̃ dAg̃, and integrating the previous identity, we

obtain that for some constant c1 > 0 independent of t̃,

−Ã′(t̃) =

∫
M

R̃dAg̃ = c1e
−

∫ t̃
0
r∂(σ)dσ.
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As we can write −Ã′(t̃)h(t̃) = c1, where h(t̃) = e
∫ t̃
0
r∂(σ)dσ, we proceed as in [5]

to obtain

c1t̃ = −
∫ t̃

0

Ã′(σ)h(σ)dσ = −Ã(t̃)h(t̃) + Ã(0) +

∫ t̃

0

Ã(σ)h′(σ)dσ

≤ −Ã(t̃)h(t̃) + Ã(0) + Ã(0)

∫ t̃

0

h′(σ)dσ

= −Ã(t̃)h(t̃) + Ã(0) + Ã(0)h(t̃)− Ã(0)

= h(t̃)
(
Ã(0)− Ã(t̃)

)
≤ h(t̃)Ã(0),

and we arrive at estimate (6). �X

The previous theorem has the following consequence for the behavior of the
total curvature in the normalised flow.

Theorem 4.2. Under normalised Ricci flow, the total scalar curvature satisfies∫
M

RdAg ≤
c

log (t+ 1)
, (7)

for some positive constant c independent of t.

Proof. From the previous lemma we have that in the unnormalised flow the
total scalar curvature satisfies the estimate∫

M

R̃dAg̃ ≤
c

t̃
,

for some positive constant c independent of time t̃. Since under the Ricci flow,
as we are assuming Rg ≥ 0, the area Ã

(
t̃
)

:= Ag̃(t̃) of the surface is decreasing

and its derivative satisfies Ã′(t̃) = −
∫
M
R̃ dAg̃(t̃), we can assume, without loss

of generality and to simplify the estimates below, that −Ã′(t̃) ≤ 1. Then we
have the inequality

− Ã
′(t̃)

Ã(t̃)
≤ 1

Ã(t̃)
.

Intregrating with respect to t̃ we obtain

log

(
Ã(0)

Ã(t̃)

)
≤
∫ t̃

0

1

Ã(σ)
dσ = t,

which implies
Ã(0)

Ã(t̃)
≤ et.
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Now, we integrate the previous expression with respect to time t̃. This yields

Ã (0) t = Ã(0)

∫ t̃

0

1

Ã(t̃)
dt̃

≤
∫ t̃

0

etdt̃ =

∫ t̃

0

etÃ(t̃)dt

≤ Ã(0)

∫ t̃

0

etdt = A0

(
et̃ − 1

)
.

Hence we get that
1

t̃
≤ 1

log (t+ 1)
. (8)

Since the total scalar curvature is scaling-invariant, i.e∫
M

RdAg(t) =

∫
M

R̃dAg̃(t̃),

the result follows. �X

The previous result and its proof have two interesting consequences. The
first one is that the unnormalised flow must exist for all time, otherwise in-
equality (8) would not be valid. On the other hand, we must have that the
minimum of the scalar curvature Rmin (t)→ 0 as t→∞. We state the first of
these facts in the following corollary.

Corollary 4.3. If the normalised flow (2) exists for all time, then the unnor-
malised Ricci flow (1) also exists for all time. As a consequence, if the initial
data is of the form

g0 = dσ2 + f (σ)
2
dθ2,

the unnormalised flow exists for all time.

The informed reader must compare this result with the case of closed sur-
faces of Euler characteristic 0: both the normalised and unnormalised flow
coincide, so both exist for all time.

From Corollary 4.3 we can conclude that the curvature in the unnormalised
flow (at least when assuming symmetric initial data, see Section 4.1 below)
remains bounded on any finite interval of time; but it does not remain uniformly
bounded, as the following result shows.

Theorem 4.4. If the length of the boundary in the normalised flow remains
bounded below (away from 0), and kg < 0 is locally constant, then there is

constant c1 > 0 such that
∫
M
R̃2dAg̃ ≥ c1 and as a consequence, there is a

constant c2 > 0 such that
R̃max(t̃) ≥ c2t̃.
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Proof. If we assume for the normalised Ricci flow that the length of the bound-
ary components are bounded away from 0, then there is a constant C > 0 such
that for all t > 0

1√
Ag̃

lg̃ (∂M) = lg (∂M) ≥ C.

This inequality implies

− Ã
′(t̃)√
Ã

=

∫
M
R̃dAg̃√
Ã

= −clg (∂M) ≥ C,

where c < 0 is the minimum of the geodesic curvature of the boundary. On the
other hand, by the Cauchy-Schwarz inequality we have

−Ã′(t̃) =

∫
M

R̃dAg̃ ≤

√∫
M

R̃2dAg̃

√
Ã(t̃).

Therefore, we obtain the inequality√∫
M

R̃2dAg̃ ≥
−Ã′(t̃)√

Ã
≥ C.

To show that R̃max(t) blows-up in infinite time, we use this lower bound and
estimate (6) as follows

C2 ≤
∫
M

R̃2dAg̃ ≤ R̃max(t)

∫
M

R̃dAg̃ ≤ R̃max(t)
c

t̃
.

�X

One result to be expected in geometric flows is that whenever there is
convergence, this convergence is exponential. In our case this is not true; even
though the curvature seems to be approaching 0 (at least it does so in an L1

sense, and in some cases, as shown below, uniformly), it does not do so too
fast, and by this we mean exponentially fast, as the following estimate shows.

Theorem 4.5. Assume that the initial data is of the form

g0 = dσ2 + f (σ)
2
dθ2,

satisfies Rg ≥ 0, kg < 0 in one of the boundary components (and kg ≤ 0 on
both), and is locally constant, and that Rmin (t) is attained in both components
of ∂M . Then, there is a constant c2 > 0 such that for the normalised flow holds

Rmax(t) ≥ 2

t+ c2
.
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Proof. We let k1 and k2 be the constant values of the geodesic curvature in
each connected component of the boundary, and let l̃1 and l̃2 be the lengths of
each component. Now notice that, by the Gauss-Bonnet theorem,

−Ã′ =

∫
R̃ dAg̃ = 2

∫
∂M

kg̃ dsg̃ = −2k1 l̃1 − 2k2 l̃2.

On the other hand

Ã′′ = −
∫

∆R̃ dAg̃

= −
∫
kg̃R̃ dsg̃ = −R̃min (t)

(
k1 l̃1 + k2 l̃2

)
,

from which we obtain

− Ã
′′(t̃)

Ã′(t̃)
=

1

2
R̃min.

But
−Ã′ ≥ R̃minÃ,

and hence

− Ã
′(t̃)

Ã(t̃)
≥ −2Ã′′(t̃)

Ã′(t̃)
.

Then
1

Ã(t̃)
≥ 2Ã′′(t̃)

(Ã′(t̃))2
,

and we can compute

t =

∫ t̃

0

1

Ã(σ)
dσ ≥ 2

∫ t̃

0

Ã′′(σ)

(Ã′(σ))2
dσ =

2

Ã′ (0)
− 2

Ã′(t̃)
.

The assumption Rg0 > 0, implies that for an ε > 0, −ε = 2
Ã′(0)

, so we have

t+ ε ≥ − 2

Ã′(t̃)
,

which implies, via the fact that
∫
R̃g̃ dAg̃ =

∫
Rg dAg ≤ Rmax (t),

Rmax(t) ≥ −Ã′(t̃) ≥ 2

t+ ε
.

�X

We must point out that examples of initial data so that Rmin (t) is attained
in both boundary components of M are easy to construct (see [2, 5]).

Remark 4.6. Notice that in the proofs of Theorems 4.2 and 4.4 all that is
required is that

∫
Rg dAg remains positive on any finite interval [0, T ], which

is true as long as kg < 0 in any of the connected components of ∂M (of course,
we are also assuming that kg ≤ 0 on both components).
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4.1. Assuming more symmetries: refined asymptotic results.

If we assume additional symmetries on the initial metric, we can sharpen our
results on the behavior of the curvature. Notice that so far we have been able
to prove that the scalar curvature remains bounded over finite time intervals.
Let us recall some of the terminology used so far, we write

M = S1 × [−ρ, ρ] ,

and we will call S1 × {0} the middle parallel.

Now we shall assume that not only the initial data is of the form

g0 = dσ2 + f (σ)
2
dθ2

but also that it is symmetric by reflection with respect to the middle parallel.
We will assume as well that the scalar curvature Rg0 ≥ 0 is decreasing as we
move from the middle parallel towards any of the boundary components. These
properties of the initial data are preserved under the Ricci flow as considered in
this article (when the solution is at least C3 inM×[0, T )), and we will say in this
case that the scalar curvature is decreasing from the middle. Examples where
the metric satisfies the properties described above are easy to construct (see
Proposition 3 in [5]). The following results shows that under these additional
assumptions we can prove that the curvature is uniformly bounded above and
even that it approaches 0 as t→∞.

Theorem 4.7. If the scalar curvature of the initial data is decreasing from the
middle, then there exists a sequence of times tk →∞ such that R (tk)→ 0.

Proof. Notice that being the minimum located at the boundary, there exists a
c > 0 such that the length of each boundary component is bounded from below
by c for all time. Hence, the diameter of the barrel must remain uniformly
bounded by the results of Section 2. On the other hand the length of the
middle parallel behaves as

L (t) = L0e
∫ t
0
r−Rmax dτ ,

and hence it is decreasing. But the length of the middle parallel must remain
bounded away from 0; otherwise, the area of the barrel would go to 0. Hence,∫ t

0
Rmax−r dt remains uniformly bounded (incidently, notice that the integrand

is positive), so for any k > 0 there must exists a tk such that Rmax (tk)−r < 1
k .

But we have already shown that r → 0 as t → ∞, and this implies that
R (tk)→ 0. �X

Now we prove that the curvature remains uniformly bounded.

Theorem 4.8. The scalar curvature remains uniformly bounded in the nor-
malised flow.
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Proof. The maximum of the scalar curvature satisfies

d

dt
Rmax ≤ Rmax (Rmax − r) ,

and hence, given any τ , we have that

Rmax (t) ≤ Rmax (τ) e
∫ t
τ
Rmax(z)−r(z) dz, (9)

and we know that
∫ t
τ
Rmax (z) − r (z) dz is uniformly bounded, so the result

follows. �X

From the previous two results we can finally conclude:

Corollary 4.9. In the normalised flow R (t)→ 0 as t→∞.

Proof. Just observe that for any ε > 0, there is a t∗ such that Rmax (t∗) < ε/A
(by Theorem 4.7), where A is a bound on

∫∞
0
Rmax − r dt, and hence by (9),

Rmax (t) < ε for t > t∗. �X

Finally, this corollary, by the arguments in Section 2.1 in [3], implies that the
solution to the normalised Ricci flow, under the assumption that the initial data
has S1 symmetry, positive scalar curvature and that its curvature is decreasing
from the middle, converges smoothly to a metric of zero curvature and totally
geodesic boundary.
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